Classification and Regression Trees to predict Transcription Factor Combinatorial Interaction in scRNA-seq data - Institut de Mathématiques et de Modélisation de Montpellier
Pré-Publication, Document De Travail Année : 2024

Classification and Regression Trees to predict Transcription Factor Combinatorial Interaction in scRNA-seq data

Résumé

Abstract Understanding the regulatory mechanisms that govern gene expression is crucial for deciphering cellular functions. Transcription factors (TFs) play a key role in regulating gene expression. In particular TF combinatorial interactions (TFCI) are now thought to largely shape genomic transcriptional responses, but predicting TFCI per se is still a difficult task. Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool providing a whole new readout of gene regulatory effects. In this study, we propose a machine learning approach utilizing Classification and Regression Trees (CART) for predicting TFCI in >110k scRNA-seq data points yielded from Arabidopsis thaliana root. The proposed methodology provides a valuable tool for pointing to new TFCI mechanisms and could advance our understanding of Gene Regulatory Networks’ functioning.
Fichier principal
Vignette du fichier
CarluerJ.-B.-et al-bioRxiv-2024.pdf (1.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04626016 , version 1 (26-06-2024)

Identifiants

Citer

Jean Baptiste Carluer, Laura Steinmann, Clément Carré, André Mas, Gabriel Krouk. Classification and Regression Trees to predict Transcription Factor Combinatorial Interaction in scRNA-seq data. 2024. ⟨hal-04626016⟩
34 Consultations
16 Téléchargements

Altmetric

Partager

More