Asymptotic normality of randomly truncated stochastic algorithms - MATHFI
Article Dans Une Revue ESAIM: Probability and Statistics Année : 2013

Asymptotic normality of randomly truncated stochastic algorithms

Jérôme Lelong

Résumé

We study the convergence rate of randomly truncated stochastic algorithms, which consist in the truncation of the standard Robbins-Monro procedure on an increasing sequence of compact sets. Such a truncation is often required in practice to ensure convergence when standard algorithms fail because the expected-value function grows too fast. In this work, we give a self contained proof of a central limit theorem for this algorithm under local assumptions on the expected-value function, which are fairly easy to check in practice.
Fichier principal
Vignette du fichier
truncated_sa_tcl_2.pdf (227.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00464380 , version 1 (16-03-2010)
hal-00464380 , version 2 (20-05-2011)

Identifiants

Citer

Jérôme Lelong. Asymptotic normality of randomly truncated stochastic algorithms. ESAIM: Probability and Statistics, 2013, 17, pp.105-119. ⟨10.1051/ps/2011110⟩. ⟨hal-00464380v2⟩
407 Consultations
190 Téléchargements

Altmetric

Partager

More