Exact Simulation of One-dimensional Stochastic Differential Equations involving the local time at zero of the unknown process - MATHFI
Article Dans Une Revue Monte Carlo Methods and Applications Année : 2013

Exact Simulation of One-dimensional Stochastic Differential Equations involving the local time at zero of the unknown process

Pierre Etoré
  • Fonction : Auteur
  • PersonId : 1039251
  • IdRef : 112858562

Résumé

In this article we extend the exact simulation methods of Beskos et al. to the solutions of one-dimensional stochastic differential equations involving the local time of the unknown process at point zero. In order to perform the method we compute the law of the skew Brownian motion with drift. The method presented in this article covers the case where the solution of the SDE with local time corresponds to a divergence form operator with a discontinuous coefficient at zero. Numerical examples are shown to illustrate the method and the performances are compared with more traditional discretization schemes.
Fichier principal
Vignette du fichier
etoremartinez1MCMArevis2.pdf (271.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00565286 , version 1 (11-02-2011)
hal-00565286 , version 2 (24-07-2012)
hal-00565286 , version 3 (14-01-2013)

Identifiants

Citer

Pierre Etoré, Miguel Martinez. Exact Simulation of One-dimensional Stochastic Differential Equations involving the local time at zero of the unknown process. Monte Carlo Methods and Applications, 2013, 19 (1), pp.41-71. ⟨10.1515/mcma-2013-0002⟩. ⟨hal-00565286v3⟩
515 Consultations
671 Téléchargements

Altmetric

Partager

More