Asymptotic equivalence of jumps Lévy processes and their discrete counterpart - MATHFI
Pré-Publication, Document De Travail Année : 2013

Asymptotic equivalence of jumps Lévy processes and their discrete counterpart

Pierre Etoré
  • Fonction : Auteur
  • PersonId : 1039251
  • IdRef : 112858562
Sana Louhichi
Ester Mariucci
  • Fonction : Auteur
  • PersonId : 941867

Résumé

We establish the global asymptotic equivalence between a pure jumps Lévy process $\{X_t\}$ on the time interval $[0,T]$ with unknown Lévy measure $\nu$ belonging to a non-parametric class and the observation of $2m^2$ Poisson independent random variables with parameters linked with the Lévy measure $\nu$. The equivalence result is asymptotic as $m$ tends to infinity. The time $T$ is kept fixed and the sample path is continuously observed. This result justifies the idea that, from a statistical point of view, knowing how many jumps fall into a grid of intervals gives asymptotically the same amount of information as observing $\{X_t\}$.
Fichier principal
Vignette du fichier
Mariucci_Preprint.pdf (110.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00827173 , version 1 (29-05-2013)
hal-00827173 , version 2 (19-09-2013)

Identifiants

Citer

Pierre Etoré, Sana Louhichi, Ester Mariucci. Asymptotic equivalence of jumps Lévy processes and their discrete counterpart. 2013. ⟨hal-00827173v2⟩
382 Consultations
232 Téléchargements

Altmetric

Partager

More