Article Dans Une Revue Journal of Nonparametric Statistics Année : 2024

Kernel density estimation for a stochastic process with values in a Riemannian manifold

Résumé

This paper is related to the issue of the density estimation of observations with values in a Riemannian submanifold. In this context, Henry and Rodriguez ((2009), ‘Kernel Density Estimation on Riemannian Manifolds: Asymptotic Results’, Journal of Mathematical Imaging and Vision, 34, 235–239) proposed a kernel density estimator for independent data. We investigate here the behaviour of Pelletier's estimator when the observations are generated from a strictly stationary α-mixing process with values in this submanifold. Our study encompasses both pointwise and uniform analyses of the weak and strong consistency of the estimator. Specifically, we give the rate of convergence in terms of mean square error, probability, and almost sure convergence (a.s.). We also give a central-limit theorem and illustrate our proposal through some simulations and a real data application.
Fichier principal
Vignette du fichier
KDE for_a_stochastic_process_with_values_in_a_Riemannian_Manifold.pdf (1.15 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04799221 , version 1 (19-01-2025)

Identifiants

Citer

Mohamed Abdillahi Isman, Wiem Nefzi, Papa Mbaye, Salah Khardani, Anne-Françoise Yao. Kernel density estimation for a stochastic process with values in a Riemannian manifold. Journal of Nonparametric Statistics, 2024, pp.1-20. ⟨10.1080/10485252.2024.2382442⟩. ⟨hal-04799221⟩
10 Consultations
0 Téléchargements

Altmetric

Partager

More