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ERROR ESTIMATES FOR SCALAR CONSERVATION
LAWS BY A KINETIC APPROACH
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We use the kinetic approach of Perthame and Tadmor (1991) to calculate the error esti-

mates for general scalar conservation laws governing problems in gas dynamics or fluid

mechanics in general. The Kružkov and Kuznetsov techniques are generalized to this

method, and an error bound of order
√
ε (where ε is the mean free path) is obtained.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

The kinetic approaches for scalar conservation laws have attracted attention for the last

few years. Much work has been done in this field, however, important developments such

as error estimates have not been totally investigated. The Perthame-Tadmor approach

[16] is here used to derive the error bound for the following Cauchy problem of conser-

vation laws:

∂tu+
N
∑

i=1

∂xi
(

Ai(u)
)

= 0, (1.1)

u(0,x)= u0(x), (1.2)

where (t,x) ∈ [0,+∞[×RN , u = u(t,x) ∈ R, and where the functions A′i (·) = ai(·) are

locally Lipschitz in R.

It is well known that there is a lack of regularity of the solutions for t > 0, so that

we generally look for weak solutions for (1.1)-(1.2). Moreover, there is a unique weak

solution of physical interest, satisfying the additional Kružkov [10] entropy condition:

∂t
(

|u− ℓ|
)

+
N
∑

i=1

∂xi
(

sgn(u− ℓ)
(

Ai(u)−Ai(ℓ)
))

≤ 0 in �
′(
R

N
)

, (1.3)

ℓ ∈R being any real scalar. For more details, see for example the classical book of Smoller

[17] and the references therein. Now, the problem (1.1)–(1.3), which can be seen as
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2 Error bounds to conservation laws by kinetic approaches

a macroscopic interpretation of gas dynamics, is generally approached by the viscosity

method or by methods of numerical purpose.

In this work, we are concerned with a simple microscopic model which is not only

adapted to solve the problems of existence, uniqueness, and convergence for scalar con-

servation laws, but adapted to calculate the error of convergence as well.

Our method consists in using the Perthame-Tadmor model which is analogous to the

models of the kinetic theory of gases. This is a BGK model derived from Bhatnagar et

al. [1], and contains most of the basic properties of fluid dynamics, mainly conservation

of mass, momentum, and energy (see the book by Bouchut et al. [2], and/or the book by

Cercignani [6]). A function f (t,x,v) where v is “velocity” is considered. It represents the

distribution of “molecules” located at x, having a speed v, at time t.
Let us recall that a discrete-time version of the Perthame-Tadmor approach [16] was

previously and simultaneously proposed by Brenier [4, 5], by Giga and Miyakawa [9],

and by Miyakawa [14]. In [16], the authors prove the convergence towards the unique

solution of (1.1)–(1.3). We are concerned here with the exact error of convergence.

The paper is organized as follows. In Section 2, we introduce the method of Perthame

and Tadmor, giving the main definitions and results. In Section 3, we develop an ap-

proximate entropy inequality with a precise “entropy” remainder. Then we give the error

estimates for the corresponding conservation law based on the Kružkov-Kuznetsov tech-

niques in Section 4. Section 5 concerns some parabolic case.

2. Around the kinetic model

In this section, we give the main definitions and results due to Perthame and Tadmor. In

1991, they proposed the following BGK (say pseudo-BGK) model:

∂t fε +
N
∑

i=1

ai(v)∂xi fε =
1

ε

[

χ∫
v fε(t,x,v)dv − fε

]

, (2.1)

fε(0,x,v)= f0(x,v), (2.2)

as a kinetic interpretation of the conservation law (1.1)-(1.2) when ε→ 0 (see [16] and

also Lions et al. [13]). The scalar function fε = fε(t,x,v) is the kinetic solution, v ∈R, χw
(w ∈R) is a signature function (the pseudo-Maxwellian), and ε > 0 the mean free path in

comparison with the Boltzmann theory. If such a solution fε is defined, the approximate

solution for (1.1) is simply the function

uε(t,x)=
∫

v∈R
fε(t,x,v)dv, (2.3)

while the signature χw is given by

χw(v)=
⎧

⎨

⎩

sgnw if (w− v)v ≥ 0,

0 otherwise,
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if 0≤ v ≤w,

−1 if w ≤ v ≤ 0,

0 else.

(2.4)
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Remark 2.1. We immediately deduce the following formulae:

uε(t,x)=
∫

v∈R
χuε(t,x)(v)dv, (2.5)

and |w| =
∫

v∈R |χw(v)|dv for any w ∈R. Moreover,

Ai(u)−Ai(w)=
∫

v
ai(v)

(

χu(v)− χw(v)
)

dv, 1≤ i≤N. (2.6)

2.1. The well-posedness of the kinetic problem. Consider the linear version of (2.1)

(without the term χuε at the right-hand side). The classical method of characteristics in-

volves solving the equations

dX

dt
(t,v)= a(v),

X(0,v)= X0.
(2.7)

For φ(t) = fε(t,X(t),v), we have dφ/dt = (−t/ε)φ, that is, φ = C · e−(1/ε)t. With the

varying constant method, the solution of (2.1) is of the following form:

fε(t,x,v)= e−t/ε fε
(

0,x− τa(v),v
)

+
1

ε

∫ t

τ=0
e(τ−t)/εχuε (τ,x−(t−τ)a(v))(v)dτ (2.8)

(see Omrane [15]). We also have the L1 contraction

∥

∥ fε(t,x,v)− gε(t,x,v)
∥

∥

L1(RN
x ×Rv) ≤ e−t/ε

∥

∥ fε(0,x,v)− gε(0,x,v)
∥

∥

L1(RN
x ×Rv)

+
1

ε

∫

v

∫ t

τ=0
e(τ−t)/ε∥

∥χuε (τ,x) (v)− χωε (τ,x) (v)
∥

∥

L1(RN
x )dτ dv,

(2.9)

(here wε =
∫

v gε) where fε and gε are two solutions of (2.1). This gives

∥

∥ fε(t,x,v)− gε(t,x,v)
∥

∥

L1(RN×Rv) ≤ e−t/ε
∥

∥ fε(0,x,v)− gε(0,x,v)
∥

∥

L1(RN×Rv)

+
(

1− e−t/ε
)

sup
0≤τ≤t

∥

∥ fε(τ,x,v)− gε(τ,x,v)
∥

∥

L1(RN×Rv).

(2.10)

Since 0 < (1− e−t/ε) < 1 if fε(0,x,v)= gε(0,x,v), then there is a unique solution to (2.1).

Moreover, by (2.10), the kinetic solution is continuously dependent on the initial data.

We also have the contraction inequality

∥

∥ fε(t,x,v)− gε(t,x,v)
∥

∥

L1(RN×Rv) ≤
∥

∥ fε(0,x,v)− gε(0,x,v)
∥

∥

L1(RN×Rv). (2.11)

Theorem 2.2. The model (2.1) is well-posed in L∞([0,T];L1(RN ×Rv)), and the inequality

of contraction (2.11) holds true.

Proof. See the article of Perthame and Tadmor [16] for the proof. �
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2.2. Finite speed of propagation. In [16], we find the following. We first notice that for

any t ∈ [0,T],

∥

∥uε(t,·)
∥

∥

L∞(RN ) ≤
∫

v

∥

∥ fε(t,·,v)
∥

∥

L∞(RN )dv ≤
∫

v

∥

∥ fε(0,·,v)
∥

∥

L∞(RN )dv, (2.12)

with the help of Jensen’s inequality. Denoting u∞ = ‖uε(t,x)‖L∞(RN
x ), the support of fε(t,

x,·) is showed to be contained in Kv:

Kv =
(

supp
(

fε(0,x,·)
))

∪
[

−u∞,+u∞
]

. (2.13)

Consequently, the term a(v) ·∇x fε is also supported in Kv, and the elements |ai(v)| are

bounded by

a∞ =max
{
∣

∣ai(v)
∣

∣, v ∈ Kv, i= 1, . . . ,N
}

. (2.14)

Remark 2.3. In fact, the support of fε(t,x,·) is mainly contained in [−u∞,+u∞], because

of the decay of the initial data in (2.8).

2.3. The kinetic entropies H( fε). The notion of “kinetic” entropy has the same sense as

the classical entropy for conservation laws. It is just a microscopic version of it, and the

name is due to the presence of the speed vector a(v).

Definition 2.4. The kinetic entropies are the functions H( fε) such that for any positive

test function ϕ∈�(Rt
+×RN

x ),

−
∫ +∞

0

∫

RN

∫

Rv

([

∂t + a(v)∇x
]

ϕ
)

H
(

fε
)

dvdxdt ≤ 0 (2.15)

(according to the H-theorem in Boltzmann theory).

Multiplying (2.1) by sgn( fε− χℓ), ℓ ∈R, and integrating by parts, we have

−
∫ +∞

0

∫

RN

∫

Rv

([

∂t + a(v)∇x
]

ϕ
)
∣

∣ fε− χℓ
∣

∣dvdxdt

=−1

ε

∫ +∞

0

∫

RN

∫

Rv

(

fε− χℓ + χℓ − χuε
)

ϕsgn
(

fε− χℓ
)

dvdxdt

≤−1

ε

∫ +∞

0

∫

RN

∫

Rv

∣

∣ fε− χℓ
∣

∣ϕdvdxdt +

∫ +∞

0

∫

RN

1

ε

∣

∣uε− ℓ
∣

∣ϕdxdt ≤ 0,

(2.16)

since |uε− ℓ| = |
∫

v fε− χℓdv|.
The functions H( fε) = | fε − χℓ| are the kinetic entropies. Notice that ℓ is any given

scalar (it may also be any function uniformly bounded in t and x).
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3. The approximate entropy solutions

In this section, we show that the Kružkov method can be applied. Let (s, y)∈ (0,T)×RN

be the new variables, we then define Q = (0,T)2×RN
x ×RN

y and ϕ= ϕ(t,s,x, y).

Proposition 3.1. Let u = u(s, y) be the unique entropy solution of (1.1)–(1.3), and fε ∈
L∞([0,T];L1(RN ×Rv)) the approximate kinetic solution given by (2.1). Then

−
∫

Q

∣

∣uε(t,x)−u(s, y)
∣

∣

((

∂t + ∂s
)

ϕ
)

dQ

−
∫

Q
sgn

(

uε−u
)(

A
(

uε(t,x)
)

−A
(

u(s, y)
))((

∇x +∇y
)

ϕ
)

dQ

≤
∫

Q

∫

v

∣

∣∂tϕ
∣

∣

∣

∣χuε − fε
∣

∣dvdQ+ a∞

∫

Q

∫

v

∣

∣∇xϕ
∣

∣

∣

∣χuε − fε
∣

∣dvdQ

(3.1)

for any test function ϕ∈�(Q).

Proof. Recall that ℓ ∈R can be chosen as any ℓ = ℓ(s, y) for example, uniformly bounded

with respect to s and y. We write

−
∫

Q

∫

v

([

∂t + a(v)∇x
]

ϕ
)
∣

∣χuε − χℓ

∣

∣dvdQ

=−
∫

Q

∫

v

([

∂t + a(v)∇x
]

ϕ
)(
∣

∣χuε − χℓ

∣

∣−
∣

∣ fε− χℓ

∣

∣

)

dvdQ

−
∫

Q

∫

v

([

∂t + a(v)∇x
]

ϕ
)
∣

∣ fε− χℓ

∣

∣dvdQ.

(3.2)

With the definition on the kinetic entropies and the following triangle inequality:

∣

∣

∣

∣χuε − χℓ

∣

∣−
∣

∣ fε− χℓ

∣

∣

∣

∣≤
∣

∣χuε − fε
∣

∣, (3.3)

we obtain

−
∫

Q

∫

v

([

∂t + a(v)∇x
]

ϕ
)
∣

∣χuε − χℓ

∣

∣dvdQ ≤
∫

Q

∫

v

∣

∣

[

∂t + a(v)∇x
]

ϕ
∣

∣

∣

∣χuε − fε
∣

∣dvdQ.

(3.4)

Using Remark 2.1, and the finite speed of propagation property (2.14), we deduce

−
∫

Q

∣

∣uε(t,x)− ℓ(s, y)
∣

∣∂tϕdQ

−
∫

Q
sgn

(

uε− ℓ
)(

A
(

uε(t,x)
)

−A
(

ℓ(s, y)
))

∇xϕdQ

≤
∫

Q

∫

v

∣

∣∂tϕ
∣

∣

∣

∣χuε − fε
∣

∣dvdQ+ a∞

∫

Q

∫

v

∣

∣∇xϕ
∣

∣

∣

∣χuε − fε
∣

∣dvdQ.

(3.5)
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From another side, the exact entropy solution u(s, y) of (1.1)–(1.3) verifies for all ℓ =
ℓ(t,x)∈ L∞(R+×RN

x ) that

−
∫

Q

∣

∣u(s, y)− ℓ(t,x)
∣

∣∂sϕdQ

−
∫

Q
sgn

(

u(s, y)− ℓ(t,x)
)(

A
(

u(s, y)
)

−A
(

ℓ(t,x)
))

∇yϕdQ ≤ 0.

(3.6)

If we replace ℓ(s, y) by u(s, y) (the exact solution) in (3.5), and ℓ(t,x) by uε(t,x) in (3.6),

then we sum up to obtain (3.1). �

3.1. The test functions. We define ϕ as follows:

ϕ(t,s,x, y)= ψη

(

t+ s

2

)

θh(t− s)
N
∏

i=1

θh
(

xi− yi
)

, (3.7)

where ψη is the characteristic function defined by

ψη(t)= χη
(

t− t0
∆t

)

, χη(τ)=
∫ τ

0
θη(s)ds+

∫ 1

τ
θη(s− 1)ds, (3.8)

and where the function θh is the classical mollifier. For h > 0, we also have−h≤ θh(·)≤ h,
∫ h
−h θh(s)ds = 1, θh(s) = (1/h)θ(s/h), where θ is a regularized Dirac function of support

[−1,1] :
∫ 1
−1 θ(s)ds= 1. We have the following corollary.

Corollary 3.2. Under the hypothesis of Proposition 3.1, the following entropy inequality

holds:

−
∫

Q

∣

∣uε(t,x)−u(s, y)
∣

∣

[

ψη
]′
(

t+ s

2

)

θh(t− s)
N
∏

i=1

θh
(

xi− yi
)

dQ

≤
∫

Q

∫

v

∣

∣∂tϕ
∣

∣

∣

∣χuε − fε
∣

∣dvdQ+ a∞

∫

Q

∫

v

∣

∣∇xϕ
∣

∣

∣

∣χuε − fε
∣

∣dvdQ.

(3.9)

Proof. To get (3.9), it is convenient to choose ϕ as in (3.7) (see [15, 18]). With this, we

obtain

∂xiϕ+ ∂yiϕ= 0, for i= 1, . . . ,N ,

∂tϕ+ ∂sϕ=
[

ψη
]′
(

t+ s

2

)

θh(t− s)
N
∏

i=1

θh
(

xi− yi
)

,
(3.10)

hence we have the left-hand side of (3.9). �

3.2. Bounds. Let us begin with some properties of the test function. For t0 and t1 in

[0,T], we have

∫∫ t1

t0

∣

∣

∣

∣

ψ′η

(

t+ s

2

)
∣

∣

∣

∣

θh(t− s)dtds≤ 1. (3.11)
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Indeed, note that

ψ′η

(

t+ s

2

)

= 1

∆t

[

θη

(

(t+ s)/2− t0
∆t

)

− θη

(

(t+ s)/2− t1
∆t

)]

. (3.12)

Moreover, we easily see that

∫∫ t1

t0
θη

(

(t+ s)/2− ti
∆t

)

θh(t− s)dtds

= 2∆t
∫ t1

t0

∫ t1−s

t0−s
θ2∆tη

(

τ + 2s− 2ti
)

θh(τ)dτ ds= 1

2
, for i= 0,1.

(3.13)

In particular (3.11) holds, and we have the lemma.

Lemma 3.3. Suppose that fε(0,x,v)∈ L1(R;BV(RN )), which is compactly supported in Rv.

Let u(s, y) be the entropy solution of (1.1)–(1.3), and uε(t,x) the approximate solution given

by (2.3), then

−
∫

Q

∣

∣u(s, y)−uε(t,x)
∣

∣

[

ψη
]′
(

t+ s

2

)

θh(t− s)dQ

≤
(

1

2
+
Na∞
h

+

(

1 + a∞
)

h
|θ′|L1(R)

∣

∣ψη

∣

∣

L1(R)

)

sup
0≤t≤T

∥

∥ fε− χuε
∥

∥

L1(RN
x ×Rv).

(3.14)

Proof. Using (3.11), we write

∫

Q

∫

v

∣

∣∂tϕ
∣

∣

∣

∣ fε− χuε
∣

∣dvdQ

≤
∫

x

(

∫

y

N
∏

i=1

θh
(

xi− yi
)

dy

)

∫

t

∫

s

{

1

2

∣

∣

∣

∣

ψ′η

(

t+ s

2

)
∣

∣

∣

∣

θh(t− s)

+
1

h2
ψη

(

t+ s

2

)

θ′
(

t− s

h

)}

dsdt
∫

v

∣

∣ fε− χuε
∣

∣dvdx

≤ sup
0≤t≤T

∫

x

∫

v

∣

∣ fε− χuε
∣

∣dvdx
{

1

2

∫

t

∫

s

∣

∣

∣

∣

ψ′η

(

t+ s

2

)
∣

∣

∣

∣

θh(t− s)dsdt

+
1

h2

∫

t

∫

s
ψη

(

t+ s

2

)

θ′
(

t− s

h

)

dsdt
}

≤ sup
0≤t≤T

∥

∥ fε− χuε
∥

∥

L1(RN
x ×Rv)

[

1

2
× 1 +

1

h2
×h|θ′|L1(R)

∣

∣ψη

∣

∣

L1(R)

]

,

(3.15)
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and
∫

Q

∫

v

∣

∣∇xϕ
∣

∣

∣

∣ fε− χuε
∣

∣dvdQ

≤
[

N

h
+

1

h

(

∣

∣ψη

∣

∣

L1(R)|θ′|L1(R)

)

]

sup
0≤t≤T

∥

∥ fε− χuε
∥

∥

L1(RN
x ×Rv),

(3.16)

with the same arguments. �

We now control the term sup0≤t≤T ‖ fε− χuε‖L1(RN
x ×Rv) at the right-hand side of (3.14).

Proposition 3.4. Consider the kinetic initial data fε(0,x,v) ∈ L1(Rv; BV(RN )) which is

compactly supported in Rv. Then

∥

∥ fε(t,x,v)− χuε(t,x)(v)
∥

∥

L1(RN×Rv)

≤ 2εa∞
∥

∥ fε(0,x,v)
∥

∥

BV(RN ;L1(Rv)) + 2
∥

∥ fε(0,x,v)− χuε(0,x)(v)
∥

∥

L1(RN×Rv),
(3.17)

for every t > 0, where

∥

∥ fε(0,x,v)
∥

∥

BV(RN ;L1(Rv)) = sup
|∆x|�=0

∫

x

∫

v

∣

∣ fε(0,x+∆x,v)− fε(0,x,v)
∣

∣

|∆x| dxdv. (3.18)

Proof. Suppose that ‖ fε(0,x,v)‖BV(RN ;L1(Rv)) is uniformly bounded in ε, then using the

contraction inequality (2.11), the corresponding solution fε(t,x,v) satisfies that for every

0≤ t ≤ T ,

∥

∥ fε(t,x,v)
∥

∥

BV(RN ;L1(Rv)) ≤
∥

∥ fε(0,x,v)
∥

∥

BV(RN ;L1(Rv)). (3.19)

Moreover,

χuε(t,x)(v)− fε(t,x,v)= ε
{

∂

∂t
fε(t,x,v) + a(v) ·∇x fε(t,x,v)

}

∈ L1
(

R
N
x ×Rv

)

, (3.20)

that is for every t ≥ 0 and every ε > 0,

∥

∥χuε(t,x)(v)− fε(t,x,v)
∥

∥

L1(RN×Rv) ≤ ε
∥

∥

∥

∥

∂ fε
∂t

(t,x,v) + a(v)∇x fε(t,x,v)

∥

∥

∥

∥

L1(RN×Rv)
. (3.21)

It is important to notice that we do not necessarily recover the L1 regularity of the term

∂ fε/∂t since

∂ fε
∂t
= 1

ε

[

χuε − fε
]

− a(v) ·∇x fε, (3.22)

and not for a(v) ·∇x fε either. The quantities |∂ fε/∂t| and |∂ fε/∂xi| for 1≤ i≤N are only

measures that we can bound by the BV norm. Indeed, for ϕ ∈�, denote by ‖ · ‖� the

norm

∥

∥ fε
∥

∥

�
:= sup

‖ϕ‖≡1

∣

∣

∣

∣

∫

v

∫

z

∂ fε
∂z

ϕdvdz
∣

∣

∣

∣

, (3.23)
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where z = t,xi, for i= 1, . . . ,N . Then we can write

∥

∥ fε
∥

∥

�
= sup
‖ϕ‖≡1

∣

∣

∣

∣

∫

v

(
∫

z
fεϕ

′(z)dz
)

dv
∣

∣

∣

∣

≤
∥

∥ fε
∥

∥

L1(Rv ;BV(z)). (3.24)

Using this definition together with the finite speed of propagation property (2.14), we

obtain
∫

x

∫

v

∣

∣a(v)∇x fε(t,x,v)
∣

∣≤ a∞
∥

∥ fε
∥

∥

�
≤ a∞

∥

∥ fε(t,x,v)
∥

∥

L1(Rv ;BV(RN )). (3.25)

By (3.22) and (3.24), we also deduce

∫

Ω

∫

v

∣

∣

∣

∣

∣

∂ fε
∂t

(t)

∣

∣

∣

∣

∣

≤
∥

∥ fε(t)
∥

∥

BV(t) ≤
∥

∥ fε(0,x,v)
∥

∥

L1(RN
x ×Rv ;BV(0,T))

≤ a∞
∥

∥ fε(0,x,v)
∥

∥

L1(Rv ;BV(RN )) +
∥

∥χuε(0,x)(v)− fε(0,x,v)
∥

∥

L1 .

(3.26)

That is for all T > 0 and every 0≤ t ≤ T , we have

∥

∥ fε(t,x,v)− χuε(v)
∥

∥

L1(RN
x ×Rv) ≤ 2εa∞

∥

∥ fε(0,x,v)
∥

∥

L1(Rv ;BV(RN ))

+
∥

∥ fε(0,x,v)− χuε(0,x)(v)
∥

∥

L1(RN
x ×Rv).

(3.27)

�

Remark 3.5. Denote uε(0,x) ≡ uε0(x) := uε0. Then, it is not restrictive to replace limε→0

‖ fε(0,x,v)− χuε0 (v)‖L1(RN
x ×Rv) = 0 by fε(0,x,v)= χuε0 (v) in the above proposition. This is

useful for the applications.

We then have the proposition on the error bound.

Proposition 3.6. Suppose that fε(0,x,v)∈ L1(R;BV(RN )), which is compactly supported

inRv, and that initially fε(0,x,v)= χuε0 (v). Let u(s, y) be the entropy solution of (1.1)–(1.3),

and uε(t,x) the approximate solution given by (2.3). Then

−
∫

Q

∣

∣u(s, y)−uε(t,x)
∣

∣

[

ψη
]′
(

t+ s

2

)

θh(t− s)dQ ≤M
ε

h

∥

∥uε0
∥

∥

BV(RN ), (3.28)

where

M = a∞
(

h+ 2Na∞ + 2
(

1 + a∞
)

|θ′|L1(R)

∣

∣ψη

∣

∣

L1(R)

)

. (3.29)

Proof. If we take the simplified initial data form (Maxwellian data) of Remark 3.5, then

Proposition 3.4 gives

∥

∥ fε(t,x,v)− χuε(t,x)(v)
∥

∥

L1(RN×Rv) ≤ 2εa∞
∥

∥ fε(0,x,v)
∥

∥

L1(Rv ;BV(RN )). (3.30)

Moreover, noticing that

∥

∥ fε(0,x,v)
∥

∥

L1(Rv ;BV(RN )) =
∥

∥uε(0,x)
∥

∥

BV(RN ) =
∥

∥uε0(x)
∥

∥

BV(RN ), (3.31)

we immediately deduce the result from Lemma 3.3. �
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4. Generalization to the Kuznetsov technique

In this section, we will estimate the difference

∥

∥u
(

t1,·
)

−uε
(

t1,·
)
∥

∥

L1(RN )−
∥

∥u
(

t0,·
)

−uε
(

t0,·
)
∥

∥

L1(RN ), (4.1)

where t0 and t1 are in [0,T], T > 0. The techniques we will use are not new (see, e.g.,

Bouchut and Perthame [3]), and are known as the Kuznetsov techniques (see Kuznetsov

[11], and Kuznetsov and Volshin [12]). The new thing here is the generalization of these

techniques to the kinetic approach of Perthame and Tadmor, as the approximate solution

is obtained from the kinetic model. We prepare by the lemma.

Lemma 4.1. Suppose that fε(0,x,v)∈ L1(R; BV(RN )) is compactly supported in v, and that

uε0(x)= u0(x). Then

∥

∥u(t,·
)
∥

∥

BV(RN ) ≤
∥

∥u0

∥

∥

BV(RN ),
∥

∥uε(t,·)
∥

∥

BV(RN ) ≤
∥

∥u0

∥

∥

BV(RN ), (4.2)

for every t ∈ [0,T]. Moreover, u and uε belong to the BV([0,T]; L1(RN )) for every T > 0.

Proof. The proof is classical and relies on the translation property in x and the contrac-

tion (2.11). �

Proposition 4.2. Suppose that the hypothesis of Proposition 3.6 is satisfied. Then

I =−
∫

Q

∣

∣u(s, y)−uε(t,x)
∣

∣

[

ψη
]′
(

t+ s

2

)

θh(t− s)dQ

≥
∥

∥u
(

t1,x
)

−uε
(

t1,x
)
∥

∥

L1(RN )−
∥

∥u
(

t0,x
)

−uε
(

t0,x
)
∥

∥

L1(RN )

−
(

4
∥

∥u0

∥

∥

BV(R;L1(RN )) + 2
∥

∥u0

∥

∥

BV(RN )

)

h.

(4.3)

Proof. We split the integral I using (3.12) into I = I0 + I1 relatively to t0 and t1, where

I0 =−
∫

Q

∣

∣u(s, y)−uε(t,x)
∣

∣

1

∆t
θη

(

(t+ s)/2− t0
∆t

)

θh(t− s)
N
∏

i=1

θh
(

xi− yi
)

dQ,

I1 = +

∫

Q

∣

∣u(s, y)−uε(t,x)
∣

∣

1

∆t
θη

(

(t+ s)/2− t1
∆t

)

θh(t− s)
N
∏

i=1

θh
(

xi− yi
)

dQ.

(4.4)

For t = t0, we use the triangle inequality

∣

∣u(s, y)−uε(t,x)
∣

∣≤
∣

∣u(s, y)−u
(

t0, y
)
∣

∣+
∣

∣u
(

t0, y
)

−u
(

t0,x
)
∣

∣

+
∣

∣u
(

t0,x
)

−uε
(

t0,x
)
∣

∣+
∣

∣uε
(

t0,x
)

−uε(t,x)
∣

∣,
(4.5)

which also may be written as

−
∣

∣u
(

t0,x
)

−uε
(

t0,x
)
∣

∣≤
∣

∣u(s, y)−u
(

t0, y
)
∣

∣+
∣

∣u
(

t0, y
)

−u
(

t0,x
)
∣

∣

+
∣

∣uε
(

t0,x
)

−uε(t,x)
∣

∣−
∣

∣u(s, y)−uε(t,x)
∣

∣.
(4.6)
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We then integrate as follows:

−
∫

Q

∣

∣u
(

t0,x
)

−uε
(

t0,x
)
∣

∣θη

(

(t+ s)/2− t0
∆t

)

θh(t− s)
N
∏

i=1

θh
(

xi− yi
)

dQ

≤
∫

Q

∣

∣u(s, y)−u
(

t0, y
)
∣

∣θη

(

(t+ s)/2− t0
∆t

)

θh(t− s)
N
∏

i=1

θh
(

xi− yi
)

dQ

+

∫

Q

∣

∣u
(

t0, y
)

−u
(

t0,x
)
∣

∣θη

(

(t+ s)/2− t0
∆t

)

θh(t− s)
N
∏

i=1

θh
(

xi− yi
)

dxdydtds

+

∫

Q

∣

∣uε
(

t0,x
)

−uε(t,x)
∣

∣θη

(

(t+ s)/2− t0
∆t

)

θh(t− s)
N
∏

i=1

θh
(

xi− yi
)

dQ

−
∫

Q

∣

∣u(s, y)−uε(t,x)
∣

∣θη

(

(t+ s)/2− t0
∆t

)

θh(t− s)
N
∏

i=1

θh
(

xi− yi
)

dQ

≡ J +K +Lε + I0.
(4.7)

At the left-hand side, we have

−
∫

Q

∣

∣u
(

t0,x
)

−uε
(

t0,x
)
∣

∣θη

(

(t+ s)/2− t0
∆t

)

θh(t− s)
N
∏

i=1

θh
(

xi− yi
)

dQ

=−
∫

x

∣

∣u
(

t0,x
)

−uε
(

t0,x
)
∣

∣

∫

y

N
∏

i=1

θh
(

xi−yi
)

∫

t

∫

s
θη

(

(t+s)/2−t0
∆t

)

θh(t−s)dQ

=−1

2

∥

∥u
(

t0,·
)

−uε
(

t0,·
)
∥

∥

L1(RN
x ).

(4.8)

At the right-hand side, we have the following:

J = 1 ·
∫∫ t1

t0

∥

∥u(s,·)−u
(

t0,·)
∥

∥

L1(RN
y )θη

(

(t+ s)/2− t0
∆t

)

θh(t− s)dsdt

≤
∫∫ t1

t0

∣

∣t0− s
∣

∣

∥

∥u(ξ,·)
∥

∥

BV(R+;L1(RN
y ))θη

(

(t+ s)/2− t0
∆t

)

θh(t− s)dsdt, s≤ ξ ≤ t0,

≤ h
∥

∥u0(·)
∥

∥

BV(R+
t ;L1(RN ))

∫∫ t1

t0
θη

(

(t+ s)/2− t0
∆t

)

θh(t− s)dsdt

≤ h

2

∥

∥u0

∥

∥

BV(Rt ;L1(RN )),

(4.9)
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using Lemma 4.1. We also have

K ≤
∫

z

∫

y

∣

∣u
(

t0, y
)

−u
(

t0, y + z
)
∣

∣

N
∏

i=1

θh
(

zi
)

dzdy
∫∫ t1

t0
θη

(

(t+ s)/2− t0
∆t

)

θh(t− s)dtds

≤ h
∫

y

∣

∣u
(

t0, y
)

−u
(

t0, y + z
)
∣

∣

|z| dy
∫

z

N
∏

i=1

θh
(

zi
)

dz× 1

2

≤ h

2

∥

∥u(·)
∥

∥

BV(RN ) ≤
h

2

∥

∥u0

∥

∥

BV(RN )

(4.10)

using the change of variables

xi− yi = zi←→ dxi = dzi. (4.11)

Finally,

Lε ≤ 1 ·h
∥

∥u(ξ,·)
∥

∥

BV(R+
t ;L1(RN

y ))

∫∫ t1

t0
θη

(

(t+ s)/2− t0
∆t

)

θh(t− s)dsdt, t0 ≤ ξ ≤ s,

≤ h

2

∥

∥uε
∥

∥

BV(Rt ;L1(RN )) ≤
h

2

∥

∥uε0
∥

∥

BV(Rt ;L1(RN )).

(4.12)

Hence

−1

2

∥

∥u
(

t0,·
)

−uε
(

t0,·
)
∥

∥

L1(RN ) ≤ h
∥

∥u0

∥

∥

BV(R;L1(RN )) +
h

2

∥

∥u0

∥

∥

BV(RN ) + I0. (4.13)

For t = t1, we consider the following triangle inequality:

∣

∣u
(

t1,x
)

−uε
(

t1,x
)
∣

∣≤
∣

∣u
(

t1,x
)

−u
(

t1, y
)
∣

∣+
∣

∣u
(

t1, y
)

−u(s, y)
∣

∣+
∣

∣u(s, y)−uε(t,x)
∣

∣.

(4.14)

With the same techniques, we obtain

∫

Q

∣

∣u
(

t1,x
)

−uε
(

t1,x
)
∣

∣θη

(

(t+ s)/2− t1
∆t

)

θh(t− s)
N
∏

i=1

θh
(

xi− yi
)

dQ

= 1

2

∥

∥u
(

t1,x
)

−uε
(

t1,x
)
∥

∥

L1(RN ) ≤ h
∥

∥u0

∥

∥

BV(R;L1(RN )) +
h

2

∥

∥u0

∥

∥

BV(RN ) + I1.

(4.15)

We sum up by

∥

∥u
(

t1,x
)

−uε
(

t1,x
)
∥

∥

L1(RN )−
∥

∥u
(

t0,x
)

−uε
(

t0,x
)
∥

∥

L1(RN )

≤ 4h
∥

∥u0

∥

∥

BV(R;L1(RN )) + 2h
∥

∥u0

∥

∥

BV(RN ) + 2
(

I0 + I1

)

.
(4.16)

�
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Theorem 4.3. Suppose that initially fε(0,x,v)∈ L1(Rv;BV(RN )), which is compactly sup-

ported in v, and that fε(0,x,v) ≡ f0(x,v) = χu0(x)(v). Let u(s, y) be the entropy solution of

(1.1)–(1.3), and uε(t,x) the approximate solution given by (2.3). Then for any T > 0, and

t0, t1 in [0,T], the following L1
x error bound

∥

∥u
(

t1,·
)

−uε
(

t1,·
)
∥

∥

L1(RN ) ≤
∥

∥u(t0,·
)

−uε
(

t0,·
)
∥

∥

L1(RN ) +C
√
ε (4.17)

holds true, with C being a positive constant independent on ε.

Proof. From Proposition 3.6, we have

I0 + I1 = I ≤M
ε

h

∥

∥u0

∥

∥

BV(RN
x ), (4.18)

where M is given by (3.29). Hence

∥

∥u
(

t1,·
)

−uε
(

t1,·
)
∥

∥

L1(RN )−
∥

∥u
(

t0,·
)

−uε
(

t0,·
)
∥

∥

L1(RN )

≤
(

4
∥

∥u0

∥

∥

BV(R;L1(RN )) + 2
∥

∥u0

∥

∥

BV(RN )

)

h+M
ε

h

∥

∥u0

∥

∥

BV(RN
x ).

(4.19)

The optimal choice of h is h=√ε. Then

(

4
∥

∥u0

∥

∥

BV(R;L1(RN )) + 2
∥

∥u0

∥

∥

BV(RN )

)

h+M
ε

h

∥

∥u0

∥

∥

BV(RN
x ) = C

√
ε, (4.20)

where

C =
{

2 + a∞
(√

ε+ 2Na∞ + 2
(

1 + a∞
)

|θ′|L1(R)

∣

∣ψη

∣

∣

L1(R)

)}

∥

∥u0

∥

∥

BV(RN
x ) + 4

∥

∥u0

∥

∥

BV(R;L1(RN )).

(4.21)
�

Remark 4.4. Notice that the error is global in time, and optimal in the sense that we

cannot have more than
√
ε, since we use the Kuznetsov techniques.

5. The parabolic case

In this short section, we discuss the kinetic approach for the following parabolic case:

∂tu+ divxA(u)= ∆u, (5.1)

where ∆=∑N
i=1 is the Laplacian operator. The corresponding kinetic model is

[

∂t +
N
∑

i=1

ai(v)∂xi

]

fε =−
1

ε

[

χuε − fε
]

+
N
∑

i=1

∂x2
i
fε, (5.2)

which reads as

[

∂t +
N
∑

i=1

ai(v)∂xi −
N
∑

i=1

∂x2
i

]

fε =−
1

ε

[

χuε − fε
]

. (5.3)
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We multiply by sgn( fε− χℓ) and integrate over v, we then easily obtain in the weak sense

that

∫

v

[

∂t +
N
∑

i=1

ai(v)∂xi −
N
∑

i=1

∂x2
i

]

∣

∣ fε− χℓ
∣

∣dv =−1

ε

[∫

v

∣

∣ fε− χℓ
∣

∣−
∣

∣uε− ℓ
∣

∣

]

≤ 0. (5.4)

We consider here | fε− χℓ| as the “kinetic entropies” for (5.2) in the sense that

−
∫

Q

∫

v

([

∂t +
N
∑

i=1

ai(v)∂xi −
N
∑

i=1

∂x2
i

]

ϕ

)

∣

∣ fε− χℓ
∣

∣dvdQ ≤ 0. (5.5)

We do the same analysis as in Sections 3 and 4. The error found is the same. Notice the

following remainder:

∣

∣

∣

∣

∣

ε
∫

v

∫

Q

N
∑

i=1

∂xi
∣

∣ fε− χℓ
∣

∣∂xi(ϕ)dvdQ

∣

∣

∣

∣

∣

≤
(

ε
N
∑

i=1

∥

∥∂xi0 · fε
∥

∥

L∞

)( N
∑

i=1

∣

∣ϕxi

∣

∣

L1(t,x)

)

≤
(

εN
∥

∥∂xi0 fε
∥

∥

L∞

)(

‖ϕ‖
L1(R;W1,1(RN ))

)

,

(5.6)

where xi0 , i0 ∈ 1, . . . ,N , is the space variable so that |∂xi f | ≤ |∂xi0 f |.
Remark 5.1. It would be interesting to study the kinetic approach to the case of parabolic-

hyperbolic problems in the sense of Chen and Karlsen in [7] and Chen and Perthame

in [8].
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