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ON THE CONTROL OF ILL-POSED DISTRIBUTED PARAMETER SYSTEMS

R. Dorville1, O. Nakoulima2 and A. Omrane3

Abstract. We show that the so-called low-regret (or least-regret) control by J. L. Lions [8] fits on
the control of ill-posed problems. At each time, we give the characterization of the so-called no-regret
control by means of singular optimality systems. For the backward heat ill-posed problem, no Slater
hypothesis is assumed on the admissible set of controls Uad.
This work is two pieces, and two methods are considered : the regularization method and the null-
controllability method. For the first method, a zero order corrector is used, while for the second
method, the passage to the limit is easy. The results presented here generalize the works in [2, 3] to
the no-regret control.

Résumé. On montre que le contrôle à moindres regrets de J. L. Lions [8] est bien adapté pour le
contrôle des des problèmes mal posés. A chaque fois, on donne une caractérisation du contrôle sans
regret par le moyen de systèmes d’optimalité singuliers. Pour le problème de chaleur rétrograde mal
posé, aucune hypothèse de type Slater sur l’ensemble des contrôles admissibles Uad n’est nécessaire.
Ce travail est divisé en deux parties, et deux méthodes sont considérées: la méthode de régularisation et
celle de la contrôlabilité à zéro. Pour la première méthode, un correcteur d’ordre zéro est utilisé, alors
que pour la seconde méthode le passage à la limite est simple. Les résultats présentés ici généralisent
les travaux dans [2, 3] au contrôle sans regret.
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1. Introduction

The solutions of singular optimal control problems, particularly of ill-posed problems are not regular. As a
consequence, the characterization of such solutions has not been deeply investigated. Moreover, the assumptions
on the control problem are frequently chosen in such a way that some standard methods can be applied to derive
the existence of solutions.
We consider here the prototype of ill-posed problems : the ill-posed backward heat problem, with controls v in
a non-empty closed convex subset U

ad
of the Hilbert space L2, and a cost functional.

It is well known that if we add the Slater type hypothesis as : U
ad

has a non-empty interior, then we ensure the
existence of an optimal control, using standard methods (see Lions [6]). But, we do not know if this hypothesis
is unavoidable !
One way to deal with this problem -instead of answering the question-, is to propose another approach, where
the Slater hypothesis on U

ad
is not needed. Convex cones as (L2)+ which are empty interiored may be used as

set of feasible controls v. We here use the regularization approach in a first part, and the null-controllability
approach in a second part. In both methods, a new datum is introduced. These data are supposed to be chosen
as largely as possible, say in a vector space. That is the data are incomplete, and in this case, the standard
methods as the penalization method are not adapted (see Lions [8], and Nakoulima-Omrane-Velin [13] [14]).
We then seek for the low-regret control of the distributed system of incomplete data obtained. And thus, the
no-regret control of the original problem appears naturally by taking some limit, which is possible without the
Slater hypothesis.

Roughly speaking, the low-regret control uγ satisfies to the following inequality :

J(uγ , g) ≤ J(0, g) + γ‖g‖2Y ∀ g in a Hilbert space Y,

where γ is a small positive parameter (g being the pollution or incomplete data). With the low-regret control
we admit the possibility of making a choice of controls v ’slightly worse’ than by doing better than v = 0 -but
’not much’ if we choose γ small enough- compared to the worst things that could happen with the ’pollution’ g.
In the no-regret concept, we search for the control u, if it exists, which makes things better than v = 0, for any
given perturbation parameter. It is the limit when γ → 0, of the family of low-regret controls uγ .
This concept is previously introduced by Savage [17] in statistics. Lions was the first to apply it to control
distributed systems of incomplete data, motivated by a number of applications in economics, and ecology as
well (see for instance [9], [10]).

In [13] (see also [14]), Nakoulima et al. give a precise optimality system (which is a singular optimality
system). In [14], the no-regret control for problems of incomplete data, in both the stationary and evolution
cases is characterized. A number of applications is given too.
In the litterature mentioned above, the only regular problems are considered. Moreover, the set of controls was
a Hilbert space. In this article, we generalize the study to the control of ill-posed problems, where the controls
are in a closed convex subset of a Hilbert space only. Without loss of generality, we consider the typical ill-posed
problems: the ill-posed backward heat problem.

1.1. Preliminaries

Consider an open domain Ω ⊂ IRN with smooth boundary ∂Ω, and denote by Q = (0, T ) × Ω, and by
Σ = (0, T )× ∂Ω. Then it is well known that the following heat system :

z′ −∆ z = v in Q, (1)
z = 0 on Σ, (2)

z(0) = 0 in Ω, (3)
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is well-posed. Here, z = z(t, x) is the state solution and v = v(t, x) ∈ L2(Q). Moreover, any solution z of (1)-(3)
is a.e. equal to a continuous function from [0, T ] to H−1(Ω) and we have

z′ ∈ L2
(
]0, T [;H−2(Ω)

)
and z|

Σ
∈ H−1

(
]0, T [;H− 1

2 (∂Ω)
)

.

But, the above system does not admit a solution for arbitrary data (3). Indeed, in the case of final data, i.e.
replacing (3) by

z(T ) = 0 in Ω, (4)
there is no solution for the backward heat problem, even for regular control v, as we can see in the following
one-dimensional example.

A counter-example - For Ω =]0, π[, T = 1, consider the backward heat system




∂z

∂t
− ∂2z

∂x2
= v in ]0, π[×]0, 1[,

z(0, t) = z(π, t) = 0 in ]0, 1[,
z(x, 1) = 0 in ]0, π[,

(5)

where v ∈ L2(]0, 1[; L2(]0, π[)) is the uniformly convergent series

v(t, x) =

√
2
π

∑

m≥1

sin mx

m2
.

If z ∈ L2(]0, 1[;L2(]0, π[)) is a solution to (5), then z(t, x) =
∑

m≥1 zm(t)wm(x), where wm(x) =
√

2
π

sin mx

(wm is an eigenfunction for − ∂2

∂x2
related to the eigenvalue m2), then we have

{
dzm

dt
(t) + m2zm(t) =

1
m2

in ]0, 1[,

zm(1) = 0,

so that

zm(t) =
1

m2

∫ t

1

em2(s−t)ds =
1

m4

(
1− em2(1−t)

)
.

For every t ∈ [0, 1[, we then obtain ‖z‖2L2(]0,π[) =
∑

m≥1

∣∣∣∣
1

m4

(
1− em2(1−t)

)∣∣∣∣
2

. But,

lim
m→+∞

∣∣∣∣
1

m4

(
1− em2(1−t)

)∣∣∣∣
2

= +∞, ∀ t ∈ [0, 1[.

Hence, the series diverges and the solution z of (5) does not exist.

1.2. Existence of a solution for the ill-posed heat problem

We consider the following backward heat problem :
∣∣∣∣∣∣

z′ −∆ z = v in Q,
z = 0 on Σ,

z(T ) = 0 in Ω,
(6)

which is a prototype of ill-posed problems.
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Remark 1.1. The backward problem (6) has a unique solution z but for v in a some dense subset of L2(Q).

Indeed, for example, we can consider the vector space

V =

{
w =

N∑

i=1

λiwi : −∆wi = 0, wi = 0 on ∂Ω, and wi ∈ L2(Ω)

}
, (7)

there is f ∈ L2(]0, T [) and w ∈ V such that

v(t, x) = f(t)

(
N∑

i=1

λiwi(x)

)
,

for given v ∈ L2(]0, T [) ⊗ V (which is dense in L2(Q)). It suffices to take z of the form z(t, x) = ζ(t)w(x),
ζ = (ζ1, ..., ζN ). So, ζi is solution of

{
∂ζi

∂t
− λζi = f in ]0, T [,

ζi(0) = 0 in Ω,

which defines ζ in a unique manner.

1.3. The optimal control question

Consider v ∈ Uad, Uad a non-empty closed convex subset of the Hilbert space of controls L2(Q), and the
quadratic function

J(v, z) =
∥∥∥z − zd

∥∥∥
2

L2(Q)

+ N
∥∥∥v

∥∥∥
2

L2(Q)

, (8)

where zd ∈ L2(Q), N > 0, and where
∥∥∥.

∥∥∥
X

is the norm on the corresponding Hilbert space X.

If a pair (v, z) ∈ U
ad
× L2(Q) satisfying (6) exists, then it is called a control-state feasible pair. Denote by

Xad the set of admissible pairs for which (6) holds. We suppose in what follows that Xad is non-empty. Then for
every (v, z) ∈ Xad, we associate the cost function defined by (8), and we consider the optimal control problem :

inf J(v, z) , (v, z) ∈ Uad × L2(Ω) (9)

which has a unique solution (u, y) that we should characterize.

Lemma 1.2. The problem (9) has one only solution (u, y) called the optimal pair.

Proof. The functional J : L2(Q) × L2(Q) −→ IR is a lower semi-continuous function, strictly convex, and
coercitive. Hence there is a unique admissible pair (u, y) solution to (9). A classical method to control the
system (6) and (8) is the well-known penalization method, which consists in approximating (u, y) by the solution
of some penalized problem. More precisely, for ε > 0 we define the penalized cost function

Jε(v, z) = J(v, z) +
1
2ε
‖z′ −∆z − v‖2

L2(Q)
.

The optimal pair (uε, yε) then converges to (u, y) when ε → 0.
The optimality conditions of Euler-Lagrange for (uε, yε) are the following :

d

dt
Jε(uε, yε + t(z − yε))|t=0 = 0, ∀z ∈ F (10)
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and
d

dt
Jε(uε + t(v − uε), yε)|t=0 ≥ 0 ∀v ∈ U

ad
, (11)

then an optimality system is obtained by the introduction of the adjoint state

pε = −1
ε
(yε

′ −∆yε − uε).

A priori estimates (consisting in bounding pε in L2(Q)) have to be obtained, which allows the passage to the
limit under some hypothesis : For the problem (6) and (8)-(9), J. L. Lions obtained in [6] a singular optimality
system, under the extra hypothesis of Slater type :

U
ad

has a non-empty interior. (12)

More precisely, we have the following theorem due to Lions :

Theorem 1.3. (J.L. Lions [6]) Under hypothesis (12), there is a unique (u, y, p) ∈ U
ad
× L2(Q) × L2(Q),

solution to the optimal control problem (6) and (8)-(9). Moreover, this solution is characterized by the following
singular optimality system (SOS) :





y′ −∆y = u, −p′ −∆p = y − zd in Q,
y(T ) = 0, p(0) = 0 in Ω,

y = 0, p = 0 on Σ
(13)

with the variational inequality
(p + Nu, v − u)L2(Q) ≥ 0 ∀v ∈ U

ad
. (14)

Remark 1.4. Of course when Uad = L2(Q), the hypothesis (12) is satisfied and then the above theorem holds.
In some applications, the Slater hypothesis (12) is not satisfied, as when U

ad
=

(
L2(Q)

)+ which has an empty
interior. In the following, we propose alternative approach which does not assume (12).

2. The regularization approach

In this section, some elliptic regularization of the ill-posed parabolic problem (6) is proposed. We obtain
some well-posed problem but with a new unknown datum. We then let the classical control notion away, to
consider the one of no-regret control by Lions [8], and recently developed by Nakoulima et al. in [13] [14].

For any ε > 0, we consider the regularized problem :
∣∣∣∣∣∣∣∣

−εz′′ε + z′ε −∆zε = v in Q,
zε(0) = g in Ω,
zε(T ) = 0 in Ω,

zε = 0 on Σ,

(15)

where g ∈ L2(Ω).
It is clear that for any ε > 0, and any data (v, g), there is a unique state solution zε = zε(v, g) of the elliptic
problem (15) (see Lions-Magenes [12] for example), for which we associate the cost given by :

Jε(v, g) =
∥∥∥zε(v, g)− zd

∥∥∥
2

L2(Q)

+ N
∥∥∥v

∥∥∥
2

L2(Q)

, g ∈ L2(Ω). (16)
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We are concerned with the optimal control of the problem (15)–(16). Clearly we want

inf
v∈U

ad

Jε(v, g) ∀g ∈ L2(Ω). (17)

If g ∈ G ⊂ L2(Ω) with G finite, then we can give a Pareto sense to (17). But if G is not finite, then the above
minimization problem has no sense. One natural idea is to consider the following minimization problem :

inf
v∈U

ad

(
sup

g∈L2(Ω)

Jε(v, g)

)
,

but from above, we see that Jε is not bounded, since supg∈L2(Ω) Jε(v, g) = +∞. The idea of Lions is then to
look for controls v -if they exist- such that

Jε(v, g) ≤ Jε(0, g) ∀g ∈ L2(Ω),

and thus
Jε(v, g)− Jε(0, g) ≤ 0 ∀g ∈ L2(Ω).

Those controls doing better than v = 0 for every pollution g are called no-regret controls.

Definition 2.1. We say that u ∈ U
ad

is a no-regret control for (15)–(16) if u is a solution to the following
problem:

inf
v∈U

ad

(
sup

g∈L2(Ω)

(Jε(v, g)− Jε(0, g))

)
. (18)

Lemma 2.2. For any v ∈ U
ad

we have

Jε(v, g)− Jε(0, g) = Jε(v, 0)− Jε(0, 0) + 2〈ξε
′(0), g〉

L2(Ω)
∀g ∈ L2(Ω), (19)

where ξε satisfies to :

−ξ′ε − εξ′′ε −∆ξε = yε(v, 0) in Q, ξε(0) = ξε(T ) = 0 in Ω, ξε = 0 on Σ. (20)

Proof. A direct computation gives

Jε(v, g)− Jε(0, g) = Jε(v, 0)− Jε(0, 0) + 2〈 zε(v, 0) ; zε(0, g) 〉
L2(Q)

.

Following the the Green formula we get

〈 zε(v, 0) ; zε(0, g) 〉 = ε 〈 ξε
′(0) ; g 〉

L2(Q)
,

where ξε is given by (20).

Remark 2.3. Of course the problem (18) is defined only for the controls v ∈ Uad such that

sup
g∈L2(Ω)

(Jε(v, g)− Jε(0, g)) < ∞.

From (19) this is achieved iff v ∈ K, where K =
{
w ∈ Uad, 〈 ξε(w), g 〉 = 0 ∀g ∈ L2(Ω)

}
. This set is hard to

characterize. As in [13], for any γ > 0, we define the control in the low-regret sense.
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Definition 2.4. The low-regret control for (15)–(16), is the solution to the following perturbed system :

inf
v∈Uad

(
sup

g∈L2(Ω)

(
Jε(v, g)− Jε(0, g)− γ‖g‖2

L2(Ω)

))
. (21)

Remark that :

inf
v∈Uad

(
sup

g∈L2(Ω)

(
Jε(v, g)− Jε(0, g)− γ‖g‖2

L2(Ω)

))

= inf
v∈Uad

(
Jε(v, 0)− Jε(0, 0) +

(
sup

g∈L2(Ω)

2〈 zε(v, 0) ; zε(0, g) 〉
L2(Q)

− γ‖g‖2
L2(Ω)

))
.

Thanks to Legendre transform, we get the classical control problem :

inf
v∈Uad

J γ
ε (v) (22)

where

J γ
ε (v) = Jε(v, 0)− Jε(0, 0) +

ε2

γ

∥∥∥ξ′ε(T, v)
∥∥∥

2

L2(Ω)

, (23)

and where ξε satisfies (20).

Remark 2.5. As we can see here, the low-regret control method allows to transform systematically problems
with uncertainty into standard control problems. We can then use the Euler–Lagrange method.

We can replace now (21) by (22) and (23) for the low-regret control.

Lemma 2.6. The problem (15) with control (22)-(23) has one only solution uγ
ε , called the ’approximate’ low-

regret control.

Proof. We have J γ
ε (v) ≥ −Jε(0, 0) = −‖zd‖2L2(Ω) ∀v ∈ Uad

. Then d = infv∈U
ad
J γ

ε (v) > −∞. Let vn be some
minimizing sequence (such that d = limn→∞ J γ

ε (vn)). We have

−‖zd‖2
L2(Ω)

≤ J γ
ε (vn) = Jε(vn, 0)− Jε(0, 0) +

1
γ

∥∥∥ξε
′(0)

∥∥∥
2

L2(Ω)

≤ dγ + 1.

Then we deduce the bounds

∥∥∥vn

∥∥∥
L2(Q)

≤ c,
1√
γ

∥∥∥ξ′ε(vn)(0)
∥∥∥

L2(Ω)
≤ c,

∥∥∥yε(vn, 0)− zd

∥∥∥
L2(Q)

≤ c,

where the constant c is independent of n.
There exists uγ

ε ∈ Uad
such that vn ⇀ uγ

ε weakly in U
ad

(which is closed). Also, yε(vn, 0) → yε(uγ
ε , 0) (conti-

nuity w.r.t the data). Now since J γ
ε is strictly convex, uγ

ε is unique.
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Proposition 2.7. The ’approximate’ low-regret control uγ
ε is characterized by the unique quadruplet {uγ

ε , yγ
ε , ργ

ε , pγ
ε},

solution to the system :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

yγ
ε
′ − εyγ

ε
′′ −∆yγ

ε = uγ
ε , ργ

ε
′ − εργ

ε
′′ −∆ργ

ε = 0, and
−pγ

ε
′ − εpγ

ε
′′−∆pγ

ε = yγ
ε − zd + ργ

ε in Q,

yγ
ε (0) = yγ

ε (T ) = 0, ργ
ε (T ) = 0, ργ

ε (0)=
ε

γ
ξγ
ε
′(0),

pγ
ε (0) = pγ

ε (T ) = 0 in Ω,

yγ
ε = 0, ργ

ε = 0, pγ
ε = 0 on Σ,

with (20),
and the variational inequality :

〈 pγ
ε + Nuγ

ε , v − uγ
ε 〉 ≥ 0, ∀ v ∈ U

ad
.

Proof. The first order Euler condition for (22) and (23) gives :

〈 yγ
ε − zd, yε(w, 0) 〉

L2(Q)×L2(Q)
+ N〈uγ

ε , w 〉
L2(Q)×L2(Q)

+ 〈 ε2

γ
ξγ
ε
′(0), ξε

′(0, w) 〉
L2(Ω)×L2(Ω)

≥ 0,

where yγ
ε = yε(uγ

ε , 0), and ξγ
ε = ξε(uγ

ε , 0). We then define ργ
ε = ρε(uγ

ε , 0) which is the solution of
ργ

ε
′ − εργ

ε
′′ −∆ργ

ε = 0, ργ
ε (0) = (ε/γ)ξγ

ε
′(T ), ργ

ε (T ) = 0, and ργ
ε = 0 on Σ, such that :

〈 ε2

γ
ξγ
ε
′(0), ξε

′(0, w) 〉
L2(Ω)×L2(Ω)

= 〈 εργ
ε (0), ξε

′(0, w) 〉
L2(Ω)×L2(Ω)

= 〈 ργ
ε , yε(w, 0) 〉

L2(Q)×L2(Q)

by the Green formula.

Introduce now the adjoint state pγ
ε = pε(uγ

ε , 0) as follows : we solve −pγ
ε
′ − εpγ

ε
′′ − ∆pγ

ε = yγ
ε − zd + ργ

ε ,
pγ

ε (T ) = pγ
ε (0) = 0, and pγ

ε = 0 on Σ. Hence we have

〈 yγ
ε − zd + ργ

ε , yε(w, 0)〉
L2(Q)×L2(Q)

= 〈 pγ
ε , w 〉

L2(Q)×L2(Q)
.

Finally,

〈 pγ
ε + Nuγ

ε , w 〉
L2(Q)×L2(Q)

≥ 0.

2.1. A priori estimates. The low-regret control

In this section we give the S.O.S for the low-regret control of the backward heat equation. Estimates are
given in the following statement :

Proposition 2.8. There is some positive constant C, and, for any small η > 0, there is some constant Cη > 0
such that :

‖uγ
ε‖L2(Q)

≤ C, ‖yγ
ε ‖L2(Q)

≤ C,
ε√
γ
‖ξγ

ε
′(0)‖

L2(Ω)
≤ C, (24)

ε
∥∥yγ

ε
′∥∥

L2 (Q)
+ ‖yγ

ε ‖L2 (Q) ≤ C,
∥∥yγ

ε
′∥∥

L2 (]0,T−η[;H−1(Ω))
≤ Cη, (25)
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and,

ε
∥∥ξγ

ε
′∥∥

L2 (Q)
+ ‖ξγ

ε ‖L2 (Q) ≤ C,
∥∥ξγ

ε
′∥∥

L2 (]η,T [;H−1(Ω))
≤ Cη, (26)

ε
∥∥ργ

ε
′∥∥

L2 (Q)
+ ‖ργ

ε‖L2 (Q) ≤ C,
∥∥ργ

ε
′∥∥

L2 (]0,T−η[;H−1(Ω))
≤ Cη, (27)

ε
∥∥pγ

ε
′∥∥

L2 (Q)
+ ‖pγ

ε‖L2 (Q) ≤ C,
∥∥pγ

ε
′∥∥

L2 (]η,T [;H−1(Ω))
≤ Cη. (28)

Proof. Since uγ
ε is the approximate low-regret control

J γ
ε (uγ

ε ) ≤ J γ
ε (v) ∀v ∈ U

ad
,

in the particular case where v = 0,

Jε(uγ
ε , 0)− Jε(0, 0) +

ε2

γ

∥∥∥ξε
′(uγ

ε )(0)
∥∥∥

2

L2(Ω)

≤ ε2

γ

∥∥∥ξε
′(uγ

ε )(0)
∥∥∥

2

L2(Ω)

.

On the other hand yε(0, 0)(t, x) = ξε(0)(t, x) = 0 in [0, T ]× Ω, then :

∥∥∥yε(uγ
ε , 0)− zd

∥∥∥
2

L2(Q)

+ N
∥∥∥uγ

ε

∥∥∥
2

L2(Q)

+
∥∥∥ ε√

γ
ξε
′(uγ

ε )(0)
∥∥∥

2

L2(Ω)

≤
∥∥∥zd

∥∥∥
2

L2(Q)

= constant, (29)

so (24) holds.
From the Poincaré formula, there is some constant C1 > 0 such that :

(
ε

∥∥∥∥
∂yγ

ε

∂t

∥∥∥∥
L2 (Q)

+ ‖yγ
ε ‖L2 (Q)

)
‖yγ

ε ‖L2 (Q) ≤ C1‖uγ
ε‖L2 (Q)‖yγ

ε ‖L2 (Q),

thus, there is some constant C2 > 0 such that

ε

∥∥∥∥
∂yγ

ε

∂t

∥∥∥∥
L2 (Q)

+ ‖yγ
ε ‖L2 (Q) ≤ C2,

that is the first part of (25). Now, we consider the equation −ε
∂

2
yε

∂t2
+

∂yε

∂t
= v+∆yε, and denote by gε = v+∆yε.

Then gε stays in some bounded subset of L
2
(Q).

Consider some function ϕ ∈ C1([0, T ]) such that ϕ(0) = 1 and ϕ(T ) = 0. Multiply both members of

−ε
∂

2
yε

∂t2
+

∂yε

∂t
= gε

by ϕ
∂yε

∂t
and integrate over the whole set Q. We have

−ε

2

∫ T

0

ϕ
d

dt

∥∥∥∥
∂yε

∂t

∥∥∥∥
2

L2 (Ω)

dt +
∫ T

0

ϕ

∥∥∥∥
∂yε

∂t

∥∥∥∥
2

L2 (Ω)

dt =
∫ T

0

ϕ

(
gε,

∂yε

∂t

)

L2 (Ω)

dt. (30)

And, ∫ T

0

ϕ
d

dt

∥∥∥∥
∂yε

∂t

∥∥∥∥
2

L2 (Ω)

dt = −
∥∥∥∥

∂yε

∂t
(0)

∥∥∥∥
2

L2 (Ω)

−
∫ T

0

dϕ

dt

∥∥∥∥
∂yε

∂t

∥∥∥∥
2

L2 (Ω)

dt,
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thus
ε

2

∂yε

∂t
(0)

2

L
2
(Ω)

+
ε

2

Z T

0

dϕ

dt

∂yε

∂t

2

L
2
(Ω)

dt +

Z T

0

ϕ

∂yε

∂t

2

L
2
(Ω)

dt =

Z T

0

ϕ

�
gε,

∂yε

∂t

�
L

2
(Ω)

dt.

The second term is O(1), so

∫ T

0

ϕ

∥∥∥∥
∂yε

∂t

∥∥∥∥
2

L2 (Ω)

dt =
∫ T

0

ϕ

(
gε,

∂yε

∂t

)

L2 (Ω)

dt + O(1).

We finally deduce (25) from the triangular inequality.
The estimates (26), (27) and (28) follow easily.

Theorem 2.9. The low-regret control uγ = lim
ε→0

uγ
ε for the backwards heat equation (6) is characterized by the

unique {uγ , yγ , ξγ , ργ , pγ}, solution to the system :
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

yγ ′ −∆yγ = uγ , −ξγ ′ −∆ξγ = yγ , ργ ′ −∆ργ = 0, and
−pγ ′ −∆pγ = yγ − zd + ργ in Q,

yγ(0) = 0, ξγ(T ) = 0, and
ργ(0) = λγ(0), pγ(T ) = 0 in Ω,

yγ = 0, ξγ = 0, ργ = 0, pγ = 0 on Σ,

with the following weak limits
yγ = lim

ε→0
yγ

ε , ξγ = lim
ε→0

ξγ
ε , ργ = lim

ε→0
ργ

ε , pγ = lim
ε→0

pγ
ε ,

and the variational inequality :
〈 pγ + Nuγ , v − uγ 〉 ≥ 0 ∀v ∈ U

ad
,

where
uγ , yγ , pγ , ργ , ξγ ∈ L2(]0, T [;L2(Ω)), λγ(0) ∈ L2(Ω).

Proof. We use the estimates of proposition 2.8. ¿From (29), we deduce the following limits :

uγ
ε ⇀ uγ weakly in U

ad
,

yγ
ε ⇀ yγ weakly in L2(Q),

ε√
γ

∂ξε(uγ
ε )

∂t
(0) ⇀ λγ(0) weakly in L2(Ω),

(31)

(up to extract a subsequences (uγ
ε ), (yγ

ε ) and
(

ε√
γ

∂ξε(uγ
ε )

∂t
(T )

)
).

For fixed γ > 0, the adjoint state pγ
ε depends boundedly on ε (from (28)).

2.2. Zero-order corrector

For the no-regret optimal control to the original problem, we now introduce the notion of corrector of order
0 of Lions [7] for elliptic regularizations, instead of using the Slater hypothesis (12). Indeed, as it is well known,
the passage to the limit gives no information on yγ(T ). Moreover, yγ(T ) 6= 0 in general (see Dorville [1] for
details).
We assume the following :

yγ(T ) ∈ H1
0 (Ω), yγ ′ ∈ L

2
(Q). (32)

Denote by
V = {ϕ ∈ L

2
(]0, T [;H1

0 (Ω)) such that ϕ′ ∈ L
2
(Q)},
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and by
V0 = {ϕ ∈ V such that ϕ(0) = 0, ϕ(T ) = 0}.

Definition 2.10. We say that a function θγ
ε ∈ V is a corrector of order 0 iff

∣∣∣∣∣∣

ε(θγ
ε
′, ϕ′)L2 (Q) + (θγ

ε
′, ϕ)L2 (Q) + (∇θγ

ε ,∇ϕ)L2 (Q) =
√

ε (fε, ϕ)L2 (Q) ∀V0,

θγ
ε (T ) + yγ(T ) = 0,

(33)

where we suppose that
‖fε‖L2 (]0,T [;H−1(Ω)) ≤ C. (34)

Getting a zero-order corrector We recall how to calculate a corrector of order 0 :
We define ϕγ

ε by writing { −εϕγ
ε
′′ + ϕγ

ε
′ = 0,

ϕγ
ε (T ) = −yγ(T ),

ϕγ
ε decreasing rapidly when t → −∞,

then
θγ

ε (t) = −yγ(T )e−
T−t

ε . (35)
If we suppose that yγ(T ) ∈ H1

0 (Ω), the function

θγ
ε = mϕγ

ε

∣∣∣∣
m = 1 in the neighbourhood of t = T,
m = 0 in the neighbourhood of t = 0

is a corrector of order 0.

We then satisfy the variational equation, the main term being

m ∆ yγ(T ) e−
T−t

ε =
√

ε hγ
ε .

Hence, under the above hypothesis we have :

∫ T

0

‖hγ
ε‖2H−1(Ω)

dt ≤ C ε−1

∫ T

0

e−
2(T−t)

ε dt = o(1).

We then have the theorem :

Theorem 2.11. Let be θγ
ε a corrector of order 0 defined by (33) and (34). We then have

‖yγ
ε − (yγ + θγ

ε )‖L2 (]0,T [;H1
0 ) ≤ C

√
ε. (36)

Moreover,
d

dt
[yγ

ε − (yγ + θγ
ε )] ⇀ 0 weakly in L

2
(Q), (37)

when ε tends to 0.

Proof. If we put wγ
ε = yγ

ε − (yγ + θγ
ε ), then

ε(wγ
ε
′, ϕ′)L2 (Q) + (wγ

ε
′, ϕ)L2 (Q) + (∇wγ

ε ,∇ϕ)L2 (Q)

= −ε (yγ ′, ϕ′)L2 (Q) −
√

ε (fε, ϕ)L2 (Q) ∀V0. (38)
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Particularly, if ϕ = wγ
ε , then

ε‖wγ
ε
′‖2

L2 (Q)
+ ‖wγ

ε ‖2L2 (Q)
≤ C

√
ε
[√

ε‖wγ
ε
′‖L2 (Q) + ‖wγ

ε ‖L2 (Q)

]
.

Thus the inequalities (36) and (37) hold.

2.3. Passage to the limit

We use the regularity properties of the heat equation, the -well posed- one, as follows :
First, we notice that ‖yγ‖L2(Q) ≤ C by the above proposition. It remains to see that ξγ (resp. pγ) formally
satisfies to the well-posed system :

(∗)
∣∣∣∣∣∣

−ξγ ′ −∆ξγ = yγ ∈ L2(Q),
ξγ = 0,
ξγ(T ) = 0,

(resp. (∗∗)
∣∣∣∣∣∣

−pγ ′ −∆pγ = yγ − zd,
pγ = 0 on Σ,
pγ(T ) = 0,

)

with the mean of a zero corrector. But (∗) implies that

‖ξγ‖L2(0,T ; H1
0 (Ω)) + ‖ξγ ′‖L2(0,T ; H−1(Ω)) ≤ C,

(resp. (∗∗) gives ‖pγ‖L2(0,T ; H1
0 (Ω)) + ‖pγ ′‖L2(0,T ; H−1(Ω)) ≤ C.)

Then ξγ ⇀ ξ (resp. pγ ⇀ p) weakly in L2(0, T ; H1
0 (Ω)), and by compactness ξγ → ξ (resp. pγ → p) stronly in

L2(0, T ; L2(Ω)).
Also, ∣∣∣∣∣∣

ργ ′ −∆ργ = 0,
ργ = 0,
ργ(0) = λγ(0),

implies that ργ → ρ strong in L2(0, T ; L2(Ω)) by the same arguments, because

‖λγ(0)‖L2(Ω) ≤ lim
ε→0

ε√
γ
‖ξε

′(uγ
ε )(0)‖

L2(Ω)
≤ C, then λγ(0) ⇀ λ(0) ∈ L2(Ω).

We then can announce the theorem :

Theorem 2.12. The no-regret control u for the backward heat ill-posed problem (6), is characterized by the
unique quadruplet {u, ξ, ρ, p} solution to the optimality system :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y′ −∆y = u, −ξ′ −∆ξ = y, ρ′ −∆ρ = 0,
and − p′ −∆p = y − zd + ρ in Q,

y(0) = y(T ) = 0, ξ(T ) = 0, and
ρ(0) = λ(0), p(T ) = 0 in Ω,

y = 0, ξ = 0, ρ = 0, p = 0 on Σ,

and the variational inequality :
〈 p + Nu, v − u 〉 ≥ 0 ∀v ∈ U

ad
,

with u ∈ U
ad

, y ∈ L2(0, T ; L2(Ω)) and

p, ρ, ξ ∈ L2(0, T ; H2(Ω) ∩H1
0 (Ω)), λ ∈ L2(Ω).
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Remark 2.13. As we have seen in this work, the hypothesis (12) is replaced by the no-regret notion. This
method gives another point of view of solving the control problem of singular distributed systems.

3. The controllability approach

Instead of the regularization for the backward ill-posed approach, we here use the null-controllability approach
in Dorville et al. [3] for the regular heat equation (of incomplete data). With the low-regret method, we obtain
at the end an optimality system for the backward ill-problem.
Consider the following heat system :

∣∣∣∣∣∣∣

∂y

∂t
−∆y = v + θ.χω in Q,

y = 0 on Σ,
y(0) = g in Ω,

(39)

where v ∈ L2(Q), ω ⊂⊂ Ω an open set, g ∈ L2(Ω), and χω such that

χωu =
{

u on (0, T )× ω,
0 else

For every fixed (v, g, θ) the system (39) admits a unique solution y = y(v, g, θ). The null controllability problem
for (39) consists in finding θ ∈ L2(0, T ; L2(ω)) such that if y is solution of (39) then

y(T ) = 0. (40)

This problem is classical and well-known (see for example Puel [16] and the references therein). Moreover, the
solution is not unique.
Suppose selected a unique solution -by a given criterion- for (39)(40). More precisely, we will see that there is
a criterion related to a weight function ρ such that for given (v, g), there is a unique pair (θ, yθ) such that

yθ = y(v, g; θ) and yθ(T ) = 0.

Denote by θ = θ(v, g) and yθ = yθ(v, g). We can notice that yθ(0, 0) = 0 iff θ(0, 0) = 0. With this, for
(v, g) ∈ L2(Q)× L2(Q), we consider the cost function

J(v, g) = ‖yθ(v, g)− zd‖2L2(Q) + N‖v‖2L2(Q) (41)

where zd ∈ L2(Q) and N ∈ IR∗+ are given. Then the goal is to study the optimal control of this controlled
system. The question of control for controllability problems of incomplete data is new, and was treated in
detail by Dorville [1], and by Dorville et al. [3] very recently. We recall a variational method which ensures the
existence and uniqueness selection of a solution for (39)(40).

The following lemma is slightly different (simpler) from lemma 1 in [3].

Lemma 3.1. Denote by L =
∂

∂t
− ∆ and L

∗
= − ∂

∂t
− ∆ the adjoint operator. Then there is a C2 weighted

positive function ρ on Q such that
1
ρ

is bounded in Q, and there is a constant C = C(Ω, T, ω, ρ) > 0 such that

∫

Q

1
ρ2
|q|2 dxdt +

∫

Ω

|q(0)|2dx ≤ C

[∫

Q

|L∗q|2 dxdt +
∫ T

0

∫

ω

1
ρ2
|q|2 dxdt

]
(42)
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for every q ∈ V =
{

ϕ ∈ C
∞ (

[0, T ]× Ω
)

tel que ϕ|Σ = 0
}
.

This lemma holds from a Carleman inequality, and can be found in [4], or [15] and [16]. The RHS of (42)
leads to use the following inner product :

a(r, s) =
∫

Q

L
∗
r L

∗
s dQ +

∫ T

0

∫

ω

1
ρ2

r s dQ. (43)

Denote by ‖.‖a =
√

a(., .) the associated norm on V, and consider the completion given by the Hilbert space
V . Finally, let be the linear form ` on V defined by

`(s) =
∫

Q

v s dQ +
∫

Ω

g s(0) dx.

Proposition 3.2. Under the hypothesis that ‖ρv‖L2(Q) < +∞, there is a unique p̃ ∈ V solution to :

a(p̃, s) = `(s) ∀s ∈ V. (44)

Moreover, if we put

y = L
∗
p̃, and θ = − 1

ρ2
p̃.χω, (45)

then {y, θ} is the unique solution to (39)(40).

Proof. The proof follows from a simple application of the Lax-Milgram theorem, and by integration by parts.

Remark 3.3. Consider the set L2
ρ(Q) =

{
w ∈ L2(Q) such that ρw ∈ L2(Q)

}
, and denote by ( . , . )ρ =

( ρ . , ρ . )L2(Q) and ‖ . ‖ρ =
√

( . , . )
ρ
. From proposition 3.2, for every pair (v, g) with v ∈ L2

ρ(Q) and
g ∈ L2(Ω), there is a unique pair (θ, yθ := y) solution of the problem (39)(40). We define the two linear
functions {

L2(Q)× L2(Ω) −→ L2(0, T ;L2(ω))
(v, g) 7−→ θ(v, g) and

{
L2(Q)× L2(Ω) −→ L2(Q)

(v, g) 7−→ y(v, g)

Then v 7−→ θ(v, 0) ∈ (
L2(0, T ; L2(ω)), ρdxdt

)
and v 7−→ y(v, 0) ∈ L2

ρ(Q) are continous on L2
ρ(Q).

3.1. The low-regret control for the null-controllable problem

For every v ∈ L2
ρ(Q), we define the weighted cost function :

Jρ(v, g) = ‖y(v, g)− zd‖2ρ + N‖v‖2ρ (46)

where zd ∈ L2
ρ(Q) and N > 0. Let be now Uρ

ad a closed convex subset of L2
ρ(Q).

By remark 3.3, we have y(v, g) = y(v, 0) + y(0, g) and θ(v, g) = θ(v, 0) + θ(0, g). This, allows to write

Jρ(v, g)− Jρ(0, g) = Jρ(v, 0)− Jρ(0, 0) + 2 (y(v, 0), y(0, g))ρ .

Lemma 3.4. Let be the operator M : g 7−→ p̃(0, g) from L2(Ω) to
(

L2(Q),
1
ρ
dxdt

)
. Then M is linear

continuous on L2(Ω), and we have

Jρ(v, g)− Jρ(0, g) = Jρ(v, 0)− Jρ(0, 0) + 2 (S(v), g)L2(Ω) (47)
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where S is a linear and continuous operator from L2
ρ(Q) to L2(Ω), such that

S(v) = M∗ (v + θ(v, 0).χω) + p̃(v, 0)(0), (48)

where M∗ is the adjoint of M.

Proof. The proof is simple and holds from (44) and remark 3.3. Indeed

(y(v, 0), y(0, g))ρ =
(

v − 1
ρ2

p̃(v, 0).χω, p̃(0, g)
)

L2(Q)

+ (p̃(v, 0), g)L2(Ω)

=
(

v − 1
ρ2

p̃(v, 0).χω,M g

)

L2(Q)

+ (p̃(v, 0), g)L2(Ω).

We now give the optimality system of the low-regret control for the problem of missing data (39)-(40) and (46),
defined by :

inf
v∈Uρ

ad

(
sup

g∈L2(Ω)

(
Jρ(v, g)− Jρ(0, g)− γ‖g‖2L2(Ω)

))
(49)

for γ > 0. Using (47), the problem is equivalent to the following classical control problem

inf
v∈L2

ρ(Q)
J γ

ρ (v) where J γ
ρ (v) = Jρ(v, 0)− Jρ(0, 0) +

1
γ

∥∥∥S(v)
∥∥∥

2

L2(Ω)
. (50)

Lemma 3.5. The problem (50) admits a unique solution uγ ∈ Uρ
ad.

Proof. We have the following :
J γ

ρ (v) ≥ −Jρ(0, 0) ∀v ∈ Uρ
ad. Hence dγ = inf

v∈Uρ
ad

J γ
ρ (v) exists. Let then vn = vn(γ) be a minimizing subsequence

such that dγ = limn→∞ J γ
ρ (vn). We have

−Jρ(0, 0) ≤ J γ
ρ (vn) = Jρ(vn, 0)− Jρ(0, 0) +

1
γ

∥∥∥S(vn)
∥∥∥

2

L2(Ω)

≤ dγ + 1.

We deduce the following estimates :

∥∥∥vn

∥∥∥
ρ
≤ cγ ,

1√
γ

∥∥∥S(vn)
∥∥∥

L2(Ω)

≤ cγ ,
∥∥∥y(vn, 0)− zd

∥∥∥
ρ

≤ cγ ,

(cγ independent of n). Then, there is uγ ∈ Uρ
ad such that vn ⇀ uγ weak in L2

ρ(Q). Also, y(vn, 0) ⇀ y(uγ , 0)
(continuity with respect to the data). At last, thanks to the convexity of J γ

ρ , we deduce that uγ is unique.

Theorem 3.6. The low-regret control uγ ∈ Uρ
ad is characterized by the quadruplet {uγ , yγ , θ̃γ , pγ} ∈ Uρ

ad ×
L2(Q)× V × L2(Q) unique solution of the system





Lyγ = uγ + θ(uγ , 0).χω, L∗ pγ = yγ − zd + θ̃γ .χω in Q,
yγ = 0, pγ = 0 on Σ,

yγ(0) = pγ(0) = 0, yγ(T ) = pγ(T ) = 0 in Ω,

(51)

where yγ = y(uγ , 0), pγ = p(uγ , 0), θ̃γ = θ̃(uγ , 0), and the variational inequality
(
T ∗[Lpγ − θ̃γ .χω] + Nρ2uγ + (1/γ)S∗S(uγ), v − uγ

)
L2(Q)

≥ 0 ∀v ∈ Uρ
ad (52)
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where S∗ is the adjoint of S, and T ∗ is the adjoint of the operator T : v 7→ L∗p̃(v, 0).

Proof. The necessary condition of Euler-Lagrange satisfied by uγ gives

(yγ − zd, ρ
2y(v − uγ , 0))L2(Q) + N(ρ2uγ , v − uγ)L2(Q) +

1
γ

(S(uγ), S(v − uγ))L2(Ω) ≥ 0 ∀v ∈ Uρ
ad,

yγ = y(uγ , 0). We then introduce σγ = σ(uγ , 0) ∈ V , unique solution of the problem

a(σγ , q) =
∫

Q

(yγ − zd) q dxdt, ∀ q ∈ V.

We then define the adjoint state pγ = p(uγ , 0) by

pγ = L∗σγ and we put θ̃γ = − 1
ρ2

σγ .

Then the pair (θ̃γ , pγ) is solution of the null-controllability problem :

∣∣∣∣∣∣
L∗ pγ = yγ − zd + θ̃γ .χω in Q,
pγ = 0 on Σ,

pγ(0) = pγ(T ) = 0 in Ω

Then the Euler condition writes :

( Lpγ − θ̃γ .χω , ρ2y(v − uγ , 0) )L2(Q) + ( Nρ2uγ + (1/γ)S∗S(uγ) , v − uγ )L2(Q) ≥ 0.

¿From another side we have

(Lpγ − θ̃γ .χω, ρ2y(v − uγ , 0))L2(Q) = (T ∗(Lpγ − θ̃γ .χω), v − uγ)L2(Q) ∀ v ∈ Uρ
ad,

where T ∗ is the adjoint of the linear continuous operator T : v 7→ L∗p̃(v, 0) de L2
ρ(Q) in

(
L2

ρ(Q), ρ2 dxdt
)
.

3.2. Passage to the limit

In this section, we verify that we also have an optimality for the no-regret control. It remains to see that yγ

(resp. pγ) particularly satisfies to the well-posed system :

(3∗)
∣∣∣∣∣∣

Lyγ = uγ + θ(uγ , 0)χω ∈ L2(Q),
yγ = 0,
yγ(0) = 0,

(resp. (4∗)
∣∣∣∣∣∣

L∗ pγ = yγ − zd + θ̃γχω,
pγ = 0 on Σ,
pγ(T ) = 0,

)

and of course yγ(T ) = 0 (resp. pγ(0) = 0).
The system (3∗) implies

‖yγ‖L2(0,T ; H1
0 (Ω)) + ‖yγ

′‖L2(0,T ; H−1(Ω)) ≤ C,

(resp. (4∗) gives ‖pγ‖L2(0,T ; H1
0 (Ω)) + ‖pγ

′‖L2(0,T ; H−1(Ω)) ≤ C).
Then yγ ⇀ y (resp. pγ ⇀ p) weakly in L2(0, T ; H1

0 (Ω)), and by compactness yγ → y (resp. pγ → p) stronly in
L2(0, T ; L2(Ω)).
Also,

1
γ

S∗S(uγ) → S∗S(u)
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strongly in L2(0, T ; L2(Ω)) by the same arguments, since

‖S∗S(u)‖
L2(Ω)

≤ lim
γ→0

1√
γ
‖S∗S(uγ)‖

L2(Ω)
≤ C.

We then obtain the following singular optimality system, stated in the following theorem :

Theorem 3.7. The no-regret control u ∈ Uρ
ad is characterized by the quadruplet {u, y, θ̃, p} ∈ Uρ

ad × L2(Q) ×
V × L2(Q), unique solution of the system





Ly = u + θ(u, 0).χω, L∗ p = y − zd + θ̃ .χω in Q,
y = 0, p = 0 on Σ,

y(0) = p(0) = 0, y(T ) = p(T ) = 0 in Ω,

(53)

where y = y(u, 0), p = p(u, 0), θ̃ = θ̃(u, 0),
with the variational inequality

(
T ∗[Lp− θ̃ .χω] + Nρ2u + S∗S(u), v − u

)
L2(Q)

≥ 0 ∀v ∈ Uρ
ad, (54)

where S∗ is the adjoint of S, and T ∗ the adjoint of the operator T : v 7→ L∗p̃(v, 0).

Remark 3.8. As a general remark on this section, we see that the optimality system has the same structure as
the one of standard optimal control problems. More precisely, the adjoint state satisfies to a null-controllability
system, as for the state y.
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