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Semi-normed algebras and rings of generalized numbers

Consider a sequence r ∈ R N + decreasing to zero, and a semi-normed algebra (E, p) over K = R or C, such that ∃C > 0, ∀a, b ∈ E : p(a b) ≤ C p(a) p(b).

Ultranorms and associated ultrametric sequence spaces

This is well defined for any f ∈ E N , with values in

We will sometimes summarize these properties by referring to ||| • ||| p,r as an ultra(pseudo)(semi)norm (which is not a seminorm, by lack of C-homogeneity).

The last statement also implies that if a sequence (f m ) m∈N of elements

Proof. The property lim r n = 0 entails ∀M > 0, lim M rn = 1 and thus the last statement. With p(λf

we obtain the inequality for the product. Finally, using p

this also gives the ultrametric triangular inequality.

Proposition-Definition 2 With the above definitions, consider the sets

Introduction

The aim of this article is to connect two fields of functional analysis, on one side the theory of sequence spaces and on the other side the nonlinear theory of algebras of generalized functions, with the emphasis on the description of the latter. Associative differential algebras of generalized functions, containing (embedded) the delta distribution, with the ordinary product of continuous functions do not exist, as was proved by Schwartz [START_REF]Sur l'impossibilité de la multiplication des distributions[END_REF]. But with the ordinary multiplication of smooth functions, such algebras do exist. One of the first and today most widely studied and used construction has been introduced by Colombeau [8]. Nowadays, the theory of these so-called Colombeau type algebras is well-established and it is affirmed through many applications especially in nonlinear problems with strong singularities. Here we refer to the books [5,8,9,59,60,[START_REF]Solution of Continuous Nonlinear PDEs through Order Completion[END_REF] and to the numerous papers given in the references, while we apologize for all undue omissions. We also want to point out the progress made in the direction of PDE and differential geometry with applications in general relativity done by the DIANA group [24-27, 35-38, 44-47].

On the other hand, sequence spaces of various type are a basic notion in investigations of various branches of functional analysis [48][49][50][51][52][53]. In this paper we show that Colombeau type algebras can be reconsidered as a class of sequence space algebras. We hope that our investigations in the direction of generalized function algebras can serve as a motivation for those who are more interested in the functional analysis of sequence spaces.

At the time when we have started our work, results of [24][START_REF]Topological structures in Colombeau algebras: topological C-modules and duality theory[END_REF][START_REF]Pseudo-differential Operators in Algebras of Generalized Functions and Global Hypoellipticity[END_REF][START_REF] Valmorin | Microlocal analysis of generalized functions: pseudodifferential techniques and propagation of singularities[END_REF] related to the topology, and in general to functional analysis in the framework of 1 Colombeau type generalized function algebras, were not known. Even now (five years later) they are not known well. We would like to point out that this work significantly extends the well known theory related to sharp topology. We will not give details about this work but advice the reader to consult the cited papers.

The present paper extends our previous publications [13][14][15], where we elaborated separately on the general construction, on the issue of embeddings of distributions, ultradistributions and generalized hyperfunctions, and on functoriality and the different notions of association which we cast into a unified scheme, with new examples, developments related to Maddox' sequences spaces, and sheaf theory.

Colombeau constructed his well-known algebras by algebraic methods. No topology appeared in his construction. As we already mentioned, the different topologies and convergence structures defined on G appeared afterwards. Our first task in this paper is to give a purely topological description of Colombeau type spaces. Let us mention that these types of sequence spaces appear frequently in describing the structure of (expanded) periodic distributions, ultradistributions and hyperfunctions. Our formulation of Colombeau-like algebras should convince by the conceptual simplicity: In fact, all these classes of algebras are simply determined by the (locally convex) space E, and a sequence of weights r : N → R + (or sequence of sequences) which serves to construct an ultrametric on the sequence space E N . As a first, motivating example, note that r = 1 log just gives Colombeau's algebra: Indeed, the ring of Colombeau generalized numbers is C ≡ {x ∈ C N : lim sup |x n | 1 log n < ∞}/{x ∈ C N : lim sup |x n | 1 log n = 0} and idem for the space G(Ω) (see Subsection 1.1.2 for details).

The sequence r = (r n ) n is assumed to be decreasing to zero. This implies that sequence spaces under consideration (⊂ E N ) contain as a subspace E ∼ diag E N and that they induce the discrete topology on E. This is wellknown for the sharp topology for Colombeau type algebras. But our analysis implies that if one has a Colombeau type algebra containing the Dirac delta distribution δ as an embedded Colombeau generalized function, then the topology induced on the basic space must be discrete. This is an analogous result to Schwartz' "impossibility result" concerning the product of distributions (cf. Remark 43 and Subsection 3.1). It shows, through topology, the importance and the validity of the Colombeau idea for the construction of Colombeau type algebras.

An important and in a sense a leading motivation for the analysis of the class of sequence spaces is the fact that distribution, ultradistribution and hyperfunction type spaces can be embedded in corresponding sequence spaces of this class. An important part of the paper is devoted to embeddings since this justifies the joint interest for sequence spaces and for generalized function algebras. The embeddings of Schwartz' spaces into the Colombeau algebra G are very well known, but for ultradistribution and hyperfunction type spaces new results are given. The problem of multiplication of regular enough functions (smooth, ultradifferentiable or quasianalytic), embedded into corresponding algebras, is also analysed.

To complete the analysis of the relation between this approach and previous results, we introduce in Section 4 an important generalization which is to consider sequences of sequences of weights. This way, we can describe other Colombeau type algebras, not based on polynomial scales, as for example asymptotic algebras [16] and Egorov type algebras. This justifies to turn then, in Section 5, to nowadays classical questions like functorial aspects of Colombeau type algebras [START_REF]Some Remarks on Functoriality of Colombeau's Construction: Topological and Microlocal Aspects and Applications[END_REF][START_REF]Colombeau's generalized functions: Topological structures, microlocal properties. A simplified point of view, Part I[END_REF], in order to apply the following scheme in standard applications: if a classical differential problem for regular data has a unique solution such that the map associating the solution to the initial data verifies convenient growth conditions (with respect to the chosen scale of weights), then this same problem can be transferred to corresponding sequence spaces, where it also allows for a unique solution. That way, differential problems with singular data can be solved ad hoc in such spaces.

Finally, it occurs frequently that exact solutions are not required, and in spaces of generalized functions the notion of weak solutions has often be used, in the sense of different types of associations. These concepts can nicely be described in our sequential approach, which is done in Section 6. Indeed, we give a generalized and unified scheme of a large number of tools of this kind, which can be found in various places in existing literature.

The basic construction

Let us now present the construction in detail for the simplest possible case. The situation here is included in the more general constructions of the next section, but the underlying principle and the proofs will be more evident here. This is also the setting pertaining to the definition of rings of generalized constants.

We follow the convention that 0 ∈ N, R + = [0, ∞) and denote by N * , R * (+) , C * the respective sets without 0.

(i) F p,r is a subalgebra of E N , and K p,r is an ideal of F p,r ; thus G p,r = F p,r /K p,r is an algebra. Instead of F p,r , K p,r and G p,r , we use also the notations F r (E, p), K r (E, p) and especially G r (E, p).

(ii) The function d p,r :

F p,r × F p,r → R + , (f, g) → ||| f -g ||| p,r
is an ultrapseudometric on F p,r , inducing on F p,r the structure of a topological ring such that the intersection of neighborhoods of zero equals K p,r .

Multiplication by scalars λ ∈ K is not continuous, because ||| λf ||| p,r = ||| f ||| p,r does not go to zero when λ → 0 in K. Thus, F p,r is not a topological K-algebra, but it is a topological algebra over the ring Proof. (i) This is an immediate consequence of the preceding lemma.

F |•|,
(ii) Well-definedness (values < ∞), reflexivity and symmetry of d p,r (•, •) are obvious. The ultrametric property ∀f, g, h ∈ F p,r : d(f, g) = max(d(f, h), d(h, g)) follows from applying the lemma to x = fh, y = h-g in place of f, g. Continuity of addition and multiplication is also a consequence of equation (1.1) of the lemma. Thus, d p,r makes F p,r a topological ring.

(iii) Let us first show that d p,r is well defined, i.e. that d p,r (f + j, g) = d p,r (f, g) for j ∈ K p,r . This is equivalent to ||| x + j ||| = ||| x |||, with x = fg, which is again an immediate consequence of equation (1.1) and the definition of K p,r . Thus, d p,r does not depend on choice of representatives. To show that the quotient topology is the same than the one induced by the ultrametric d p,r , it is sufficient to consider the base of neighborhoods of 0.

The assertion follows from the fact that d p,r (0, F ) = 0 ⇐⇒ F ∈ K p,r . Since d p,r (0, F • G) = d p,r (0, F ) d p,r (0, G), G p,r is a topological ring, and as a metric space, it is Hausdorff.

Summarizing, such Colombeau type spaces are nothing else than the usual construction of associated Hausdorff spaces for the topological subspaces of E N on which the ultrapseudometric d p,r is defined. This will remain true for the more involved constructions given in the following subsections.

It is also immediate to see that in the definition of the space F p,r (resp. K p,r ), one could "simplify" lim sup to sup (resp. lim). This is usually done in the theory of sequence spaces, see Subsection 1.1.5. We prefer, however, to insist on the ultrametric structure, and therefore express both spaces using always the same ultra-seminorm ||| • ||| p,r .

Remark 3 (on notation) The notations F p,r , K p,r , G p,r introduced in our previous papers [13][14][15] are handy to use in proofs; however, the notation G r (E, p) reflects better the functorial character of the construction, see also Section 5.

Colombeau generalized numbers

The setting considered here is used to define rings of generalized numbers. This gives back Colombeau's algebras of elements with polynomial growth modulo elements of more than polynomial decrease, because

lim sup n→∞ |x n | 1/ log n < ∞ ⇐⇒ ∃C ∈ R + : lim sup n→∞ |x n | 1/ log n = C ⇐⇒ ∃B, ∃n 0 , ∀n > n 0 : |x n | ≤ B log n = n log B ⇐⇒ ∃γ ∈ R : |x n | = o(n γ ) .
On the other hand, lim sup = 0 (for the ideal) corresponds to taking C = 0 and thus ∀B > 0 and ∀γ in the last lines.

Generalized Sobolev algebras

Another interesting application of this rather simple setting can be obtained by considering Sobolev spaces E = W s,p (Ω), s ∈ N, p ∈ [1, ∞], which are Hilbert spaces for the norm p s,p = • s,p = |α|≤s ∂ α • L p . (Elements of this space are distributions with all derivatives of order |α| ≤ s in L p (Ω).)

In order to have an algebra, we can take any s ∈ N and p = ∞. Then we can apply the construction given previously, with the norm p = • s,∞ The corresponding Colombeau type algebra is defined by G W s,∞ ≡ F /K where, according to the general definition,

F = u ∈ (W s,∞ (Ω)) N | lim sup n→∞ u n 1 log n s,∞ < ∞ , K = u ∈ (W s,∞ (Ω)) N | lim sup n→∞ u n 1 log n s,∞ = 0 . Note that also for n ≤ 3, W 2,2 (R n ) is an algebra, since we have an inclusion W 2,2 (R n ) ֒→ L ∞ (R n ) (which is continuous). Thus, with F • 2,2 ,r = f ∈ W 2,2 (R n ) N | lim sup n→∞ u n rn 2,2 < ∞ and K • 2,2 ,r = f ∈ W 2,2 (R n ) N | lim sup n→∞ u n rn 2,2 = 0 we obtain the Colombeau algebra G W 2,2 (R n ) (for r n ∼ 1/ log n).
By use of the Sobolev lemma, we can construct various Sobolev type algebras [58,60]. We refer to [START_REF]Grundräume und verallgemeinerte Funktionen[END_REF], for example, for an analysis of different domains Ω ⊂ R n for which Sobolev type lemmas hold for W s,p (Ω), s ∈ N, p ∈ [1, ∞], and that the corresponding space F • s,p,r (Ω) can again lead to Sobolev type algebras of generalized functions.

Comparison results for sequences of weights

A question arising naturally at this point is whether equivalent sequences of weights (in the classical asymptotic sense) will give rise to identical factor algebras. The answer is affirmative, and we can state the result in the following precise form: Proposition 4 (equivalent scales.) Let r = (r n ) n , s = (s n ) n be two real sequences decreasing to zero. Then

lim n→∞ s n r n = C > 0 =⇒ ∀x ∈ E N , ||| x ||| p,s = ||| x ||| p,r C .
Whenever this holds, it follows as an immediate consequence that F p,s = F p,r , K p,s = K p,r and therefore also

G p,s = G p,r .
This proposition is a direct consequence of the following Let us now write s n = c n r n , such that lim sup and the converse for lim sup s n /r n , i.e. the claimed lemma.

Lemma 5 Assume that r = (r n ) n , s = (s n ) n ∈ R N + decrease to zero and verify 0 < lim inf n→∞ s n /r n ≤ lim sup n→∞ s n /r n < ∞ . Then, ∀x ∈ E N : ||| x ||| p,s ∈ ||| x ||| p,
n→∞ c n = C > 0. For log p(x n ) ≥ 0, lim sup n→∞ s n log p(x n ) = lim sup n→∞ c n r n log p(x n ) ≤ C lim sup n→∞ r n log p(x n ) . ( * )
Corollary 6 The previous inequality for the semi-ultranorm in case of finite superior limit of s/r also implies inclusion relations for the spaces of moderate nets, and the converse inclusion for the ideals, whenever one of the sequences of weights is dominated by the other one:

r = O(s) =⇒ F p,s ⊂ F p,r ; K p,r ⊂ K p,s
These relations will be used in Section 4, where algebras defined by a whole family of sequences of weights will be considered.

It is also clear that when lim sup s/r = ∞ or lim inf s/r = 0, we cannot have a nontrivial relation between ||| • ||| p,r and ||| • ||| p,s of a quantitative type similar to what precedes.

Relation to Maddox' sequence spaces

The spaces F |•|,r and K |•|,r defined above are identical to M ' sequence spaces ℓ ∞ (r) and c 0 (r),

c 0 (r) = k∈N x ∈ C N | lim n→∞ |x n |k 1/rn = 0 (= K |•|,r ) , ℓ ∞ (r) = k∈N x ∈ C N | sup n∈N |x n |k -1/r n < ∞ (= F |•|,r ) ,
introduced by Nakano [57], Simons [START_REF]The sequence spaces ℓ(p ν ) and m(p ν )[END_REF] and studied extensively by Maddox and his students

[48]-[53]. Indeed, ∃k ∈ N : sup n∈N |x n | k -1/rn < ∞ ⇐⇒ ∃k ∈ N : |x n | = O(k 1/rn ) ⇐⇒ ∃k : lim sup n→∞ |x n | rn ≤ k ⇐⇒ ||| x ||| r < ∞ , and 
∀k : lim n→∞ |x n | k 1/rn = 0 ⇐⇒ ∀ε > 0 : |x n | = o(ε 1/rn ) ⇐⇒ ∀ε > 0, n > n 0 : |x n | rn < ε ⇐⇒ ||| x ||| r = 0
In particular, these two types of sequence spaces belong to the well-known classes of echelon and co-echelon spaces, for c 0 (r) and ℓ ∞ (r) respectively [30].

The same characterization can be used for generalized Sobolev spaces as defined in Subsection 1.1.3.

In our case, we shall always require lim r n = 0 (see also Remark 43). By [23, p. 111] and the fact that for any k there is ρ > 0 such that n∈N (k/ρ) 1/rn < ∞, we have that both, F p,r and K p,r constructed in Subsection 1.1.1 are Montel and Schwartz spaces.

On the other hand, this implies that we never have AD spaces, i.e. the subset of finite sequences will never be dense in F p,r (but always be in K p,r ).

While the cited and other traditional work on sequence spaces is restricted to the case (C, |•|), our main work applies to factor algebras constructed from more complicated base spaces (E, p). Nevertheless, all spaces that follow can be described as intersection or union of such echelon (resp. co-echelon) spaces. The additional properties we require in our construction of Colombeau type algebras will however simplify the situation with respect to the general abstract theory.

Locally convex vector spaces and algebras

Definition

Consider now a topological algebra E over C, with locally convex structure determined by a family P of seminorms. We shall assume that ∀p ∈ P ∃p ∈ P ∃C ∈ R + : ∀x, y ∈ E : p(x y) ≤ C p(x) p(y) , which implies continuity of multiplication. Now let

F P,r = f ∈ E N | ∀p ∈ P : ||| f ||| p,r < ∞ and K P,r = f ∈ E N | ∀p ∈ P : ||| f ||| p,r = 0 .
Proposition 7 (i) F P,r is a (sub-)algebra of E N , and K P,r is an ideal of F P,r , thus G P,r = F P,r /K P,r is an algebra. As before, we also use the notation G r (E, P) instead of G P,r , and similarly for F and K.

(ii) For every p ∈ P, d p,r :

E N × E N → R + , (f, g) → ||| f -g ||| p,r
is an ultrapseudometric on F P,r , and the family (d p,r ) p∈P makes F P,r a topological algebra over

(F |•|,r , d |•|,r ).
(iii) For every p ∈ P, d p,r :

G P,r × G P,r → R + , ([f ], [g]) → d p,r (f, g)
is an ultrametric on G (ii) The first part of the second statement of the proposition is made for a fixed seminorm and thus a direct consequence of Proposition-Definition 2. Continuity of addition and multiplication in F P,r are implied by the previous two inequalities. Thus, F |•|,r is a topological ring, and F P,r a topological

F |•|,r -algebra, because ∀p ∈ P, ∀λ ∈ F |•|,r : ||| λf ||| p,r ≤ ||| λ ||| |•|,r ||| f ||| p,r .
(iii) The first inequality above implies also the independence of the ultrametric on the representatives of [f ], [g] ∈ G P,r . Finally, by definition, K P,r is here again the intersection of all neighborhoods of zero, such that G P,r is nothing else than the associated Hausdorff space.

Examples

Example 8 (simplified Colombeau algebra) Take Ω ⊂ R n , E = C ∞ (Ω), P = { p ν } ν∈N , with p ν = p ν ν , and

p µ ν (f ) := sup |α|≤ν, x∈Kµ |f (α) (x)| ,
where r = 1 log and (K µ ) µ∈N is an increasing sequence of compact sets exhausting Ω. Then, G P,r = F P,r /K P,r , where

F P,r = (f n ) n ∈ C ∞ (Ω) N ∀ν ∈ N : sup n>1 p ν (f n ) 1/ log n < ∞ , K P,r = (f n ) n ∈ C ∞ (Ω) N ∀ν ∈ N : lim n→∞ p ν (f n ) 1/ log n = 0 .
is just the simplified Colombeau algebra G s (Ω).

In the framework of echelon and coechelon spaces, we put for k, ν ∈ N * ,

F P,r,ν,k = f ∈ C ∞ (Ω) N | sup n>1 k -log n p ν (f n ) < ∞
which is a coechelon type space, and then

F P,r,ν = k∈N F P,r,ν,k , F P,r = ν∈N F P,r,ν .
On the other hand,

K P,r,ν,k = f ∈ C ∞ (Ω) N | lim n→∞ k log n p ν (f n ) = 0
is a sequence of echelon type spaces, and we let

K P,r,ν = k∈N K P,r,ν,k , K P,r = ν∈N K P,r,ν .
It is easily seen that these spaces are identical to those above, thus their quotient is again the classical simplified Colombeau algebra G s (Ω).

Consider the space

B ∞ = φ ∈ S(R s ) | ∀α ∈ N : x α φ i = δ α,0 (1.3)
and fix φ ∈ B ∞ . We realize the embedding of

T ∈ D ′ (Ω) into G s (Ω) as i φ : D ′ (Ω) → G s (Ω) ; T → i φ (T ) = [(κ n T ) * φ n ]
where

[f n ] = (f n ) n + K P,r denotes the class of the representative (f n ) n in G s (Ω)
, and where

(κ n ) n ∈ D(Ω) N is a sequence of functions such that κ n | Kn = 1, supp κ n | ⊂ K n+1
, where (K n ) n is an increasing sequence of compact sets exhausting Ω.

Example 9 (temperate Colombeau algebra [31,[START_REF]Colombeau's generalized functions: Topological structures; Microlocal properties. A simplified point of view[END_REF]) We can also describe G τ (R s ) in this setting. To do so, define

p ν,N (ϕ) = sup (1 + |x| 2 ) -N |ϕ (α) (x)| ; x ∈ R s , |α| ≤ ν and F r,ν,N = f ∈ C ∞ (R s ) N | ||| f ||| p ν,N ,r ≤ e N , K r,ν,N = f ∈ C ∞ (R s ) N | ||| f ||| p ν,N ,r = 0 . Now, for F τ,r = ν∈N N∈N F r,ν,N , K τ,r = ν∈N N∈N K r,ν,N
the quotient space G τ,r = F τ,r /K τ,r is once again a topological algebra over C r , and equal to the classical space G τ (R s ) for r n ∼ 1/ log n.

Example 10 (full Colombeau algebra [8, 31]) Let us now introduce the "full" Colombeau algebra, based on the same (E, P) as above. Following Colombeau, let for all q ∈ N,

A q = φ ∈ D(R s ) ∀α ∈ N s : |α| ≤ q =⇒ x α φ = δ α,0 .
Then, for fixed ν, N ∈ N and φ ∈ A N let

F ν,N,φ = (f ϕ ) ϕ ∈ E A 0 | ||| (f φn ) n ||| p ν ,r ≤ N ,
where φ n = n s φ(n •).

(Here (f φn ) n are "extracted sequences" of the elements

(f ϕ ) ϕ ∈ E D(R s ) ).
As in [8], denote by Γ ⊂ R N + the set of increasing positive sequences going to infinity. Now define, for each γ ∈ Γ,

K ν,γ,q = (f ϕ ) ϕ ∈ E Aq | ∀φ ∈ A q : ||| (f φn ) n ||| pν ,r ≤ γ(q) -1 , and 
F = ν∈N F ν , F ν = N∈N F ν,N , F ν,N = φ∈A N F ν,N,φ , K = ν∈N K ν , K ν = γ∈Γ K ν,γ , K ν,γ = q∈N K ν,γ,q .
Then, F is an algebra and K an ideal of F, and G = F / K is the original full Colombeau algebra.

The original construction of Colombeau for the ideal has been slightly modified in [31], by taking an ideal which can in our notations be written as

K = ν,N∈N K ν , K ν,N = q∈N K ν,N,q , K ν,N,q = ϕ∈A q F ν,1/N,ϕ .
If one wants to consider the full Colombeau type algebra which is invariant under the composition with C ∞ -diffeomorphisms [31], one has to consider instead of the above definition of A q the following one:

A q = (φ n ) n ∈ C ∞ (Ω) N | (φ n ) n is bounded in D(R n ), ∀n ∈ N : φ n = 1, x α φ n = o(n -q ) } .
and the corresponding mollifiers

φ n = n φ n (n •).
Example 11 Replacing the spaces A q with the space B ∞ introduced in (1.3), we can avoid the q index in the definition of K. We take

F ν,N,φ = (f ϕ ) ϕ ∈ E B ∞ | ||| (f φn ) n ||| pν ,r ≤ N , and 
F = ν∈N F ν , F ν = N∈N F ν,N , F ν,N = φ∈B ∞ F ν,N,φ , K = ν,N ∈N K ν , K ν,N = ϕ∈B ∞ F ν,1/N,ϕ .
Then again, F is an algebra and K an ideal of F. The algebra G = F / K is studied in [START_REF]Colombeau's generalized functions: Topological structures; Microlocal properties. A simplified point of view[END_REF][START_REF]Colombeau's generalized functions: Topological structures, microlocal properties. A simplified point of view, Part I[END_REF][START_REF]Colombeau's generalized functions: Topological structures, microlocal properties. A simplified point of view[END_REF].

2 Projective and inductive limits

Projective limit

Let (E µ ν , p µ ν ) µ,ν∈N be a family of semi-normed spaces over C, such that

∀µ, ν ∈ N : E µ ν+1 ֒→ E µ ν , E µ+1 ν ֒→ E µ ν , (2.1) 
where ֒→ means continuously embedded. This implies that there exist constants

C µ ν , Cµ ν ∈ R + such that 3 ∀µ, ν ∈ N : p µ ν ≤ C µ ν p µ ν+1 , p µ ν ≤ Cµ ν p µ+1 ν .
(2.2)

In addition, we assume that spaces ← -

E µ = proj lim ν→∞ E µ ν are algebras such that ∀µ, ν ∈ N, ∃ν ′ ∈ N, C > 0, ∀f, g ∈ E µ ν ′ : f g ∈ E µ ν and p µ ν (f g) ≤ C p µ ν ′ (f) p µ ν ′ (g) . (2.3) Then let ← - E = proj lim µ→∞ ← - E µ = proj lim µ→∞ proj lim ν→∞ E µ ν ,
and define 

← - F p,r = f ∈ ← - E N | ∀µ, ν ∈ N : ||| f ||| p µ ν , r < ∞ , ← - K p,r = f ∈ ← - E N | ∀µ, ν ∈ N : ||| f ||| p µ ν ,
← - F µ p,r = f ∈ ← - E N | ∃C, ∀ν ∈ N : ||| f ||| p µ ν , r < C where E µ ν = C ∞ (R s ), equipped with the seminorm p µ ν (f) = sup |α|≤ν, |x|≤µ |f (α) (x)| . Then, ← - F ∞ p,r := µ∈N ← - F µ p,r = E ∞ M (R s ) in the sense of Oberguggenberger [60], and G ∞ (R s ) = F ∞ p,r / K p,r
is the algebra of regular generalized functions, used for the analysis of local and microlocal properties of Colombeau generalized functions. (This algebra plays for Colombeau's simplified algebra the role of C ∞ for D ′ , see Section 2.5 below.)

Inductive limit

Consider now a family (E µ ν , p µ ν ) µ,ν∈N of semi-normed spaces over C, such that

∀µ, ν ∈ N : E µ ν ֒→ E µ ν+1 , E µ+1 ν ֒→ E µ ν .
(2.4)

This implies that there exist constants

C µ ν , Cµ ν ∈ R + such that ∀µ, ν ∈ N : p µ ν+1 ≤ C µ ν p µ ν , p µ ν ≤ Cµ ν p µ+1 ν . Now let ∀µ ∈ N : -→ E µ = ind lim ν→∞ E µ ν .
Assume that spaces -→ E µ are algebras such that for every µ, ν ∈ N there exist

ν ′ ∈ N, ν ′ > ν and C > 0 such that for all f, g ∈ E µ ν ′ , f g ∈ E µ ν and p µ ν (f g) ≤ C p µ ν ′ (f ) p µ ν ′ (g) .
We assume furthermore that for every µ ∈ N this inductive limit is regular, i.e. a set A ⊂ -→ E µ is bounded iff it is contained in some E µ ν and bounded there.

Note that (2.4) implies that ∀µ ∈ N :

-→

E µ+1 ֒→ -→ E µ . Now let -→ E := proj lim µ→∞ -→ E µ = proj lim µ→∞ ind lim ν→∞ E µ ν ,
and define

-→ F p,r = f ∈ -→ E N ∀µ ∈ N, ∃ν ∈ N : f ∈ (E µ ν ) N ∧ ||| f ||| p µ ν , r < ∞ , -→ K p,r = f ∈ -→ E N ∀µ ∈ N, ∃ν ∈ N : f ∈ (E µ ν ) N ∧ ||| f ||| p µ ν ,r = 0 .
Then, Proposition 7 holds again with the appropriate change of notations:

Proposition 13 (i) Writing ← → • for both, -→ • and ← -• , we have that ← → F p,r is an algebra and 

← → K p,r is an ideal thereof, thus ← → G p,r = ← → F p,r / ← → K p,
: (E µ ν ) N × (E µ ν ) N → R + , (f, g) → ||| f -g ||| p µ ν ,r
is an ultrapseudometric on (E µ ν ) N .

(iii) The above family of ultrapseudometrics makes ← -G p,r = ← -F p,r / ← -K p,r a topological algebra over C r , with quotient topology equivalent to the topology defined by the family of ultrametrics ( dp µ ν ) µ,ν , where

dp µ ν ([f ], [g]) = d p µ ν (f, g), [f]
standing for the class of f . (iv) If τ µ denotes the inductive limit topology on

F µ p,r = ν∈N ((E µ ν ) N , d µ,ν ), µ ∈ N, then -→ F p,
r is a topological algebra for the projective limit topology of the family (F µ p,r , τ µ ) µ .

Proof. The proof goes again along the same lines, where the above assumption on the regularity of the inductive limits helps to use the same reasoning as before.

Example 14 For Ω ⊂ R s , an exhausting sequence of compacts K µ ⋐ Ω, µ ∈ N, and an increasing sequence

(M n ) n ∈ R N + , define the semi-norms p M,µ ν : ϕ → sup α∈N,x∈Kµ ν |α| |ϕ (α) (x)| M |α|
(clearly increasing in µ and ν), and q M,µ ν = p M,µ 1/ν (decreasing in ν). These seminorms are used to define Beurling (resp. Roumieu) type ultradifferentiable functions, which will be studied in some detail in the next chapter.

Completeness

Without assuming completeness of ← → E , we have

Proposition 15 (i) ← - F p,r is complete. (ii) If for all µ ∈ N, a subset of -→ F µ p,r is bounded iff it is a bounded subset of (E µ ν ) N for some ν ∈ N, then -→ F p,r is sequentially complete.
Remark 16 In the projective limit case, we have a metrisable space, therefore sequential completeness implies completeness. This is not the case for the inductive limit case.

Proof. If (f m ) m∈N is a Cauchy sequence in ← -F p,r , there exists a strictly increasing sequence (m µ ) µ∈N of integers such that

∀µ ∈ N ∀ k, ℓ ≥ m µ : lim sup n→∞ p µ µ f k n -f ℓ n rn < 1 2 µ .
Thus, there exists a strictly increasing sequence (n µ ) µ∈N of integers such that

∀µ ∈ N ∀ k, ℓ ∈ [m µ , m µ+1 ] ∀n ≥ n µ : p µ µ f k n -f ℓ n rn < 1 2 µ . (Restricting k, ℓ to [m µ , m µ+1 ] allows to take n µ independent of k, ℓ.) Let µ(n) = sup { µ | n µ ≤ n }, and consider the diagonalized sequence f = (f m µ (n) n ) n , i.e. fn =          f m 0 n if n ∈ [n 0 , n 1 ) ... f m µ n if n ∈ [n µ , n µ+1 ) ... . Now let us show that f m → f in ← - F p,r , as m → ∞. Indeed, for ε and p µ 0 ν given, choose µ > µ 0 , ν such that 1 2 µ < 1 2 ε. As p µ ν is increasing in both indices, we have for m > m µ (say m ∈ [m µ+s , m µ+s+1 ]) : p µ 0 ν (f m n -fn ) rn ≤ p µ µ (f m n -f m µ (n) n ) rn ≤ p µ µ (f m n -f m µ+s+1 n ) rn + µ(n)-1 µ ′ =µ+s+1 p µ ′ µ ′ (f m µ ′ n -f m µ ′ +1 n ) rn
and for n > n µ+s , we have of course n ≥ n µ(n) , thus finally

p µ 0 ν (f m n -fn ) r n < µ(n) µ ′ =µ+s 1 2 µ ′ < 2 2 µ < ε and therefore f m → f in ← - F . For a Cauchy net (f m ) m in -→ F p,r
, the proof requires some additional considerations. We know that for every µ there is ν(µ) such that

p µ ν(µ) (f m n -f p n ) rn < ε µ ,
where (ε µ ) µ decreases to zero. For every µ we can choose ν(µ) so that p µ ν(µ) ≤ p µ+1 ν(µ+1) . Now by the same arguments as above, we prove the completeness in the case of -→ F p,r .

Sheaf theory aspects

Let us now apply concepts of sheaf theory to local and microlocal analysis in generalized function spaces, through the sequence space presentation.

We will investigate under what conditions a generalized algebra

← → G p,r is a (pre-)sheaf, provided that ← → E is a (pre-)sheaf.
Here, ← → E stands for the functor associating to each open set Ω the space ← → E (Ω) constructed according to the preceding sections for a given family (E µ ν (Ω), p µ ν,Ω ). More details will be given below.

Some definitions are necessary to formulate more precisely and to prove such statements.

Preliminary considerations

Recall that a presheaf F (of objects in a concrete category) on a topological space X is given by -the association of a set F (Ω) to each open set Ω of X, and

-for every inclusion of open sets Ω ′ ⊂ Ω, a restriction map ρ Ω,Ω ′ : F (Ω) → F (Ω ′ ); f → f | Ω ′ such that * for each open set Ω of X, ρ Ω,Ω
is the identity map on F (Ω), and * for any three open sets

Ω ′′ ⊂ Ω ′ ⊂ Ω, we have ρ Ω ′ ,Ω ′′ •ρ Ω,Ω ′ = ρ Ω,Ω ′′ .
A presheaf F is a sheaf iff the following conditions hold:

(i) Let (Ω i ) i be a family of open sets and (f i ) i a compatible family of sections f i ∈ F (Ω i ), i.e. such that ∀i, j : f i | Ω i ∩Ω j = f j | Ω i ∩Ω j .
Then, there exists a section f ∈

F ( i Ω i ) such that ∀i : f | Ω i = f i . (ii) Let Ω = i∈I Ω i , f, g ∈ F (Ω) and ∀i, f| Ω i = g| Ω i . Then, f = g.
To speak of a sheaf of objects in a given category, one requires that the sets F (Ω) be objects of this category, and the restrictions be morphisms of the category. We restrict ourselves here to (pre-)sheaves of topological algebras over topological rings, on a paracompact topological space X. Accordingly, the restriction maps must be continuous algebra morphisms.

(Recall that Colombeau type generalized functions are never topological vector spaces, because scalar multiplication with elements of R or C is not continuous, as seen in Proposition-Definition 2; they are only topological modules (and algebras, if

← → E is so) over the ring of generalized numbers.)

The presheaf ← → E

Let X be a paracompact Hausdorff space. Let us assume that for each (fixed) open set Ω ⊂ X, the space ← → E (Ω) is constructed as described in the previous sections from a sequence (E µ ν (Ω), p µ ν,Ω ) verifying the given inclusion relations. Thus, we have, for every fixed Ω, ← -

E (Ω) = proj lim µ→∞ ← - E µ (Ω) = proj lim µ→∞ proj lim ν→∞ E µ ν (Ω) , (resp. -→ E (Ω) = proj lim µ→∞ -→ E µ (Ω) = proj lim µ→∞ ind lim ν→∞ E µ ν (Ω) ) .
Moreover, we now assume that the spaces E µ ν (Ω) are spaces of (at least continuous) functions, defined on Ω, for which we have the (pointwise) restrictions of functions in the usual sense,

f ∈ E µ ν (Ω) ⊂ C 0 (Ω) → f | Ω ′ ∈ C 0 (Ω ′ ).
(In what follows, we will study more precisely the question to which E µ ′ ν ′ (Ω ′ ) this restricted function will belong, in order to find that Ω → ← → E (Ω) indeed are sheaves.)

Proposition 17 Under the above assumptions, ← → E : Ω → ← → E (Ω) (with the pointwise restriction), is a presheaf of vector spaces, if for any open sets Ω 1 ⊂ Ω 2 in X, we have -in the projective limit case:

∀µ, ν ∈ N ∃µ ′ , ν ′ ∈ N ∃C > 0 ∀f ∈ E µ ′ ν ′ (Ω 2 ) : f | Ω 1 ∈ E µ ν (Ω 1 ) and p µ ν,Ω 1 (f | Ω 1 ) ≤ C p µ ′ ν ′ ,Ω 2 (f) , (2.5) 
-in the inductive limit case:

∀µ ∈ N ∃µ ′ ∈ N ∀ν ′ ∈ N ∃ν ∈ N ∃C > 0 ∀f ∈ E µ ′ ν ′ (Ω 2 ) : f | Ω 1 ∈ E µ ν (Ω 1 ) and p µ ν,Ω 1 ( f| Ω 1 ) ≤ C p µ ′ ν ′ ,Ω 2 (f ) . (2.6)
Proof. Since the proof for the projective limit case is analogous but much simpler, we only consider the inductive limit case.

Let f ∈ -→ E (Ω 2 ). Fix µ. Determine µ ′ according to condition (2.6). We know, f ∈ E µ ′ ν ′ (Ω 2 ) for some ν ′ . Then, by (2.6), there is ν such that f| Ω 1 belongs to E µ ν (Ω 1 ), thus f| Ω 1 ∈ ← → E (Ω 1
). Now, without fixing f from the beginning, one sees that the second conditions implies that the (set categorical) restriction is indeed continuous.

The

(pre)sheaf G r ( ← → E )
Now we will consider for each Ω, the algebras

F r ( ← → E (Ω)), K r ( ← → E (Ω)) (ideal of F r ( ← → E (Ω))) and G r ( ← → E (Ω)).
We keep the hypotheses of the beginning of this subsection.

Proposition 18 Assume that we have (2.5) in the projective limit case (resp. (2.6) in the inductive limit case). Then:

(i) F r ( ← → E ) : Ω → F r ( ← → E (Ω)) is a presheaf of topological F |•|,r -algebras; (ii) K r ( ← → E ) : Ω → K r ( ← → E (Ω)) is a presheaf of ideals of F r ( ← → E ), i.e., a presheaf of topological algebras such that for each Ω, K r ( ← → E )(Ω) is an ideal of F r ( ← → E )(Ω); (iii) G r ( ← → E ) = F r ( ← → E )/K r ( ← → E ) : Ω → F r ( ← → E )(Ω)/K r ( ← → E )(Ω), is a presheaf of topological G |•|,r (= K r )-algebras, for the restriction mapping G r ( ← → E )(Ω) ∋ f → f | Ω ′ = ( fn | Ω ′ ) n + K r ( ← → E )(Ω ′ ) ∈ G r ( ← → E )(Ω ′ ) ,
where ( fn ) n is any representative of f.

Proof. Let us start by defining what the restriction mappings are in

F r ( ← → E ). For given Ω ⊃ Ω 1 , elements f of F r ( ← → E )(Ω) are sequences of functions of ← → E (Ω).
They can, by assumption, be componentwise restricted to Ω 1 , i.e. we have a function ρΩ,Ω 1 which maps any

f = (f n ) n ∈ F r ( ← → E (Ω)) ⊂ ← → E N (Ω) into the sequence f| Ω 1 = ( f n | Ω 1 ) n ∈ ← → E (Ω 1 ) N .
But more precisely, the respective assumptions (2.5) and (2.6) imply that the sequence f

| Ω 1 is an element of F r ( ← → E (Ω 1 )), for f ∈ F r ( ← → E (Ω)
). We will explain this in the inductive limit case, a similar and even simpler explanation holds for the projective limit case.

Let (f n ) n ∈ F r ( -→ E (Ω)).
We know that for every µ ′ there exists ν ′ such that ∀n ∈ N :

f n ∈ E µ ′ ν ′ (Ω)
. Fix µ and determine µ ′ according to (2.6), and ν ′ as above. Now, again by (2.6) and ν from this condition, we have

( f n | Ω 1 ) n ∈ E µ ν (Ω 1 ) N . Again by (2.6), we have that (f n ) n ∈ F r ( -→ E (Ω 1 )
). The same reasoning can be applied to K instead of F.

The condition ρΩ,Ω = id and the one on composition of restrictions are immediately checked to hold. Finally, conditions (2.6) (resp. (2.5)) also imply continuity of the restriction mapping.

Thus, F r ( ← → E ) and K r ( ← → E ) are presheaves of topological F |•|,r -algebras. Now, again by (2.6), one can prove that for each Ω, K r ( ← → E )(Ω) is an ideal of F r ( ← → E )(Ω), as claimed.
With this, it is immediate to see that the given restriction on G r ( ← → E ) is well defined (independent of the chosen representative), and the general theory implies that

G r ( ← → E ) : Ω → G r ( ← → E (Ω)) ≡ F r ( ← → E (Ω))/K r ( ← → E (Ω))
indeed defines a presheaf.

Example 19 Take S, the presheaf of rapidly decreasing smooth functions on X = R s . We define, for any open subset

Ω ∈ R s , ∀µ, ν ∈ N, q µ ν, Ω (f ) = sup x∈Ω, t≤µ, |α|≤ν (1 + |x|) t f (α) (x) and set S µ ν (Ω) = f ∈ C ∞ (Ω) | q µ ν, Ω (f ) < ∞ . Then S(Ω) = proj lim µ→∞ proj lim ν→∞ S µ ν (Ω).
As property (2.5) clearly holds for the family q µ ν, Ω ν, µ, Ω , the corresponding functor G S,r = G r (S) : Ω → G r (S(Ω)) defines a presheaf of rapidly decreasing generalized functions.

Proposition 20 Assume that for every open Ω ⊂ X and every locally finite open covering (Ω λ ) λ of Ω, we have a partition of unity (η i ) i ∈ ← → E (Ω) N (that is, there exists a subcover (Ω i ) i∈N of (Ω λ ) λ such that supp η i ⊂ Ω i and i η i = 1 on Ω). Moreover, assume :

-in the projective limit case, (2.5) and that for all µ, ν ∈ N * , there exists a finite subfamily (Ω i j ) j∈{1,...,ℓ} and (µ j ) j , (ν j ) j ∈ (N * ) ℓ such that

∀f ∈ E µ ν (Ω), ∀j : η i j f ∈ E µ j ν j (Ω i j ) and p µ ν,Ω (f ) ≤ ℓ j=1 p µ j ν j ,Ω i j (η i j f ) ,
(2.7)

-in the inductive limit case, (2.6) and that for any µ ∈ N * , there exists a finite subfamily (Ω i j ) j∈{ 1,...,ℓ } and (µ j ) j ∈ (N * ) ℓ , such that for all

(ν j ) j ∈ (N * ) ℓ there is ν ∈ N * such that ∀f ∈ E µ ν (Ω), ∀j, η i j f ∈ E µ j ν j (Ω i j ) and p µ ν,Ω (f ) ≤ ℓ j=1 p µ j ν j ,Ω i j (η i j f ) , (2.8) 
where

Ω = i Ω i . Then, F r ( ← → E ) is a fine sheaf, and K r ( ← → E ) is a fine subsheaf thereof. In addition, for every open Ω in X, 0 → K r ( ← → E )(Ω) → F r ( ← → E )(Ω) → G r ( ← → E )(Ω) → 0
is an exact sequence, and G r ( ← → E ) is a fine sheaf.

Proof. Consider the inductive limit case and the presheaf

Ω → F r ( -→ E )(Ω) (resp. Ω → K r ( -→ E )(Ω)). Let Ω = i∈I Ω i , (f n ) n ∈ F r ( -→ E )(Ω), (resp. K r ( -→ E )(Ω)), and ( f n | Ω i ) n = 0.
Then, clearly (f n ) n = 0 in the respective sequence spaces over Ω. Since we have assumed that spaces E µ ν (Ω) consist of functions which are at least continuous, their glueing for the second sheaf property leads to a proof showing that the second condition holds for

Ω → F r ( -→ E )(Ω) and for Ω → K r ( -→ E )(Ω).
Both sheaves are fine since we have partition of unity, as usual.

Let (f n ) n ∈ F r ( -→ E )(Ω), and Ω = i∈I Ω i . Assume that ( f n | Ω i ) n ∈ K r ( -→ E )(Ω i ).
Then, by taking powers 1/r n on both sides of (2.8), we have that

(f n ) n ∈ K r ( -→ E )(Ω)
. This implies that the short sequence is exact and by the well known result of sheaf theory, it follows that

Ω → G r ( -→ E )(Ω) is a fine sheaf.
Example 21 (Generalization of Example 8) Take C ∞ , the sheaf of smooth functions on X = R s , and denote by O the set of all open subsets of R s . We can find a family K Ω µ µ∈N, Ω∈O of compact subsets of R s such that for each Ω ∈ O, the sequence K Ω µ µ∈N exhausts Ω. We set

∀µ, ν ∈ N, ∀f ∈ C ν (Ω), p µ ν, Ω (f ) = sup x∈K Ω µ , |α|≤ν f (α) (x) .
Then

C ∞ (Ω) = proj lim µ→∞ proj lim ν→∞ E µ ν (Ω)
where E µ ν (Ω) = C ν (Ω) is equipped with the seminorm p µ ν, Ω . Moreover, we can choose the family K Ω µ µ∈N, Ω∈O such that properties (2.5) and (2.7) hold. Thus, G r (C ∞ ) : Ω → G r (C ∞ (Ω)) defines a fine sheaf. We simply denote it by G r : Ω → G r (Ω). For r n ∼ 1/ log n, we recover the well known result for the sheaf of Colombeau simplified algebras.

Example 22 (continuation of Example 19)

The functor G S,r : Ω → G r (S(Ω)) is not a sheaf. The associated sheaf is G r : Ω → G r (Ω), as in distribution theory, the associated sheaf to S ′ is D ′ .

Remark 23 By the given theory, it follows that algebras of generalized ultradistributions for non-quasianalytic sequences (M p ) (in our case for M p = p! s , s > 1) constitute fine sheaves. Let us just note that we don't have partitions of unity in spaces of analytic functions. In this case one can use other techniques (theory of holomorphic functions) in order to prove the sheaf properties of the space of holomorphic generalized functions [62].

Introduction to regularity theory

Our aim is to show how the concept of regular generalized functions introduced in [31, 60] and slightly generalized in [12] falls in our settings. We restrict here ourselves to the case of projective limits, since we want to illustrate the concepts with the example of G r (see Example 21), which corresponds to the C ∞ -analysis in the framework of Schwartz's distributions.

Subspaces of G r (

← -E ) and singular supports Definition 24 We say that a subset R of

R N 2 + = (C µ ν ) µ,ν∈N ; C µ ν ∈ R + is regular iff ∀C ∈ R, ∀µ, ν ∈ N : C µ ν ≤ C µ+1 ν , C µ ν ≤ C µ ν+1 , (2.9) ∀C ∈ R, ∀κ ∈ R + , ∃D ∈ R : ∀µ, ν ∈ N 2 , κ C µ ν ≤ D µ ν , (2.10) ∀C 1 , C 2 ∈ R, ∃D ∈ R : ∀µ, ν ∈ N 2 , max C µ 1, ν , C µ 2, ν ≤ D µ ν , (2.11) ∀C 1 , C 2 ∈ R, ∃D ∈ R : ∀µ, ν ∈ N 2 , C µ 1, ν C µ 2, ν ≤ D µ ν .
(2.12)

Example 25 (i) The set B of bounded sequences, increasing in both indices, is a regular subset of the subset of R N 2 + of all sequences increasing in both indices, which is itself regular.

(ii) The set B 1 (resp. B 2 ) of increasing sequences depending only on µ (resp.

ν) is regular.

With the notations and the background of the previous subsection, we set, for any Ω ∈ O and any regular subset R,

F R r ( ← - E (Ω)) = f ∈ ← - E N (Ω) ∃C ∈ R, ∀µ, ν ∈ N : ||| f ||| Ω p µ ν , r < C µ ν ,
Proposition 26 Assume that property (2.5) holds (resp. that ← -E allows for partitions of unity and that properties (2.5) and (2.7) hold). Then,

F R r ( ← - E ) : Ω → F R r ( ← - E (Ω)) defines a subpresheaf (resp. subsheaf) of subal- gebras of F r ( ← - E ).
The algebraic properties of F R r ( ← -E (Ω)) come directly from properties (2.10-2.12) in Definition 24, whereas the proof of presheaf (resp. sheaf) properties follows the same lines as in Proposition 18 (resp. Propositions 18 and 20).

Under the assumptions of Proposition 26, the presheaf (resp. sheaf)

G R r ( ← - E ) = F R r ( ← - E )/K r ( ← - E )
is called the sheaf of (r, R)-type generalized functions.

Example 27

We consider the sheaf G r based on C ∞ , introduced in Example 21, and the regular set B 1 of increasing sequences depending only on µ.

Then, the subsheaf We assume now that ← -E is a sheaf of algebras and that properties (2.5) and (2.7) hold. Our framework gives the tools for the local study of Colombeau type generalized functions. First, as G r ( ← -E ) is a presheaf, the notion of restriction makes sense. Thus, for any regular set R and

G B 1 r = G ∞ r is the sheaf of G ∞ generalized functions, intro- duced in [60],
f ∈ G R r ( ← - E (Ω)) (Ω open subset of X), we can define O R (f ) = x ∈ Ω ∃V ∈ V x : f | V ∈ G R r ( ← - E (V )) . From sheaf properties, it follows that f | O R belongs to G R r ( ← - E (O R )) and that O R (f) is the biggest open set of X having this property. We call O R (f) the (open) set of R-regularity of f and we define the supp sing R (f) = X \ O R (f ).
Example 29 Returning to Example 27, we define, in particular, the G ∞ singular support of a generalized function, by choosing R = B 1 .

Elements of microlocal analysis

We shall do this study for the case of the sheaf G r , introduced in Example 21.

Some embeddings results One can show that, for any open subset

Ω of R s , the space G C,r (Ω) of compactly supported elements of G r (Ω) is naturally embedded in G C,r (R s ), and that G C,r (R s ) is embedded in G B 2 S,r (R s ). (Recall that B 2 is the set of sequences (µ, ν) → C µ ν = C ν ,
that is the set of sequences depending only on ν.) Indeed, for any f ∈ G C,r (R s ), there exists a representative (f n ) n ∈ f such that each f n is supported in the same compact set, which can be included in one of the K µ . (We refer to Example 21 for the notation, with the simplification

K µ = K R s µ .
) Such a representative is constructed by multiplying any (g n ) n ∈ f by a function θ ∈ D(R s ) satisfying θ ≡ 1 on a neighborhood of supp(f) and 0 ≤ θ ≤ 1 elsewhere. Furthermore, for any (g n ) n , the class of (θ g n ) n in G S,r (R s ) does not depend on the choices of (g n ) n and θ. We have, with the notations of Examples 19 and 21,

∀µ, ν ∈ N, ∃C µ > 0, ∀f ∈ D(R s ) with supp(f ) ⊂ K µ 0 : p µ 0 ν (f ) ≤ q µ ν (f ) ≤ C µ p µ 0 ν (f ). (2.13)
From the previous remarks and these inequalities, it is straightforward that the mapping

ι C,S : G C,r (R s ) → G S,r (R s ), f → [(f n ) n ] S
(where

(f n ) n ∈ f is such that each f n is supported in the same compact set K µ 0 ) is an injective morphism of algebras. Furthermore, inequalities (2.13) imply that ι C,S (f ) = [(f n ) n ] S satisfies ||| ι C,S (f ) ||| q µ ν , r ≤ ||| f ||| p µ 0 ν , r . Thus, ι C,S (G C,r (R s )) ⊂ G B 2
S,r (R s ) as stated above.

Fourier transform Since the Fourier transform4 FT : S(R s ) → S(R s ) is a linear continuous mapping, there exists a canonical extension (still denoted by FT ) defined by

FT : G S,r (R s ) → G S,r (R s ) f → [(FT (f n )) n ] S ,
where (f n ) n is a representative of f ). Moreover, FT is a linear isomorphism, continuous for the topology given by the family of ultranorms ||| • ||| q µ ν , r µ, ν .

(See Section 5 for a more general approach to the problem of extension of maps.)

From now on, we call regular a subset R of R N 2 + satisfying (2.9-2.12) and

∀C ∈ R, ∀µ 0 , ν 0 ∈ N 2 , ∃D ∈ R : ∀µ, ν ∈ N 2 C µ+µ 0 ν+ν 0 ≤ D µ ν . (2.14) For R ⊂ R N 2 + , define Ř = C ∈ R N 2 + | ∃D ∈ R : ∀µ, ν ∈ N 2 C µ ν = D ν µ .
One can check that a set R is regular if, and only if Ř is regular.

With this, we can formulate the following exchange proposition:

Proposition 30 Let R be a regular set. Then

FT G R S,r (R s ) = G Ř S,r (R s ).
(2.15)

The proof of Proposition 30 is based on properties of regular sets and on the following classical lemma:

Lemma 31 For all µ, ν in N, there exists C µ, ν > 0 such that

∀u ∈ S (R s ) q µ ν (FT (u)) ≤ q ν+s+1 µ (u).
Note that the equality (2.15) holds also for the inverse Fourier transform.

Example 32 Choosing R = B gives, in particular, FT G ∞ S,r (R s ) = G ∞ S,r (R s ), since B = B.
The following proposition gives a characterization of regular compactly supported generalized functions, by a regular property of their Fourier transform. This is an analogon in the framework of generalized functions of the similar result asserting that a compactly supported distribution is a smooth function, if, and only if its Fourier transform (which is a priori a slowly increasing function) is rapidly decreasing.

Proposition 33 Let R 2 be a regular set, formed by sequences depending only on ν. For f ∈ G C,r (R s ), the two following statements are equivalent:

(i) f belongs to G R 2 r (R s ), (ii) FT (f) belongs to G Ř2 S,r (R s ). Proof. Consider f ∈ G R 2 r (R s ). A closer inspection of the previous embedding results shows that G R 2 r (R s ) is embedded in G R 2 S,r (R s ). Using Proposition 30, we get that F T (f ) belongs to G Ř2 S,r (R s ). Conversely, if FT (f) ∈ G Ř2 S,r (R s ), f is in G R 2
S,r (R s ). Since f is compactly supported, we can find K µ 0 such that supp(f) ⊂ K µ 0 . From the left hand side of inequalities 2.13, it follows that f belongs to G R 2 r (R s ).

Remark 34 Taking sequences depending only on ν in Proposition 33 is not a loss of generality, since we consider compactly supported generalized functions.

Indeed, take f ∈ G R C,r (R s ) with supp(f ) ⊂ K µ 0 and, for all µ, ν ∈ N, ||| f ||| p µ ν , r ≤ C µ ν , (C µ ν ) µ,ν ∈ R.
Then, for all k ≥ µ 0 , we have

||| f ||| p µ ν , r = ||| f ||| p µ 0 ν , r ≤ C µ 0 ν . Thus, G R C,r (R s ) = G R 2 C,r (R s ), with R 2 = (C µ 0 ν ) µ,ν , µ 0 ∈ N, (C µ ν ) µ,ν ∈ R . (The inclusion ⊃ comes from the monotonicity in µ of the sequence (C µ ν ) µ,ν .)
Example 35 Take R 2 = B, the set of increasing bounded sequences, defining the sheaf of algebras

G ∞ r . Then, Ř2 = B, thus G Ř2 S,r (R s ) = G ∞ S,r (R s ).
We recover the characterization of G ∞ regular compactly supported mentioned in Example 28.

Microlocalization Proposition 33 constitutes the basis of local analysis in this approach of Colombeau generalized functions and justifies the following notions. From now on, we fix a regular set R. As we are going to investigate the local behaviour of generalized functions, we may consider that sequences of R only depends on ν, according to Remark 34. For f ∈ G C, r (Ω), we set

Notations Let Ω be an open subset of R s . For (x, ξ) ∈ Ω × R s \ {0}, we denote by (i) V x (resp. V Γ x ),
O Γ R (f ) = ξ ∈ R s \ {0} | ∃Γ ∈ V Γ x : FT (f )| Γ ∈ G Ř S, r (Γ) . Lemma 36 For f ∈ G C, r (R s ) and ϕ ∈ D(R s ), we have O Γ R (f ) ⊂ O Γ R (ϕf ).
The proof follows the same line as the one of Lemma 27 in [12].

Let R be a regular set and Ω a subset of R s .

Definition 37 A function f in G r (Ω) is said to be R-microregular at (x, ξ) ∈ Ω × R s \ {0} if there exist ϕ ∈ D x (Ω) and Γ ∈ V Γ x such that FT (ϕf )| Γ ∈ G Ř S, r (Γ).
We set, for f in G r (Ω),

O Γ R, x (f ) = ϕ∈Dx(Ω) O Γ R (ϕf ) = { ξ ∈ R s \ {0} | f is R microregular at (x, ξ) } , Σ Γ R, x (f ) = ϕ∈Dx(Ω) O Γ R (ϕf) = (R s \ {0}) \ O Γ R, x (f) .
Definition 38 For f in G r (Ω), the set

W F R (f ) = (x, ξ) ∈ Ω × (R s \ {0}) | ξ ∈ Σ Γ R, x (f) is called the R wavefront of f.
The following proposition makes the link between the R wavefront and the R singular support of f.

Proposition 39 For f in G r (Ω), the projection on the first component of

W F R (f ) is equal to supp sing R (f ).
The proof follows the same lines as the one of Lemma 8.1.1 in [32] which concerns the same result for the C ∞ wavefront of a distribution. The key point is given by Lemma 36 or its analogon for the distributional case.

Example 40 Taking R = B, the set of bounded sequences, we recover the G ∞ wavefront of a Colombeau generalized function.

Embeddings

We already showed through examples that various definitions of Colombeau algebras C and G can be realized through sequence spaces corresponding to the sequence r n = 1/ log n. The embedding of Schwartz distributions and of smooth functions into G is well-known, see Example 8 and [31,59]. It is also well-known that the multiplication of smooth functions embedded into G is the usual multiplication, i.e. it commutes with the (canonical "constant") embedding.

In this section we deal with some classes of ultradistributions and periodic hyperfunctions. We will apply the general construction given in Section 2, and now study embeddings and the multiplication of regular elements embedded into the corresponding sequence space.

General remarks on embeddings of duals

Under mild assumptions on

← → E , we show that our algebras of classes of sequences contain embedded elements of strong dual spaces ← → E ′ . First, we consider the embedding of the delta distribution. We show that general assumptions on test spaces and on a delta sequence lead to the non-boundedness of this sequence in ← → E .

We assume that ← → E is dense and continuously embedded in one of the following spaces F : We consider F = C 0 (R s ), the space of continuous functions with the projective topology given by sup norms on the balls

B(0, n), n ∈ N * , or F = K(R s ) = ind lim n→∞ (K n , • ∞ ), where K n = { ψ ∈ C(R s ) | supp ψ ⊂ B(0, n) } . (Recall, K ′ (R s
) is the space of Radon measures.)

In both cases we have δ ∈ F ′ and therefore also δ ∈ ← → E ′ .

Proposition 41 Consider a sequence

(δ n ) n ∈ ← → E N , converging weakly to δ in ← → E ′ , i.e. for all ψ ∈ ← → E the integral R s δ n (x) ψ(x)
dx is defined and tends to ψ(0) as n → ∞. Then (δ n ) n cannot be bounded in ← → E in any of the following cases : (ii) F = K(R s ) and there exists a compact set K such that ∀n ∈ N * : supp δ n ⊂ K.

(i) F = C 0 (R s
(iii) ← → E is sequentially weakly dense in ← → E ′ and 1. every φ ∈ ← → E defines an element of F ′ by ψ → R s φ(x) ψ(x) dx, 2. if (φ n ) n is a bounded sequence in ← → E , then sup n∈N,x∈R s |φ n (x)| < ∞.
Proof. We will give the proof for (i) and (iii). 

(i) Let us show that (δ n ) n is not bounded in ← → E . First, consider ← - E . Bound- edness of (δ n ) n in ← - E would imply: ∀µ ∈ N, ∀ν ∈ N, ∃C 1 > 0, ∀n ∈ N : p µ ν (δ n ) < C 1 . Continuity of ← - E ֒→ C 0 (R s ) gives ∀k ∈ N, ∃µ ∈ N, ∃ν ∈ N, ∃C 2 > 0, ∀ψ ∈ ← - E : sup |x|<k |ψ(x)| ≤ C 2 p µ ν (ψ) .

For

-→ E , simply exchange ∀ν ↔ ∃ν in the above.

(iii) Assumption 2. and boundedness of (δ n ) n in ← → E would imply: ∃C > 0, ∀n ∈ N : sup x∈R s |δ n (x)| < C. Then, by assumption 1. we conclude the proof as in (i).

Remark 42 One can take for ← → E one of Schwartz' test function spaces or Beurling or Roumieau test function space of ultradifferentiable functions. Since the delta distribution lives on all functions which are continuous at zero, one can consider also F and ← → E to consist of holomorphic functions with appropriate topologies. This was the reason for considering C 0 , although there are many classes of test spaces which would imply the necessary accommodation of conditions of the previous assertion.

Thus, the appropriate choice of a sequence r decreasing to 0 appears to be important to have at least δ embedded into the corresponding algebra. It can be chosen such that for all µ ∈ N and all ν ∈ N (resp. some ν ∈ N in -→ E case), lim sup n→∞ p µ ν (δ n ) r n = A µ ν and ∃µ 0 , ν 0 : A µ 0 ν 0 = 0. So the embedding of duals into corresponding algebras is realized on the basis of two demands:

(i) ← → E is weakly sequentially dense in ← → E ′ .
(ii) There exists a sequence (r n ) n decreasing to zero, such that for all f ∈ ← → E ′ and corresponding sequence

(f n ) n in ← → E , f n → f weakly in ← → E ′ ,
we have for all µ and all ν (resp. some ν), lim sup

n→∞ p µ ν (f n ) rn < ∞.
Remark 43 In the Definition of our sequence spaces -→ F p,r (resp. ← -F p,r ), we assumed r n ց 0 as n → ∞. (Later, we will have families of sequences decreasing to 0.) In principle, one could consider more general sequences of weights. For example, if r n ∈ (α, β), 0 < α < β, then ← → E can be embedded, in the set-theoretical sense, via the canonical map f →

(f ) n (f n = f). If r n → ∞, ← → E is no more included in ← → F p,r .
In the case we consider (r n → 0), the induced topology on ← → E is obviously a discrete topology. But this is necessarily so, since we want to have "divergent" sequences in ← → F p,r . Thus, in order to have an appropiate topological algebra containing "δ", it is unavoidable that our generalized topological algebra induces a discrete topology on the original algebra ← → E . In some sense, in our construction this is the price to pay, in analogy to Schwartz' impossibility statement for multiplication of distributions [START_REF]Sur l'impossibilité de la multiplication des distributions[END_REF].

Colombeau ultradistributions of Gevrey class

In [START_REF]Colombeau generalized Ultradistributions[END_REF], we constructed Colombeau type algebras of ultradistributions with general sequences M p , p ∈ N satisfying assumptions (M.1), (M.2) and (M.3)' ([40], [START_REF]Generalized Functions and the Boundary Values of Holomorphic Functions[END_REF]). Here, we will consider the case M p = p! m , where m > 1. In some sense, we will simplify the situation considered in [START_REF]Colombeau generalized Ultradistributions[END_REF], but at the same time improve significantly the assertions of [START_REF]Colombeau generalized Ultradistributions[END_REF]. To do so, we cast the whole theory into the sequence space framework of this paper.

In the next example, we give the realisation of the ring of ultracomplex numbers through the quotient of corresponding sequence spaces. , cf. [START_REF]Colombeau generalized Ultradistributions[END_REF] (m > 1), [START_REF]Generalized Hyperfunctions on the Circle[END_REF] (m ≤ 1). We will use the notation

F |.|,r = E p! m 0 , K |.|,r = N p! m 0 .
Now we will apply our constructions of Section 2. For the function space E = C ∞ (R s ), we define the following sequences of seminorms, for all µ, ν ∈ R + and m > 1 :

p m,µ ν (f ) = sup |x|≤µ,α∈N s ν |α| α! m |f (α) (x)| , q m,µ ν = p m,µ 1/ν , and let, for µ, ν ∈ N, E µ ν = E p m,µ ν (resp. E µ ν = E q m,µ ν
) be the subset of E on which the given seminorm is finite. These are spaces of ultradifferentiable functions of Beurling, respectively Roumieu type; their duals are spaces of compactly supported Beurling ultradistributions and (general) Beurling ultradistributions, respectively of compactly supported Roumieu ultradistributions and (general) Roumieu ultradistributions.

Take m > 1, m ′ > 0, r n = n -1/m ′ , and let f = (f n ) n be a sequence of smooth functions on R s . Let

||| f ||| p m,µ ν ,m ′ = lim sup n→∞ [p m,µ ν (f n )] n -1/m ′ ( resp. ||| f ||| q m,µ ν ,m ′ = lim sup n→∞ [q m,µ ν (f n )] n -1/m ′ ) .
Definition 45 Sets of exponentially growth order ultradistribution nets and null nets of Beurling type are defined, respectively, by

← - F p,r = E (p! m ,p! m ′ ) exp = f = (f n ) n | ∀µ, ∀ν : ||| f ||| p m,µ ν ,m ′ < ∞ , ← - K p,r = N (p! m ,p! m ′ ) = f = (f n ) n | ∀µ, ∀ν : ||| f ||| p m,µ ν ,m ′ = 0 .
Sets of exponentially growth order ultradistribution nets and null nets of Roumieu type are defined, respectively, by The Colombeau ultradistribution algebra

-→ F q,r = E {p! m ,p! m ′ } exp = f = (f n ) n | ∀µ, ∃ν : ||| f ||| q m,µ ν ,m ′ < ∞ , -→ K q,r = N {p! m ,p! m ′ } = f = (f n ) n | ∀µ, ∃ν : ||| f ||| q m,µ ν ,m ′ = 0 .
G (p! m ,p! m ′ ) (resp. G {p! m ,p! m ′ } ) is defined by ← - G p,r = G (p! m ,p! m ′ ) = E (p! m ,p! m ′ ) exp /N (p! m ,p! m ′ ) (resp. -→ G p,r = G {p! m ,p! m ′ } = E {p! m ,p! m ′ } exp /N {p! m ,p! m ′ } ) .
These topological algebras are also invariant under the actions of ultradifferential operators of respective classes (m) and {m} [41].

Proposition 47 Let m ′ ≥ m ′′ > 0. Then

E {p! m ,p! m ′ ) exp ⊂ E {p! m ,p! m ′′ ) exp , N {p! m ,p! m ′′ ) ⊂ N {p! m ,p! m ′ )
where we introduced the notation {...) for either {...} or (...) . Moreover, the injection

E {p! m ,p! m ′ ) exp ֒→ E {p! m ,p! m ′′ ) exp
is continuous. However, we do not have injections of the factor spaces, i.e. G {p! m ,p! m ′ ) ֒→ G {p! m ,p! m ′′ ) , but we do have natural embeddings of quotient vector spaces,

G {p! m ,p! m ′′ ) exp = E {p! m ,p! m ′ ) exp /N {p! m ,p! m ′ ) ֒→ E {p! m ,p! m ′′ ) exp /N {p! m ,p! m ′ )
and algebras

E {p! m ,p! m ′ ) exp /N {p! m ,p! m ′′ ) ֒→ E {p! m ,p! m ′′ ) exp /N {p! m ,p! m ′′ ) = G {p! m ,p! m ′′ ) exp
The left hand side of the last equation is thus a subalgebra of G {p! m ,p! m ′′ ) exp , with the property that association with respect to the subspace N {p! m ,p! m ′ ) (see Section 6) is compatible with multiplication.

Proof. The inclusion relation is easy to see. The given injection is continuous, since the topology of the space to the left is stronger than the one to the right. We do not have injections of the factor spaces, since the ideals verify the converse inclusion relations: Necessarily, if the space of moderate sequences on the right hand side is bigger (such that it can contain sequences from the l.h.s.), then the ideal on the r.h.s. is smaller than the ideal on the l.h.s.. Thus, the image of the ideal to the left, under the canonical injection, is not included in the ideal on the r.h.s., which means that the injection map cannot be well-defined on the quotient algebras. The algebra embedding is possible since N {p! m ,p! m ′′ ) is also an ideal of the smaller

E {p! m ,p! m ′ ) exp .
Remark 48 Clearly, one can define spaces of Colombeau ultradistributions on an open set Ω of R n . As in the case of conventional Colombeau generalized functions, one can prove that Ω → G {•,•) (Ω) constitutes a sheaf which is fine but not flabby (cf. [21,41] for the definitions and the proofs of these properties in ultradistribution spaces).

Example 49 We will just mention the interesting approach of [3] to ultradistribution generalized functions. Consider seminorms p ν : ϕ → sup |α|≤ν,|x|≤ν |ϕ (α) (x)| and let, for s > 1, r (s) n = 1/n 1/s and

F p,r (s) (Ω) = f ∈ (C ∞ (Ω)) N | ∀ν ∈ N, ||| f ||| pν ,r (s) < ∞ , K p,r (s) (Ω) = f ∈ (C ∞ (Ω)) N | ∀ν ∈ N, ||| f ||| pν ,r (s) = 0 .
With this construction and mollifiers from S { s } , embeddings of D { 2s-1 } and E { 2s-1 } into the corresponding algebra G p,r (2s-1) (Ω) are considered in [3].

Mollifiers

The problem of embeddings of various generalized function space into corresponding Colombeau type algebra is closely related to the choice of sequences of mollifiers, a sequence of appropriately smooth functions converging to the delta distribution. For the embedding of Schwartz distributions and C ∞ , such a problem is trivial, while for ultradistributions and ultradifferentiable functions it is essential. The same holds for periodic hyperfunctions of the next subsection.

In the theorems which are to follow, mollifiers will be constructed by elements of spaces Σ der and Σ pow .

Definition 50 Σ pow consists of smooth functions ϕ on R with the property that for some b > 0

σ b (ϕ) = sup β∈N,x∈R x β ϕ(x) b β β! < ∞ .
Σ der consists of smooth functions ϕ on R with the property that for some b > 0

σ b (ϕ) = sup α∈N,x∈R ϕ (α) (x) b α α! < ∞ .
Both spaces are endowed with the respective inductive topologies.

Let m > 1. Let φ n , n ∈ N, be a bounded net in Σ pow (resp. in Σ der ) such that

∀n ∈ N : R φ n (t) dt = 1 , R t j φ n (t) dt = 0, j = 1, 2, . . . [n 1/m ] + 1 .
Then, (φ n ) n is called the net of {m, pow}-mollifiers (resp. {m, der}mollifiers), where ∀n ∈ N * : φ n = n φ n (n •) .

The essential novelty compared to the construction of ultradistribution algebras of generalized functions in [START_REF]Colombeau generalized Ultradistributions[END_REF], is contained in the previous Definition and next lemma:

Lemma 51 (i) Let ∀n ∈ N * , x ∈ R : h n (x) = exp n 2 -n √ n 2n + x 2n . Then, ∀n ∈ N * : h n (0) = 1 , ∀α ∈ { 1, ..., 2n -1 } : h (α) n (0) = 0 , and ∃r > 0, ∃C > 0 : sup α,n∈N h (α) n (x) r α α! < C . (3.2)
Moreover, for a given m > 1, there exists a function g : N * → N * so that 5

φ n = 1 2 π FT (h g(n) ) , n ∈ N *
defines a net of {m, pow}-mollifiers.

5 we recall that FT denotes the Fourier transform

(ii) Let ∀n ∈ N * , x ∈ R : k n (x) = exp (-x 2n ) .
Then,

∀n ∈ N * : k n (0) = 1 , ∀α ∈ { 1, ..., 2n -1 } : k (α) n (0) = 0 ,
and there exist r > 0 and C > 0 such that

sup β∈N,n∈N * x β k n (x) r β β! < C . (3.3)
Moreover, for a given m > 1 there exists a function g : N * → N * so that

φ n = 1 2 π FT (k g(n) ) , n ∈ N * defines a net of {m, der}-mollifiers. Proof. (i) Clearly, h n = FT (h n ) satisfies h n = 1 and x m h n = 0 whenever 1 ≤ m ≤ 2n -1, for all n ∈ N * .
The function C ∋ z → n √ n 2n + z 2n has singularities at z = n e i π (2k+1)/(2n) . The nearest one to the real axis x has the imaginary part n sin π 2n , greater than 1 for all n > 1. So for every x ∈ R, the circle z = x + e i θ , θ ∈ [0, 2π), lies in the domain of analyticity of h n (n > 1). Applying Cauchy's integral formula, we have

∀x ∈ R, ∀n > n 0 : |h (α) n (x)| = α! 2πi |ζ-x|=1/2 h n (ζ) dζ (ζ -x) α+1 ≤ 2 α α! max θ∈[0,2π] h n (x + e iθ /2) .
We will prove that there exists a constant C > 0 such that

∀n ∈ N * , x ∈ R : Re   n 2 -n 2 n 1 + x + e iθ /2 n 2n   < C , (3.4) such that |h n (...)| ≤ e C .
First case:

x+e i θ /2 n ≥ 3 4 .
Let x + e i θ /2 = ρ (cos φ + i sin φ). For n large enough, since |x| > 3n-2 4 , we have sin φ ≤ 2 3n , and 2n sin φ ≤ 4 3 , such that for some n 0 and n > n 0 there holds 2 n φ ≤ 4 3 + ε ≤ π/2. This implies Re 1 + x+e i θ /2 n 2n > 1 and (3.4).

Second case: x+e i θ /2 n ≤ 3 4 . We use

Re n 1 + x + e iθ /2 n 2n ≥ n 1 - 3 4 2n ≥ 1 - (3/4) 2n n -o(n -2 )
(for n large enough). Again, this implies (3.4) and we have proved that

∀x ∈ R, n ∈ N * : max θ∈[0,2π] h n (x + e iθ /2) ≤ 1 . This proves (3.2). If g(n) = 1 2 [n 1/(m-1) ] + 1 (n > n 0 ), then one can easily prove that φ n = 1 2π FT (h g(n) ), n > n 0 defines a net of {m, pow}-mollifiers. (ii) Again, we have k n = 1, x m k n = 0 ∀m ≤ 2n -1, n ∈ N * . Estimating x β k n (x)
separately for |x| ≤ 2 and |x| > 2 one can easily prove (3.3). Taking the same function g as in (i), we finish the proof of (ii).

Embeddings of ultradifferentiable functions and ultradistributions

Proposition 52 Assume m > 1.

(i) Let ρ > 0 such that m -ρ > 1. Let ψ ∈ D (m) (resp. ψ ∈ D {m-ρ} ). Let (φ n ) n be a net of {m, pow}-mollifiers. Then (ψ * φ n -ψ) n ∈ N (p! m ,p! m ) , (φ n = n φ n (n•)) ( resp. (ψ * φ n -ψ) n ∈ N {p! m ,p! m } ) . (ii) Let f ∈ E ′ (m) (resp. f ∈ E ′ {m} ) and (φ n ) n a net of {m, der}-mollifiers. Then (f * φ n ) ∈ E (p! m ,p! m-1 ) exp , (resp. (f * φ n ) ∈ E {p! m ,p! m-1 } exp ). (iii) If (φ n ) n and (φ ′ n ) n are nets of {m, pow}-mollifiers, then ∀ψ ∈ D (m) : ( f * φ n -f * φ ′ n , ψ ) n ∈ N p! m 0 , ( resp. ∀ψ ∈ D {m-ρ} : ( f * φ n -f * φ ′ n , ψ ) n ∈ N p! m 0 ) . Remark 53 If ψ ∈ D (m) , m > 1, then (ψ) n ∈ E (p! m ,p! m ′ ) for every m ′ > 0.
Fix a net of {m, pow}-mollifiers (φ n ) n . The embedding D (m) ֒→ E (p! m ,p! m ′ ) can be realized through ψ → (ψ * φ n ) n as well as through ψ → (ψ) n . This is a consequence of assertion (i). The similar conclusion follows for D {m-ρ} .

Assertion (ii) characterizes the embedding of elements in E ′ (m) (resp. E ′ {m} ) into the corresponding algebra by regularizations by {m, der}mollifiers.

The present situation shows again the complexity of the problem of finding adequate mollifiers for a given algebra of generalized functions.

Proof. (i) Assume supp ψ ⊂ [-µ, µ]. Since ψ * φ n -ψ = 0, for |x| > µ, n > n 0 , we assume in this proof x ∈ [-µ, µ], n > n 0 .
First, we prove the assertion for the Beurling case; the Roumieu case is treated in a similar way. Let s ∈ N. We have

(ψ * φ n -ψ) (s) (x) = R ψ (s) (x + t/n) -ψ (s) (x) φ n (t) dt = R N-1 p=0 t p n p p! ψ (p+s) (x) + t N n N N! ψ (N+s) (ξ) -ψ (s) (x) φ n (t) dt ,
where x ≤ ξ ≤ x + t/n. Let N = [n 1/m ] + 1 as in the definition of {m, pow}mollifiers. We have

(ψ * φ n -ψ) (s) (x) = R t N n N N ! ψ (N+s) (ξ) φ n (t) dt . Let d > 1 such that σ d (φ n ) < ∞. Then ν s s! m (ψ * φ n -ψ) (s) (x) ≤ R 1 (N + s)! m ψ (N+s) (ξ) ν s (N + s)! m n N s! m N ! t N |φ n (t)| dt . We will use N! m ≤ (N N ) m , (N + s)! ≤ e N+s N ! s! and 1 n N ≤ 2 N N N m . This gives ν s s! m (ψ * φ n -ψ) (s) (x) ≤ R (2e (ν + d))) N+s (N + s)! m |ψ (N+s) (ξ)| N ! m N mN |t| N d N N ! |φ n (t)| dt .
Let l > 1. Inserting e -lN e lN , with ν 0 = 2 l e (ν + d), we have

r s s! m (ψ * φ n -ψ) (s) (x) ≤ 2 -lN p m,µ ν 0 (ψ) σ d (φ n ) .
Now we use e -lN ∼ e -ln 1/m as n → ∞. This implies that for every ν > 0 and l > 0, there exists C > 0 such that

ν s s! m (ψ * φ n -ψ) (s) (x) ≤ C e -l n 1/m .
Taking the supremum over all s and x, we obtain that

||| ψ * φ n -ψ ||| p m,µ ν ,m = 0 .
Now, we prove the assertion for the Roumieu case.

Let d > 1 such that σ d (φ n ) < ∞ and h > 0 such that p m-ρ,µ e m-ρ h (ψ) < ∞. We have, as above,

ν s s! m (ψ * φ n -ψ) (s) (x) ≤ R |ψ (N+s) (ξ)| (N + s)! m-ρ ν s (N + s)! m-ρ n N s! m N ! t N |φ n (t)| dt . ≤ R (he m-ρ ) N+s |ψ (N+s) (ξ)| (N + s)! m-ρ N ! m N Nm (hν) s s! m-ρ (dh) N s! m N ! ρ |t| N d N N! |φ n (t)| dt . Let l > 1. Note sup{ (hν) s s! m-ρ s! m , s ∈ N} < ∞, sup{ (dhe l ) N N ! ρ , N ∈ N} < ∞.
As above we have, with suitable C > 0, (inserting e -lN e lN ),

ν s s! m (ψ * φ n -ψ) (s) (x) ≤ C e -lN p m-ρ,µ e m-ρ h (ψ) σ d (φ n ) .
Again as above we finish the proof.

(ii) We will give the proof in the Beurling case. The proof in the Roumieu case is similar. m) , then there exists an ultradifferential operator of class (m),

Recall [40], if f ∈ E ′(
P (D) = ∞ k=0 a k D k , µ 0 > 0 and continuous functions F k , supp F k ⊂ [-µ 0 , µ 0 ], k ∈ N with the property sup k∈N,x∈R |F k (x)| ≤ M , such that f = ∞ k=0 a k D k F k . This implies ∀x ∈ R : f * φ n (x) = ∞ k=0 (-1) k a k n k R F k (x + t/n) D k φ n (t) dt ,
where (φ n ) n is a net of {m, der}-mollifiers such that σ b (φ n ) < ∞ and a k , k ∈ N satisfy (3.1). Because of the same reason as in the part (i), we take x ∈ [-µ, µ], µ > µ 0 and n > n 0 . Let ν > 1 be given and s ∈ N. We have

ν p p! m f (p) * φ n (x) = ∞ k=0 (-1) k a k n k+p ν p p! m R F k (x + t/n) D k+p φ n (t) dt ≤ ∞ k=0 B ν p h k n k+p k! m p! m R |F k (x + t/n)| |D k+p φ n (t)| dt ≤ ∞ k=0 B (νh) p+k n k+p (k + p)! m R |F k (x + t/n)||D k+p φ n (t)| dt ≤ ∞ k=0 1 2 k B (2ebνh) p+k n k+p (k + p)! m-1 R |F (x + t/n)| b k+p (k + p)! D k+p φ n (t) dt ≤ C e (2ebνhn) 1/(m-1) σ b (φ n ) . This proves that f * φ n ∈ E (p! m ,p! m-1 ) exp .
Let us prove (for the Beurling case) that

f, ( φn -φ′ n ) * ψ ∈ N p! m 0 ,
where φ(t) = φ(-t). By continuity, we know that there exist µ ∈ N, ν > 0 and C > 0 such that

| f, ( φn -φ′ n ) * ψ | ≤ C p µ,m ν (( φn -φ′ n ) * ψ) ≤ C p µ,m ν ( φn * ψ -ψ) + p µ,m ν ( φ′ n * ψ -ψ) .
(3.5) By the first part of the proposition, we have that

ψ * φ n -ψ, ψ * φ ′ n -ψ ∈ N (p! m ,p! m )
. This implies that for every k > 0, there exists C > 0 such that for every n ∈ N, both addents in (3.5) are less or equal to C e -k n 1/m .

Generalized hyperfunctions on the circle

In this subsection, we will analyze the sequence space realization of the algebra of Colombeau generalized periodic hyperfunctions [START_REF]Generalized Hyperfunctions on the Circle[END_REF]. As in the previous subsection, we use the construction from Section 2 (through "proj ind" type space). Here, Fourier expansions will be the main tool for the analysis. The space E ′ (T) of Schwartz distributions on T is the strong dual of the space E(T) of smooth functions on T.

Basic spaces of functions on the circle

To each function f ∈ E(T) is associated in a canonical way a function f defined on R by f(t) = f(e it ). We set f ∞ = sup t∈R | f (t)|. For f ∈ A(T), the coefficient T (k) of z k in the Laurent expansion of f is its k-th Fourier coefficient. Complex numbers (c k ) k∈Z ,

are the Fourier coefficients of some analytic function if and only if

||| c ||| ± (•) -1 < 1, with ||| (c k ) k ||| ± (•) -ν ≡ lim sup k→∞ (max(|c k |, |c -k |)) k -ν , equal to the maximum of ||| (c k ) k∈N ||| r and ||| (c -k ) k∈N ||| r with r = (r k ) = (k -1 ).
Let m ∈ [0, 1) and ν > 0. We denote

A m,ν (T) = f ∈ A(T) q m,∞ ν (f ) := sup t∈R,α∈N | f(α) (t)| ν α α! m < ∞ . If ν ′ > ν then q m,∞ ν ′ (f ) ≤ q m,∞ ν (f ). Hence we define A m (T) = ind lim ν→∞ A m,ν (T) and A 1 (T) = ind lim m→1 A m (T)
.

When m = 0, in contrast to A m,ν (T), A m (T) is a subalgebra of A(T). Clearly, A 1 (T) is also a subalgebra of A(T).
For k ∈ Z we set e k (z) = z k . It is immediate to see that e k belongs to any space A m,ν (T). The k-th Fourier coefficient of T ∈ E ′ (T), is given by T (k) = T (e k ) and T = k∈Z T (k) z k in the topology of E ′ (T). For a sequence (A k ) k of complex numbers to be the sequence of Fourier coefficients of a distribution, it is necessary and sufficient that

||| A ||| ± 1/ log < ∞. Moreover, T acts on f ∈ E(T) by T (f ) = k∈Z T (k) f (k).
The space B(T) of hyperfunctions on the circle is the topological dual

A ′ (T) of A(T). For k ∈ Z and H ∈ B(T), the k-th Fourier coefficient of H is H(k) = H(e k ) and H = k∈Z H(k) z k holds in the topology of B(T). A sequence (B k ) k of complex numbers is the sequence of Fourier coefficients of some hyperfunction if and only if ||| B ||| ± (•) -1 ≤ 1. If f ∈ A(T), then H(f ) = k∈Z H(k) g(k).
The convolution S * T of two hyperfunctions S and T is given by

(S * T )(z) = k∈Z S(k) T (k) z k ,
for z belonging to some neighborhood of T. It is seen that

S * f ∈ A(T) if S ∈ B(T) and f ∈ A(T). In the same way S * f ∈ E(T) if S ∈ E ′ (T) and f ∈ E(T).

Fourier expansion in

A m,ν (T) 
The following lemma will be useful in the sequel.

Lemma 54 Let m ∈ (0, 1) and ρ > e/2. The function

ϕ : t → ρ -t t m (t+ 1 2 ) e -mt , t ∈ (0, ∞) reaches its minimum in a unique point t ρ such that 1 2 < t ρ < ρ 1 m -1 2 , and we have √ ρe -m ( 1 2 +ρ 1/m ) < ϕ(t ρ ) < ϕ(ρ 1/m -1 2 ) ≤ √ ρe -mρ 1/m . Moreover, ϕ(ρ 1/m + 1 2 ) < √ e ρ e -mρ 1/m .
Proof. The derivative of ψ = ln ϕ, given by ψ ′ (t) =ln ρ + m ln t + 1 2t , and verifies ψ ′ (t) = 0 ⇐⇒ t e 1/2 t = ρ 1/m . Since t e 1/2 t ≥ e/2, it follows that there exists a unique point t ρ ∈ ( 1 2 , ∞) such that t ρ e 1/2 t ρ = ρ 1/m , because ρ > e/2. This yields ρ 1/mt ρ = t ρ (e 1/2 tρ -1), and, using x < e x -1 < x e x for x = 0, the claimed inequalities on t ρ . Writing ln

ρ 1/m + 1 2 = 1 m ln ρ + ln(1 + 1 2 ρ 1/m ) gives ψ(ρ 1/m + 1 2 ) = 1 2 ln ρ + m (ρ 1/m + 1) ln(1 + 1 2ρ 1/m ) -m (ρ 1/m + 1 2 ) . We find ϕ(t ρ ) = √ ρe -m (t ρ + 1 2 + 1 4tρ ) and t ρ + 1 2 + 1 4tρ < ρ 1/m + 1 2 , showing that √ ρe -m ( 1 2 +ρ 1/m ) < ϕ(t ρ ). Since ln(1 + 1 2ρ 1/m ) ≤ 1 2ρ 1/m , it follows that ψ(ρ 1/m + 1 2 ) ≤ 1 2 ln ρ + m ( 1 2ρ 1/m -ρ 1/m ).
Using ρ > e/2 and m ∈ (0, 1), we find m 2ρ 1/m < 1 2 and thus ϕ(ρ 1/m + 1 2 ) ≤ √ e ρ e -mρ 1/m .

We show in the same way that ϕ(ρ

1/m -1 2 ) ≤ √ ρ e -mρ 1/m .
We give growth conditions on the Fourier coefficients of elements of A m,ν (T) for m ∈ [0, 1).

Proposition 55 Let f ∈ A(T) and m ∈ (0, 1).

(i) If f ∈ A m,ν (T) then ||| ( f(k)) k ||| ± (•) -1/m ≤ e -m/ν 1/m . Conversely, if the above condition holds, then f ∈ A m,ν ′ (T) for all ν ′ > ν. (ii) f ∈ A m (T) if and only if ||| ( f (k)) k ||| ± (•) -1/m < 1. (iii) f ∈ A 0,ν (T) if and only if f (k) = 0 for |k| > ν. (iv) f ∈ A 0 (T) if and only if ( f(k)) k∈Z has finite support. (v) For all f ∈ A 1 (T) there exists g ∈ O(C * ) such that g| T = f. Proof. Let f ∈ A m,ν (T) with 0 < m < 1. For all α ∈ N, f (α) (t) = p∈Z (ip) α f(p) e ipt . It follows that π -π f (α) (t) -ikt dt = 2π(ik) α f(k), thus there is a positive constant C 1 such that |k| α | f (k)| ≤ C 1 ν α α! m . Using Stirling's formula, α! = α α+1/2 e -α √ 2π (1 + ε α ), ε α ց 0, we find a positive constant C 2 such that ∀α ∈ N * , ∀k ∈ Z, |k| α | f (k)| ≤ C 2 ν α α m (α+1/2) e -mα . It follows that ∀α ∈ N * , ∀k ∈ Z * , | f(k)| ≤ C 2 ν |k| α α m (α+1/2) e -mα .
Using the notations of Lemma 54 by taking ρ

= |k| ν with |k| > e ν/2, yields | f(k)| ≤ C 2 ϕ(t) for all t ∈ N * and we have ϕ(ρ 1/m + 1 2 ) ≤ √ ρ ee -mρ 1/m . Since ϕ increases on [ρ 1/m -1 2 , ρ 1/m + 1 2 ] which contains a positive integer α ρ , then | f (k)| ≤ C 2 ϕ(α ρ ) ≤ C 2
√ ρ e e -mρ 1/m for |k| > e ν/2. Hence, there exists a positive constant

C such that ∀k ∈ Z * , | f(k)| ≤ C |k|e -γ|k| 1/m . As ||| √ k ||| = 1,
we have the inequality of (i).

Conversely assume that f satisfies the condition of (i). For all α ∈ N, we have

f (α) (t) = k∈Z (ik) α f(k) e ikt . Let ν ′ > ν. Choose ν ′ such that ν ′ > ν ′′ > ν and set β ′ = m/(ν ′ ) 1/m , β ′′ = m/(ν ′′ ) 1/m . It follows for α = 0 that ∀k ∈ Z * , | f (k)| ≤ C |k|e -β ′ |k| 1/m .
This last inequality gives

f (α) ∞ ≤ C k∈Z e -(β ′′ -β ′ )|k| 1/m sup k∈Z |k| α+ 1 2 e -β ′ |k| 1/m . Let φ(t) = t α+ 1 2 e -βt 1/m , t ≥ 0. A simple study of φ shows that sup t≥0 φ(t) = φ(ν ′ (α + 1 2 ) m ) = (ν ′ (α + 1 2 )) m (α+ 1 2 ) e -m (α+ 1 2 ) . Since α+ 1 2 α m (α+ 1 2 )
is bounded, using Stirling's formula, we get a positive constant C 1 such that for all α ∈ N,

f (α) ∞ ≤ C 1 (ν ′ ) α α! m , showing that f ∈ A m,ν ′ (T)
and proving (i).

Let f ∈ A m (T). Then f ∈ A m,ν (T) for some ν > 0 and the inequality follows from (i) and e -m/ν 1/m < 1. (T). The previous shows that there exists

Conversely, if ||| ( f(k)) k ||| ± (•) -1/m < 1, then there exists ν > 0 such that ||| ( f (k)) k ||| ± (•) -1/m ≤ e -m/ν 1/m . From (i), it follows that f ∈ A m,ν ′ (T) for ν ′ > ν. Hence f ∈ A m (T) proving (ii). Let f ∈ A 0,ν
C 1 > 0 such that |k| α | f (k)| ≤ C 1 ν α . Keeping the same notations, we find | f (k)| ≤ C 1 1 ρ ν α α! m for all k ∈ Z * and all α ∈ N. If |k| > ν, then 1/ρ < 1, and making α → ∞ yields f (k) = 0. Conversely, assume that f (k) = 0 for |k| > ν. Then we have ∀z ∈ C * , f(z) = |k|≤ν f (k) z k . It follows that for all α ∈ N, f (α ) ∞ ≤ |k|≤ν f (k) ν α , that is f ∈ A 0,ν (T) proving (iii).
Claim (iv) follows from (iii) straightforwardly. Claims (ii) and (iv) show that for f ∈ A 1 (T) the series k∈Z f (k) z k converges absolutely for any z ∈ C * , proving (v).

Duality and embeddings

This section is devoted to the study of the algebras A m (T) and A 1 (T) together with the associated dual spaces A ′ m (T) and A 1 ′ (T) for m ∈ (0, 1).

Let f ∈ A m (T). There exists ν > 0 such that f ∈ A m,ν (T). By Proposition 55, there exists

C 1 > 0 such that for all k ∈ Z * , | f(k)| ≤ C 1 |k| e -γ|k| 1/m , with γ = 1/ν 1/m .
Proposition 56 For m ∈ (0, 1), A 0 (T) is a dense subset of A m (T).

Proof. Let f ∈ A m (T).

There exists ν > 0 such that f ∈ A m,ν (T). From the proof of Proposition 55, there exists

C 1 > 0 such that for all k ∈ Z * , | f (k)| ≤ C 1 |k|e -γ|k| 1/m , with γ = 1/ν 1/m . For n ∈ N, let f n (z) = |k|≤n f(k)z k . Clearly, for each n, f n ∈ A 0 (T). We prove that lim n→∞ f n = f in A m (T). Let ν ′ > ν and set ρ = |k| ν , γ ′ = m (ν ′ ) 1/m < γ and e -γ-γ ′ 2 = ε. It follows that f, f -f n ∈ A m,ν (T) ⊂ A m,ν ′ (T), and q m,∞ ν ′ (f -f n ) = sup t∈R, α∈N |k|>n (ik) α f (k) e ikt (ν ′ ) α α! m .
By use of the growth condition on | f(k)| we get

q m,∞ ν ′ (f -f n ) ≤ C 1 sup α∈N |k|>n |k| α+ 1 2 e -γ|k| 1/m (ν ′ ) α α! m . Writing e -γ|k| 1/m = ε 2|k| 1/m e -γ ′ |k| 1/m yields q m,∞ ν ′ (f -f n ) ≤ C 1 ε n 1/m sup α∈N |k|>n ε |k| 1/m |k| α+ 1 2 e -γ ′ |k| 1/m (ν ′ ) α α! m . Let ρ ′ = |k| ν ′ . From Stirling's formula, we find a positive constant C 2 such that q m,∞ ν ′ (f -f n ) ≤ C 2 ε n 1/m |k|>n ε |k| 1/m |k| sup α∈N ρ ′ α α -m (α+ 1 2 ) e mα e -γ ′ |k| 1/m .
Substituting ρ ′ to ρ in Lemma 54 leads to

sup α∈N ρ ′ α α -m (α+ 1 2 ) e mα = sup α∈N 1 ϕ(α) ≤ 1 ϕ(t ρ ′ ) ≤ (ρ ′ ) -1 2 e -m 2 e mt ρ ′ . Since t ρ ′ < (ρ ′ ) 1/m and m (ρ ′ ) 1/m = γ ′ |k| 1/m , it follows that sup α∈N (ρ ′ ) α α -m (α+ 1 2 ) e mα ≤ (ρ ′ ) -1 2 e -m 2 e γ ′ |k| 1/m .
Hence, there exists a positive constant

C 3 such that q m,∞ ν ′ (f -f n ) ≤ C 3 ε n 1/m , showing that lim n→∞ q m,∞ ν ′ (f -f n ) = 0, whence lim n→∞ f n = f in A m (T).
For T ∈ A ′ m (T) and k ∈ Z, we define the k-th Fourier coefficient of T by T (k) = T (e k ). Obviously, any sequence (a k ) k of complex numbers is the sequence of Fourier coefficients of (T). We have the following Proposition 57 Let T ∈ A ′ 0 (T) and m ∈ (0, 1). The following holds: Proof. Let T ∈ A ′ m (T). Then we have T ∈ A ′ m,ν (T) for all ν > 0. It follows that there is

T ∈ A ′ 0 (T) such that T (f) = k∈Z T (k) f (k) for f ∈ A 0
(i) T ∈ A ′ m (T) if and only if ||| ( T (k)) k ||| ± (•) -1/m ≤ 1 . (3.6) Moreover, for all f ∈ A m (T), T (f ) = k∈Z T (k) f(k). (ii) T ∈ A 1 ′ (T) if and only if ∀ν > 1, ||| ( T (k)) k ||| ± (•) -ν ≤ 1 . ( 3 
C 1 > 0 such that for all k ∈ Z, | T (k)| ≤ C 1 q m,∞ ν (e k ). Since q m,∞ ν (e k ) = sup α∈N |k| α ν α α! m , by use of Stirling's formula there is C 2 > 0 such that | T (k)| ≤ C 2 sup α∈N |k| ν α α -m (α+ 1 2 ) e mα .
From the end of the proof of Proposition 56, there exists C > 0 such that (T). With the notations of the proof of Proposition 56, f n → f in A m (T) when n → ∞. Therefore the continuity of T gives T (f) = lim n→∞ |k|≤n T (k) f (k). The growth conditions on f (k) and T (k) show that the series of general term T (k) f (k) converges absolutely; hence

| T (k)| ≤ Ce m|k| 1/m /ν 1/m . It follows that ||| ( T (k)) k ||| ± (•) -1/m ≤ e m/ν 1/m , and taking the limit ν → ∞ yields ||| ( T (k)) k ||| ± (•) -1/m ≤ 1. Let f ∈ A m
T (f) = k∈Z T (k) f (k).
Conversely, assume that T ∈ A ′ 0 (T) satisfies the given inequality and let

µ > 0. Since ||| ( T (k)) k ||| ± (•) -1/m < e µ ,
it follows that there is D > 0 such that for all k ∈ Z, | T (k)| < De µ|k| 1/m . This last growth condition enables us to define T (f) = k∈Z T (k) f (k) for f ∈ A m (T). Clearly, T is a linear form on A m (T). We show the continuity of T on each A m,ν (T). Let f ∈ A m,ν (T). For all α ∈ N, we have

|k| α | f (k)| ≤ f (α) ∞ for all k ∈ Z. From the definition of q m,∞ ν it follows that f (α) ∞ ≤ ν α α! m q m,∞ ν (f ), whence ∀k ∈ Z * , | f(k)| ≤ inf α∈N ν α α! m |k| α q m,∞ ν (f ).
From Lemma 54, there exists a positive constant C 1 such that

inf α∈N ν α α! m |k| α ≤ C 1 |k| 1 2 e -γ |k| 1/m , γ = 1/ν 1/m , k ∈ Z * . Let D > 0 such that | T (k)| ≤ De γ 2 |k| 1/m
for all k ∈ Z. We then have, for some constant C > 0,

|T (f )| ≤ C k∈Z |k| 1 2 e -γ 2 |k| 1/m q m,∞ ν (f ) ,
proving the continuity of T on A m,ν (T) for all ν > 0. Hence, T ∈ A ′ m (T). Proof. We claim that for all m ∈ [0, 1) and ν > 0, there exists λ > 1 such that A m,ν (T)

From (i), T ∈ A ′ 1 (T) if and only if ||| ( T (k)) k ||| ± (•) -1/m ≤ 1 for all m ∈ (0, 1); writing 1/m = ν gives (ii). Let T ∈ A ′ 1 (T) \ A 0 ( 
֒→ O λ . Let f ∈ A m,ν (T), α ∈ N and k ∈ Z. We have |k| α | f (k)| ≤ ν α α! m p m,ν (f ). It follows that 1 α! |k| ν α | f(k)| ≤ α! m-1 q m,∞ ν (f ) .
Due to m -1 < 0, summing over α ∈ N yields

e |k| ν | f (k)| ≤ +∞ α=0 α! m-1 q m,∞ ν (f) . Hence we have | f (k)| ≤ C 1 µ -|k| q m,∞ ν (f ) with C 1 = α∈N α! m-1 and µ = e 1/ν > 1. Consequently, if 1 < λ < µ, then f ∈ O λ and f L ∞ (C λ ) ≤ k∈Z f (k) λ |k| ≤ C 1 k∈Z (λµ -1 ) |k| q m,∞ ν (f ) .
proving our claim. Let V denote a convex neighborhood of zero in A (T). Then for all λ > 1, V ∩ O λ is a neighborhood of zero in O λ . Let ν > 0 and choose λ such that 1 < λ < e 1/ν . From A m,ν (T) ֒→ O λ , it follows that there exists a neighborhood U of zero in A m,h (T) 

such that U ⊂ V ∩ O λ ⊂ O λ showing that A m (T) ֒→ A(

T) and then A 1 (T) ֒→ A(T).

Since A 1 (T) ֒→ A(T) ֒→ E(T), these embeddings being with dense image, it follows straightforwardly that E ′ (T) ֒→ B(T) ֒→ A ′ 1 (T).

The algebra G H,r (T) of generalized hyperfunctions

Throughout the rest of this subsection, let r = (r n ) n be an arbitrary sequence of positive numbers such that r n ց 0.

For n ∈ N, we set ϕ 1/rn (z) = . This means that

ϕ(1) = √ 2m + 1 ϕ L 2 (T) > C ϕ L 2 (T) ,
which is a contradiction.

Let X (T) = A 1 (T) N be the set of sequences of functions

(f n ) n with f n ∈ A 1 (T). Let λ > 1. For f ∈ A 1 (T), we set q λ (f ) = f L ∞ (Ω λ ) . If f = (f n ) n ∈ X (T), we define ||| f ||| q λ ,r := lim sup n→∞ q λ (f ) rn .
We define the subsets X r (T) and N r (T) of X (T) as follows:

-→ F q,r = X r (T) = f = (f n ) n ∈ X (T) | ∃λ > 1, ||| f ||| q λ ,r < ∞ , 51 -→ K q,r = N r (T) = f = (f n ) n ∈ X (T) | ∃λ > 1, ||| f ||| q λ ,r = 0 .
As it has been shown in the general case, X r (T) is an algebra for usual termwise operations and N r (T) is an ideal of X r (T). For f ∈ A 1 (T) and λ > 1 we set

qλ (f ) = sup k∈Z λ |k| | f (k)|.
The above two spaces have the following Fourier characterization:

Proposition 60 Let f = (f n ) n ∈ X (T)
. Then we have:

(i) f ∈ X r (T) if and only if ∃λ > 1, ||| f ||| qλ ,r < ∞. (ii) f ∈ N e (T) if and only if ∃λ > 1, ||| f ||| qλ ,r = 0. Proof. Let f = (f n ) n ∈ X r (T). Take λ > 1 such that ||| f ||| q λ ,r < ∞.
By the hypothesis, there exist a > 0 and η ∈ N such that q λ (f n ) r n < a for n > η. From Cauchy's inequalities in Ω λ we obtain | fn (k)| ≤ q λ (f n )λ -|k| , whence | fn (k)| rn ≤ aλ -|k|rn for all k ∈ Z and n > η. It follows that ||| f ||| qλ ,r < ∞.

Conversely, let f = (f n ) n ∈ X (T) and suppose that for some λ > 1, ||| f ||| qλ ,r < ∞. It follows that there exists a > 0 such that qλ (f n ) rn < a for n large enough.

Then we have | fn (k)| < a 1/r n λ -|k| for all k ∈ Z and n > η 0 for some η 0 . Consequently, if s = √ r, we may find C(s) > 0 such that q s (f n ) ≤ C(s)a 1/rn for n > η 0 showing that ||| f ||| q λ ,r < ∞ and proving (i). Part (ii) can be proved in a similar way than part (i).

We now give a version of the algebra of generalized hyperfunctions on the circle which is an improvement of the ones given in [START_REF]On the multiplication of periodic hyperfunctions of one variable[END_REF][START_REF]Generalized Hyperfunctions on the Circle[END_REF][START_REF]Some topological properties of the algebra of generalized hyperfunctions on the circle[END_REF].

Definition 61 The algebra of generalized hyperfunctions on T, associated to the sequence r, is the factor algebra

-→ G q,r = G H,r (T) = X r (T)/N r (T) . If f ∈ A(T), then f (z) = k∈Z f(k)z k in some Ω λ . We define (∂ θ f)(z) = k∈Z (ik) f (k) z k
We also consider the usual derivative of a holomorphic function defined by

df dz (z) = f ′ (z) = k∈Z (k + 1) f(k + 1) z k .
It is seen that d dz and ∂ θ are connected by (∂ θ f )(z) = i z f ′ (z). These two differential operators being defined componentwise on (f n ) n ∈ X r (T), by the above Proposition it is seen that X r (T) and N r (T) are invariant under these operators. Consequently, this enables us to equip G H,r (T) with two differential structures in an obvious way.

Embedding of B(T) and A(T) in G H,r (T)

The space B(T) can be embedded in G H,r (T) in such a way that the usual multiplication of A 1 (T) is preserved:

Proposition 62 Let ī : B(T) → H(T) H → H * ϕ 1/rn and ī0 : A 1 (T) → H(T) f → [f ]
.

Then, ī is a linear embedding and ī0 is an injective morphism of differential algebras such that ī| A 1 (T) = ī0 . 

< m < 1. Let f ∈ A m (T) with 0 < m < 1. There is λ > 1 such that f (z) = k∈Z f(k) z k for 1/λ ≤ |z| ≤ λ. Then we have ī0 (f) -ī(f ) = [f n ] where f n = f -f * ϕ 1/rn , that is f n (z) = |k|>1/rn f(k) z k . Then we have (f n ) n ∈ O λ . We claim that (f n ) n ∈ N r (T). From Proposition 55, there is C > 0 such that for all k ∈ Z * , | f (k)| ≤ C |k| e -γ|k| 1/m where γ = m/h 1/m . For |k| > 1/r n , writing e -γ|k| 1/m ≤ e -γ 2 |k| 1/m e -γ 2 ( 1 rn ) 1/m , it follows that λ |k| | fn (k)| ≤ Cλ |k| |k|e -γ 2 |k| 1/m e -γ 2 ( 1 rn ) 1/m for |k| > 1/r n . Since C |k|e -γ 2 |k| 1/m is bounded with respect to k, we obtain ||| f ||| qλ ,r = lim n→∞ e -γ 2 ( 1 rn ) (1/m)-1 = 0, proving our claim. An element of ī(B(T)) is called a hyperfunction of G H,r (T).
→ F p,r = m∈N ← → F p,r m , ← → K p,r = m∈N ← → K p,r m ; in case (4.2), ← → F p,r = m∈N ← → F p,r m , ← → K p,r = m∈N ← → K p,r m ,
where p = (p µ ν ) ν,µ .

Proposition 64 In both cases of the above definition, ← → F p,r is an algebra and ← → K p,r an ideal of ← → F p,r . Thus, ← → G p,r = ← → F p,r / ← → K p,r is an algebra.

Proof. Let us start with the first case (4.1). For r m+1 ≥ r m , we have

||| f ||| r m+1 ≤ ||| f ||| r m if p(f n ) ≤ 1, hence K p,r m+1 ⊃ K p,r m . Conversely, F p,r m+1 ⊂
F p,r m . Thus, intersection for F and union for K makes sense, and F p,r is obviously a subalgebra. To see that K p,r is an ideal, take (k, f ) ∈ K p,r × F p,r . Then ∃m : k ∈ K p,r m , but also f ∈ F p,r m , in which K p,r m is an ideal. Thus, k

• f ∈ K p,r m ⊂ K p,r .
Now turn to the second case (4.2). The same reasoning gives now K p,r m+1 ⊂ K p,r m and F p,r m+1 ⊃ F p,r m , justifying definitions of F p,r and K p,r . Moreover, because of this inclusion property, F p,r is indeed a subalgebra. To prove that K p,r is an ideal, take (k, f ) ∈ K p,r × F p,r , i.e. ∀m ′′ : k ∈ K p,r m ′′ , and ∃m ′ : f ∈ F p,r m ′ . We have to show that ∀m : k

• f ∈ K p,r m . So let m be given. If m < m ′ , then K p,r m ′ ⊂ K p,r m , thus k • f ∈ K p,r m ′ • F p,r m ′ ⊂ K p,r m ′ ⊂ K p,r m . If m ′ < m, we use F p,r m ′ ⊂ F p,r m , to get k • f ∈ K p,r m • F p,r m ′ ⊂ K p,r m •F p,r m ⊂ K p,r m . Example 65 r m n = 1 if n ≤ m 0 if n > m
(with the convention that 0 0 = 0) gives Egorov-type algebras, where the "subalgebra" contains everything and the ideal contains only stationary null sequences.

Example 66

r m n = 1/| log a m (n)|, where (a m : N → R + ) m∈Z is an asymp- totic scale, i.e. ∀m ∈ N : a m+1 = o(a m ), a -m = 1/a m , ∃M : a M = o(a 2 m
). This gives back the asymptotic algebras of [16], cf. Section 4.3.

(C, E, P)-algebras

Let us now show how a quite large class of (C, E, P)-algebras [55], fits well into the above scenario. First, let us recall that (C, E, P)-algebras are based on a vector space E with a filtering family P of seminorms, and a ring of generalized numbers C = A/I. Here, I is an ideal of A, which is a subring of K Λ , where K = R or C, and Λ is some indexing set. Both A and I must be solid as a ring, i.e. ∀s ∈ K Λ : (∃r ∈ A : ∀λ ∈ Λ : |s λ | ≤ |r λ |) =⇒ s ∈ A, and idem for I. Then, the (C, E, P)-algebra is defined as G C,E,P = E A /E I , with

E X = f ∈ E Λ | ∀p ∈ P : p • f ∈ X (where p • f ≡ (λ → p(f λ )) = (p(f λ )) λ ∈ (R + ) Λ ⊂ K Λ ):
In other words, the function spaces E A and E I are determined by C = A/I, by selecting the functions with the same respective growth properties than the "constants".

It is clear that this is too general to be written in the previously presented setting of sequence spaces, mainly because there is no relation between A and I: although useless, one could in principle take I = A, and thus E I = E A independent of (E, P), while this is impossible in the present construction.

Asymptotic algebras

However, in many known applications one can restrict oneself to some subclass of these algebras. As to the first example and most important case, let us consider asymptotic algebras [16]. Here, A and I are defined by an asymptotic scale6 a = (a m : Λ → R + ) m∈Z :

A a = s ∈ K Λ | ∃m ∈ Z : s = o(a m ) I a = s ∈ K Λ | ∀m ∈ Z : s = o(a m )
Recall that a must satisfy: ∀m ∈ Z :

a m+1 = o(a m ), a -m = 1/a m , ∃M ∈ Z : a M = o(a 2 m )
. Some examples that have proved to be useful are: (iii) r m n = 1/n m m-1 : This is related to ultradistribution spaces, and will be discussed in detail in a separate publication.

Proposition 67 Suppose that the family P of seminorms can be chosen in the form P = (p µ ν ) µ,ν∈N fitting into our scheme of inductive or projective limit (Section 2.1 or 2.2). Then asymptotic algebras can be described in our formulation by choosing the sequence of weights r m = 1/| log a m | (i.e. r m λ = 1/| log a m (λ)|).

Proof. We will show that E I = K P,r and E A = F P,r , for r m = 1/| log a m |. In view of the definitions, this amounts to show the equivalences

∀p, ∀ (∃) a m : p • f = o(a m ) ⇐⇒ ∀p, ∀ (∃) r m : ||| f ||| p,r m = 0 (< ∞) . E A ⊂ F P,r : Let f ∈ E A . Thus, ∀p ∈ P, ∃m : p • f = o(a m ). We can assume a m > 1, such that r m = 1/ log a m ⇐⇒ a m = e 1/r m . Thus p • f = o(e 1/r m ). But p•f < e 1/r m =⇒ (p•f ) r m < e, thus lim sup(p•f ) r m < ∞ and f ∈ F P,r . F P,r ⊂ E A : If f ∈ F P,r , then ∀p ∈ P, ∃ m : lim sup(p • f ) 1/| log a m| < ∞. With (p • f) 1/| log am| ≤ C ⇐⇒ p • f ≤ (a m ) log C , (a m , C > 1)
we have: ∃C > 0, ∃Λ 0 : ∀λ ∈ Λ 0 : p(f λ ) ≤ (a m(λ)) | log C| . Thus, using the third property of scales, ∃m : p • f = o(a m ).

E I ⊂ K P,r : For f ∈ E I , we have ∀ m : p • f = o(a m). Take m ∈ N. Now, for any q ∈ N, ∃ m : a m = o(a m q ). and p • f = o(a m). Using a m = e -1/r m , a m = o(a m q ) = o((e -1/rm ) q ) = o((e -q
) 1/r m ), i.e., (p • f) r m ≤ e -q on some Λ 0 . As q was arbitrary, we have (p • f ) r m → 0 and thus f ∈ K P,r .

K P,r ⊂ E I : For f ∈ K P,r , we have ∀ m : lim sup p(f λ ) 1/| log a m| = 0, i.e., ∀C > 0, ∃Λ 0 , ∀λ ∈ Λ 0 : p(f λ ) 1/| log a m| < C . With a m , C < 1, this gives p(f λ ) ≤ C | log a m| = a m| log C| . Now, to show that f ∈ E I , take any m. Let m = m + 1 and C = 1/e: ∃Λ 0 , ∀λ ∈ Λ 0 : p(f λ ) < a m(λ). But a m = a m+1 = o(a m ), thus p • f = o(a m ).
Remark 68 We presented our construction only for the case where the set of indices is Λ = N. But the same can be done for an arbitrary set of indices Λ equipped with a base of filters, which is all we need to define the ultranorms and associated spaces. In applications, it can be convenient to take rather Λ = (0, 1] or more complicated indices, with two or more parameters which can be numbers but also functions (mollifiers) or similar.

Algebras with infra-exponential growth

A second interesting subclass of (C, E, P)-algebras are of the form

A = s ∈ K Λ | ∀σ < 0 : s = o(a σ ) I = s ∈ K Λ | ∃ σ > 0 : s = o(a σ )
where a = (a σ ) σ∈R is again a scale (i.e. ∀σ > ρ, a σ = o(a ρ ), etc.), but indexed by a real number. (Note that here A is given as intersection and I as union of sets: that's why this case is not covered by the previous one.)

For example (again with Λ = N),

a σ := λ → 1/ exp (σ λ) Thus, ∀f, h ∈ E N : lim sup p (q) (f n ) rn < ∞ =⇒ lim sup (q (u (f n ))) rn < ∞ , lim sup p (q) (h n ) rn = 0 =⇒ lim sup (q (u (h n ))) rn = 0 .
This example shows how we can define moderate or compatible maps with respect to the "scale" r. In fact, the concrete definitions will depend on the monotony properties of the family (r m ) of sequences of weights, according to which F p,r = F p,r m and K p,r = K p,r m (for r m+1 ≤ r m ), or F p,r = F p,r m and K p,r = K p,r m (for r m+1 ≥ r m ).

For example, recall that asymptotic algebras correspond to the first case: the property a m+1 = o(a m ) gives log a m+1 < log a m , or equivalently

| log a m+1 | > | log a m |, i.e. r m+1 < r m for r m = 1
| log a m | . The analysis of continuity (in the sense of ||| • ||| p,r ) shows that the following definitions are convenient: Definition 71 The map g : R + → R + is said to be r-moderate iff it is increasing and

       ∀m ∈ N ∃M ∈ N ∀x ∈ R + : sup n∈N g x 1/r m n r M n < ∞ ( r m+1 ≤ r m ) , ∀M ∈ N ∃m ∈ N ∀x ∈ R + : sup n∈N g x 1/r m n r M n < ∞ ( r m+1 ≥ r m ) .
The map h : R + → R + is said to be r-compatible iff it is increasing and

     ∀M ∈ N ∃m ∈ N : h x 1/r m n r M n -→ x→0 0 uniformly in n ( r m+1 ≤ r m ) , ∀m ∈ N ∃M ∈ N : h x 1/r m n r M n -→ x→0 0 uniformly in n ( r m+1 ≥ r m ) .

Proposition 72

The above definition of an r-moderate map g is equivalent to g increasing, and 6 Association in G

   ∀m ∃M : g(F + r m ) ⊂ F + r M ( r m+1 ≤ r m ) ,
We will introduce different types of association, according to what has already been considered in the literature on generalized function spaces. Generally speaking, we will adopt the following terminology: strong association is expressed directly on the level of the factor algebra, while weak association will be defined in terms of a duality product, and thus with respect to a certain test function space. As any element j of the ideal verifies j n → 0, this is clearly independant of the representative. In other words, it is well defined because I ⊂ N .

Association in

The general concept of J , X-association

The following general concept of association allows to recover all known notions of association, and encompass some new constructions we shall consider below. The definitions of this subsection can be formulated in a general way for any kind of quotient space of type G = F /K, where K is an ideal of any subalgebra F of any sequence space of ← → E type, for example. The independence of the precise choice under consideration justifies to drop the indices of G, F and K. When it will become necessary to distinguish between spaces of numbers and spaces of functions, we append the indices specifying the seminorm, e.g. K r,p denotes the ideal in the space of the functions (p being the net of seminorms defining the topology on the base space), whereas K r,|•| is the ideal in the space of numbers. Definition 76 (J , X-association) Let J be an additive subgroup of F containing the ideal K of F , and X a set of generalized numbers. Then, two elements F, G ∈ G = F /K are called J , X-associated,

F ≈ J,X G iff ∀x ∈ X : x • (F -G) ∈ J /K .
For X = { 1 }, we simply write

F ≈ J G ⇐⇒ F -G ∈ J /K .
Remark 77 As J is not an ideal, association is not compatible with multiplication in F (not even by generalized numbers, only by elements of E). However, in the case of differential algebras, J is usually chosen such that ≈ J ,X is stable under differentiation.

Example 78 Usual association of generalized numbers, as recalled above, is obtained for J = N, the set of null sequences: As already mentioned, all elements of the ideal K tend to zero, i.e. K ⊂ N , as needed for well-definedness at the level of the factor algebra.

Strong association

As mentioned, strong association is defined directly in terms of the ultranorm (or ultrametric) of elements of the factor space. For s = 0, we write F ≃ G and simply call them strongly associated.

Remark 80 If one has F s ≃ G for all s ≥ 0, then F = G. Indeed, this means that F -G is in the intersection of all balls of positive radius, which is equal to K = 0 G .

Weak association in

← → G p,r

In contrast to the above, weak association is defined by comparing sequences of numbers (not functions), obtained by means of a duality product

•, • : ← → E × D → C ,
where D is a test function space such that E ֒→ D ′ (as for example D = D for E = C ∞ ). The subset J defining the association will then be of the form

J = J M := f ∈ ← → E N | ∀ψ ∈ D : ( f n , ψ ) n ∈ M , (6.2) 
where M is some C-linear subspace of C N , like e.g. M = N , the sequences of zero limit.

Example 81 For the choices given above, D = D, E = C ∞ and M = N , in the case of Colombeau's algebra, we get the usual, so-called weak association

[f ] ≈ [g] ⇐⇒ f n -g n → 0 in D ′ .
Again, this is independent of the representatives, because J ⊃ K r,p . To see this, consider j ∈ K r,p . Then for any ε > 0 there is n 0 such that for n > n 0 , As already mentioned, all elements of the ideal K tend to zero, i.e. K ⊂ N , as needed for well-definedness at the level of the factor algebra. Note that this generalized number is always of the same form, but depends in each case on the sequence (r n ) n defining the topology.

Example 84 In Colombeau's case, r = 1/ log, we have X s = { [(n s ) n ] }. For s = 0 (X 0 = { 1 }), we get the already mentioned weak association. ). This association is of course stronger than the simple weak association (again, because association is not compatible with multiplication even only by generalized numbers).

As an extension of this example, consider J as above, and X = { [(n s ) n ] } s∈N . This means that [f ] ≈ [g] ⇐⇒ ∀s ∈ N : lim n s (f ng n ) = 0 in D ′ While for generalized numbers, this equation amounts to strict equality, this is not the case for generalized functions. Indeed, consider φ 1 , φ 2 ∈ S(R) such that ∀α ∈ N : x α φ i = δ α,0 (the space of such functions is also denoted B ∞ ), but φ 1 (0) = φ 2 (0). Let f i,n = n φ i (n•). Then f 1 = [(f 1,n )] = f 2 = [(f 2,n )], but f 1 ≈ f 2 . Indeed, for any ψ ∈ D(R), (f 1,nf 2,n ) ψ = (φ 1φ 2 ) ψ( • n ), and expanding ψ to its Maclaurin series gives the expected result.

The same constructions can be applied to generalized Sobolev space (Subsection 1.1.3) and to the full Colombeau algebra, Example 10.

In the case of ultradistributions, we take D = D (m) and e s/rn = exp[s n 1/m ′ ] for Beurling case, and analogous definitions in the Roumieu case. Proposition 87 Weak s-association implies s -D ′ -association, but conversely s -D ′ -association only implies weak s ′ -association for all s ′ < s.

Proof. This follows from |c| r < 1 =⇒ lim c n = 0 =⇒ |c| r ≤ 1, with c n = f n , ψ e s/rn . As discussed in point 3 of the above Remark, for |c| r = 1, nothing can be concluded about the limit of (c n ).

  r ⊂ K N endowed with the topology given by |• | r = ||| • ||| |•|,r . (iii) G p,r = F p,r /K p,r is a Hausdorff topological ring and topological algebra over the generalized numbers 2 C r = G |•|,r , the quotient topology being the same as the topology induced by the ultrametric d p,r : G p,r × G p,r → R + , ([f ], [g]) → d p,r (f, g) , where [f ], [g] ∈ G p,r are the classes of f, g ∈ F p,r .

  For this, E is the underlying field R or C, and p = | • | the absolute value. The resulting factor algebra G |•|,r , with topology given by | • | r = ||| • ||| |•|,r , will be denoted by R r or C r . As already explained in the introduction, for r = 1/ log, we get the ring of Colombeau's numbers C. More precisely, let ∀n ∈ N + 2 : r n = 1 log n . (1.2)

  and used in local and microlocal study of generalized functions. Example 28 We consider the presheaf G S,r based on S, introduced in Example 19, and the regular set B of bounded sequences, increasing in both indexes. The subpresheaf G ∞ S,r = G B S,r is used for the characterization of compactly supported G ∞ generalized functions: A compactly supported generalized function is G ∞ regular, iff its Fourier transform belongs to G ∞ S,r (R s ). (See below and [12, 33-35] for more details and applications.)

  the set of all open neighborhoods (resp. open convex conic neighborhoods) of x (resp. ξ), (ii) D x (Ω), the set of elements of D(Ω) non vanishing at x.

  ) and ∀n ∈ N : δ n ∈ F ′ and ∃M > 0, ∀n ∈ N : sup |x|>M |δ n (x)| < M .

  It follows: ∃C > 0, ∀n ∈ N : sup x∈R s |δ n (x)| < C, which is impossible. To show this, take ψ ∈ C 0 (R s ) positive and such that ψ(0) = C + 1 and ψ < 1. The assumption δ n ∈ F ′ implies that it acts on C 0 (R s ) by ψ → δ n (x) ψ(x) dx. This gives C + 1 = ψ(0) = lim n→∞ δ n ψ dx ≤ C.

Example 44

 44 Consider the sequence ∀n ∈ N * : r n = 1/n 1 m with some fixed m > 0. With this sequence and E = C, p = | • | (absolute value), one obtains the ultracomplex numbers F |.|,r / K |.|,r = C p! m

For

  the first case, we clearly have E µ+1 ν ֒→ E µ ν , E µ ν+1 ֒→ E µ ν for any µ, ν ∈ N, and for the second case, we have E µ+1 ν ֒→ E µ ν , E µ ν ֒→ E µ ν+1 for any µ, ν ∈ N. Denote by D p m,µ ν (resp. D q m,µ ν ) the subspace of E p m,µ ν (resp. E q m,µ ν ), consisting of smooth functions supported by the ball {|x| ≤ ν}. Recall (cf. [41]), E (m) = proj lim µ→∞ E (m,µ) = proj lim µ→∞

  Recall[41], an operator of the form P (D) = k∈N a k D k is called ultradifferential operator of class (m), (resp. of class {m}) if there exist h > 0, B > 0 (resp. for every h > 0 exists B > 0) such that∀k ∈ N : |a k | ≤ B h |k| /k! m . (3.1)Proposition 46(i) E (p! m ,p! m ′ ) exp and E {p! m ,p! m ′ } expare algebras under pointwise multiplication, and N (p! m ,p! m ′ ) (resp. N {p! m ,p! m ′ } ) are ideals of them. (ii) The pseudodistances induced by ||| • ||| p m,µ ν ,m ′ (resp. ||| • ||| q m,µ ν ,m ′ ) are ultrapseudometrics on respective domains. (iii) E (p! m ,p! m ′ ) exp (resp. E {p! m ,p! m ′ } exp ) are closed under the action of any ultradifferential operator of class (m) (resp. of class {m}).

First, we recall

  and precise the relevant material related to hyperfunctions on the unit circle T = {z ∈ C : |z| = 1}. More details can be found in [4], [39] and mainly in [56]. Let Ω λ = {z ∈ C : 1/λ < |z| < λ} where λ > 1. We denote by O λ the Banach space of bounded holomorphic functions in Ω λ with the sup norm on Ω λ . The space of analytic functions on T is A(T) = ind lim λ→1 O λ .

  .7) (iii) Let T * (Z) = {k ∈ Z, T (k) = 0}. Then, T ∈ A ′ m (T) \ A 0 (T) if and only if lim sup k∈ T * (Z),|k|→∞ ln[ln(1 + | T (k)|)] ln |k| ≤ 1 . (3.8)

  T) and ν > 1. From (ii), there exists n 0 ∈ N such that | T (k)| < e |k| ν /2 for |k| > n 0 . It follows that 1 + | T (k)| < e |k| ν for |k| > n 0 . If k ∈ T * (Z) and |k| > n 0 , then ln[ln(1+| T (k)|)] ln |k| < ν. This being true for all ν > 1, it follows that the inequality of (iii) is true. Conversely, assume that (3.8) holds. Then, T * (Z) is not finite and consequently T = A 0 (T). Let ν > 1. From (3.8), we have ln(ln(1 + | T (k)|)) < ν ln |k| for k ∈ T * (Z) and |k| large enough. This means that | T | 1/|k| ν < 1 for |k| large enough and k ∈ T * (Z). It follows that T satisfies (3.7), proving (iii).Proposition 58 For all m ∈ [0, 1), A m (T) ֒→ A(T). Consequently, A 1 (T) ֒→ A(T) ֒→ E(T) and E ′ (T) ֒→ B(T) ֒→ A 1 ′ (T).

  |k|≤1/rn z k . We have ϕ 1/rn * ϕ 1/rn = ϕ 1/rn and limn→∞ ϕ 1/r n = δ in E ′ (T). If H ∈ B(T), H * ϕ 1/r n = |k|≤1/r n Ĥ(k)z k and consequently lim n→∞ H * ϕ 1/r n = H in B(T).It is easily seen that lim n→∞ ϕ 1/rn L ∞ (T) = ∞. More generally, in analogy to Proposition 41, we have:Proposition 59 Let (ψ n ) n denote a sequence of elements of A(T) such that lim n→∞ ψ n → δ in B(T). Then (ψ n ) n cannot be bounded in A(T).Proof. Assume that, contrarily to the hypothesis, (ψ n ) n is bounded in A(T). Consequently, ∃C > 0, ∀n ∈ N :ψ n L ∞ (T) ≤ C . Since lim n→∞ ψ n = δ in B(T),for all ϕ ∈ A(T), we have lim e it ) ϕ(e it ) dt = ϕ(1) .By Cauchy-Schwarz's inequality,1 2π 2π 0 ψ n (e it ) ϕ(e it ) dt ≤ ψ n L ∞ (T) ϕ L 2 (T) .It follows that∀ϕ ∈ A(T) : |ϕ(1)| ≤ C ϕ L 2 (T) . Let m and s denote respectively an integer such that m > C 2 -1 2 and a positive constant. Define ϕ ∈ A(T) by φ(k) = 0 for |k| > m, and φ(k) = s if |k| ≤ m. Then we have ϕ

  Moreover, for any H ∈ B(T), one has ) and ī(∂ θ H) = ∂ θ ī(H) .Proof. The claims on ī0 and the last part of the proposition are easy to prove. Let us focus on the properties of the first part related to ī. The linearity of ī is quite obvious. Let H ∈ B(T) and set h = (h n ) n with h n = H * ϕ 1/rn . From Proposition 55, (iv), we have h n ∈ A 0 (T), and then h ∈ X (T). Now take λ > 1. From the property of the Fourier coefficients of H, there existsC > 0 such that | Ĥ(k)| ≤ C λ |k| for all k ∈ Z. It follows that λ |k| | ĥn (k)| ≤ Cλ 2/rn showing that ||| h ||| qλ ,r ≤ λ 2 . By Proposition 60, h ∈ X r(T). It is sufficient to consider restrictions to the spaces A m (T) with 0

4

  Sequences of scales and asymptotic algebras 4.1 Sequences of scales Definition 63 Consider a sequence r = (r m ) m of positive sequences (r m n ) n decreasing to zero, i.e. such that ∀m, n ∈ N : r m n+1 ≤ r m n ; lim n→∞ r m n = 0 .which verify in addition to this one of the following conditions, ∀m, n ∈ N :

  (i) Λ = N and a m (λ) = 1/λ m : This leads to Colombeau's generalized numbers and algebras. (ii) Λ = N and a m (λ) = 1/ exp m (λ) for m ∈ N * , where exp m is the m-fold iterated exp function: This gives the so-called exponential algebras [16].

  ∀M ∃m: g(F + r m ) ⊂ F + r M ( r m+1 ≥ r m ) ,whereF + r m = R N + ∩ F |•|,r m are "moderate" sequences of nonnegative numbers. The definition of an r-compatible map h can be written as h increasing and   ∀M ∃m : ||| h(C) ||| M → 0 as ||| C ||| m → 0 ( r m+1 ≤ r m ) , ∀m ∃M : ||| h(C) ||| M → 0 as ||| C ||| m → 0 ( r m+1 ≥ r m ) , thus ϕ(f + k)ϕ(f) ∈ K Q,r (F ).Second part of the proof: continuity of Φ. We must show that∀q ∈ Q : ||| ϕ(f + k)ϕ(f ) ||| q,r M → 0 when ∀p ∈ P : ||| k ||| p,r m → 0and this for all M (resp. for some M ), in respective cases. The proof is analogous to the above proof of (F 2 ), up to replacing p(f) ∈ F + r m by ||| f ||| p,m ≤ K, p(k) ∈ K +r m by ||| k ||| p,m ≤ ε, and consequent changes.

  Colombeau type generalized numbers. To start with, recall that Colombeau generalized numbers [x] and [y] are said to be associated, [x] ≈ [y], iff x ny n -→ n→∞ 0 ( in C ) . This can also be expressed by considering the subset of null sequences, N = x ∈ C N | lim x n = 0 , and by defining [x] ≈ [y] ⇐⇒ xy ∈ N .

  [x] ≈ [y] ⇐⇒ [x] ≈ N [y] .

Definition 79

 79 For s ∈ R + , strong s-association is defined by = f ∈ F | ∀p ∈ P : ||| f ||| p,r < e -s , (6.1) which is equivalent to say F s ≃ G ⇐⇒ ∀p ∈ P : d p,r (F, G) < e -s .

|

  j n , ψ | ≤ ε 1/rn |φ| -→ n→∞ 0 . Thus, f n , ψ -→ n→∞ 0 ⇐⇒ f n + j n , ψ -→ n→∞ 0.This example is a special case of the definition given in the following paragraph.Example 82 Taking M = 0 Cr = K |•|,r , we obtain the weak equality in G(Ω) considered for example in [59]:∀f, g ∈ G(Ω) : f = (w)g ⇐⇒ ∀ψ ∈ D(Ω) : (f (x)-g(x)) ψ(x) dx = 0 ∈ C r .

  Definition 83 s -D ′ -association is defined by F

For

  s = 0, [f ] s ≈ D [g] ⇐⇒ n s (f ng n ) → 0 in D ′ .This also has already been considered (with D = D), for example in [55] (where it had been denoted by ≈ s

For

  periodic hyperfunctions (with D = A(T)) this is also a new construction.Definition 85 Weak s-association is defined for any s ∈ R byF (s) ≃G ⇐⇒ F ≈ J (s) G where J (s) = f ∈ E N | ∀ψ ∈ D : lim sup n→∞ | f n , ψ | rn < e -s .It is obtained from the general setting (6.2) by observing thatJ (s) = J M with M = J (s) |•|,r = c ∈ C N | ||| c ||| |•|,r < e -s .For s = 0, we write F sw ≈ G and call F and G strong-weak associated.Remark 86 Let us consider some details concerning the structure of strongweak association. In the following we will note| • | r = ||| • ||| |•|,r , i.e. |c| r = lim sup n→∞ |c n | rn .To start with, let us remark thatI |•|,r = c ∈ C N | |c| r < 1 is an ideal in the subalgebra H |•|,r = c ∈ C N | |c| r ≤ 1 of C N .Let us now consider the topology onC N induced by the | • | r -norm. We have |c| r ≤ a ⇐⇒ ∀b > a ∃n 0 ∀n > n 0 : |c n | ≤ b 1/rn .For b > 1, b = 1 and b < 1, the limit of the r.h.s. is respectively ∞, 1 and 0. This means that:(i) If one has |c| r < 1, then lim c n = 0. Thus, all elements of the open unit ball are associated to zero. This is very similar to classical results related to ultrametric spaces and weak topology. (ii) If one has lim c n = 0, then ∀b > 1 ∃n 0 ∀n ≥ n 0 : |c n | ≤ b 1/rn → ∞, and thus |c| r ≤ 1: All elements associated to zero are in the closed unit ball. (Recall in this context that in ultrametric spaces, open and closed balls are both open and at the same time closed sets.) (iii) When |c| r = 1, the sequence (c n ) can have any limit in R + ∪ { ∞ }, or none at all. Indeed, for any null sequence (r n ), the sequences c n = r n (resp. c n = 1/r n ) have limits 0 (resp. ∞), while |c| r = 1, since |c n | r n = exp(±r n log r n ) → n→∞ 1 ( because x log x → x→0 0 ) .

  For ||| x ||| p,r < 1, i.e. log p(x n ) < 0, the sense of the inequality ( * ) is preserved when lim sup c n is replaced by lim inf c n . This is most easily checked by first reasoning on the absolute value, | lim sup(...)| = lim inf |...|, and then changing the sense of the inequality, when going to the real negative values. Thus we have instead||| x ||| p,s ≤ ||| x ||| p,r

	lim inf

Thus, for ||| x ||| p,r ≥ 1, ||| x ||| p,s ≤ e C lim sup n→∞ rn log p(xn) = ||| x ||| p,r C = ||| x ||| p,r lim sup n→∞ sn/rn . The other bound of the interval in the lemma is obtained from this by exchanging r and s. Indeed, this yields ||| x ||| p,r ≤ ||| x ||| p,s lim sup n→∞ r n /s n ( for ||| x ||| p,s ≥ 1 ) , and taking this inequality to the power 1/ lim sup r n /s n = lim inf s n /r n yields ||| x ||| p,s ≥ ||| x ||| p,r lim inf n→∞ sn/rn ( for ||| x ||| p,s ≥ 1 ) .

n→∞ s n /r n ( for ||| x ||| p,r < 1 ) .

  ||| λf + g ||| p,r ≤ max(||| f ||| p,r , ||| g ||| p,r), thus F P,r and K P,r are C-linear (sub)spaces. Using continuity of multiplication in (E, P), we have ∀p ∈ P : ∃p ∈ P : ||| f • g ||| p,r ≤ ||| f ||| p,r ||| g ||| p,r (while the constant C disappears in view of C rn → 1). Thus F P,r is a C-subalgebra of E N , and K P,r is an ideal of F P,r , as claimed.

P,r , where [f ], [g] are the classes of f, g ∈ F P,r . The family of ultrametrics { d p,r } p∈P defines a topology, identical to the quotient topology, for which G P,r = F P,r /K P,r is a topological algebra over C r = G |•|,r . Proof. (i) If f, g ∈ F and λ ∈ C, we have ∀p ∈ P :

  r = 0 . (Here p ≡ (p µ ν ) ν,µ stands (on the l.h.s.) for the whole family of seminorms.) Then, Proposition 7 holds, with the slight changes of notations introduced above, see Proposition 13 at the end of the next section.

	Remark 12 The representation		
	← -E = proj lim µ→∞	← -E µ = proj lim µ→∞	proj lim ν→∞	E µ ν
	can of course be diagonalized to be given in the form	← -E = proj lim ν→∞ E ν ν .
	But we prefer the former construction because of the following simple moti-
	vation: Consider			

  r is an algebra.

	(ii) For every µ, ν ∈ N, d p,µ,ν	
	Instead of and ← → K .	← → G P,r , we also suggest the notation G r ( ← → E ), and idem for	← → F

For r n = 0, we use in this formula the (unusual) convention 0 0 = 0.

see also next subsection 1.1.2.

The following inequalities should be considered to hold on the domain of the right hand side seminorm, seen as a subset of the domain of the left hand side seminorm, through the given embeddings.

We denote by FT the Fourier transform to avoid confusion with spaces F p,r and connected functorial notation.

The set Λ is supposed to have a base of filters B, to which the o(•) notation refers to. In Section 4.2, ∀λ ∈ Λ could also be replaced by ∃Λ 0 ∈ B, ∀λ ∈ Λ 0 .

gives the so-called algebras with infra-exponential growth [17], pertaining to the embedding of periodic hyperfunctions in (C, E, P)-algebras.

These algebras can be obtained by taking

n . (As the norm is compared to 1, all scales r σ = 1/| log a σ | (i.e. r σ (λ) = 1/|σλ|) are equivalent. More details on this "dual" construction where (< ∞, = 0) is replaced by (≤ 1, < 1), are left to a separate publication.)

Functorial properties

In this section, we want to investigate conditions sufficient to extend mappings on the topological factor algebras constructed as before. Consider for example ϕ : E → F

where (E, P ) and (F, Q) are spaces equipped with families of seminorms P and Q. We shall note in this section F Π,r (•), K Π,r (•) and G Π,r (•) the spaces defined as above, where • stands for E or F and Π stands for P or Q.

Suppose that ϕ satisfies the following hypotheses:

(F 1 ) : f ∈ F P,r (E) =⇒ ϕ(f ) ∈ F Q,r (F ) (F 2 ) : f ∈ F P,r (E), h ∈ K P,r (E) =⇒ ϕ(f + h)ϕ(f) ∈ K Q,r (F ) , where we write ϕ(f ) := (ϕ (f n )) n . Then we can consider the following Definition 69 Under the above hypothesis, we define the r-extension of ϕ by

The above consideration is of course a very general condition for a map to be well defined on a factor space. In fact, it does not depend on details of how the spaces F P,r (E) and K P,r (E) are defined. In particular, here r can also be a family of sequences (r m ) m , and E can be of proj-proj or ind-proj type.

Example 70 Consider a linear mapping u ∈ L(E, F ), continuous for (P, Q). Fix q ∈ Q. As u is continuous, there exists p = p (q) such that ∃c : ∀x ∈ E : q (u(x)) ≤ c p (q) (x) .

or, equivalently h continuous at 0, increasing, and

Proof. We have

As g is increasing, one can replace C n by x 1/r m n , and since the sequence C n was arbitrary, we finally have

For h, again take

Clearly, the first form implies that h is continuous at 0, so both instances of ||| ... ||| → 0 can equivalently be replaced by ||| ... ||| = 0. Thus we have ∀M ∃m (resp. ∀m ∃M ):

Proof. Consider first the case r m+1 ≤ r m , where F + r = F + r m and K + r = K + r m . We have ∀m ∃M :

In the second case, r m+1 ≥ r m , where F + r = ∩F + r m and K = ∪K + r m , the proofs for g(F + r ), h(K + r ) are identical to the proofs for h(K + r ), g(F + r ) in the first case. Now we give the definition, valid for both of the above cases, characterizing maps that extend canonically to G r :

Proposition 75 Any continuously r-temperate map ϕ extends canonically to

Furthermore, this canonical extension is continuous for the topologies

Proof. The proof has two parts: first, the well-definedness of the extension; secondly, the continuity of Φ. As a preliminary remark, observe that F P,r m = f | ∀p ∈ P : p(f ) ∈ F + r m , and idem for K. This, and the fact that K r m is an ideal in F r m (and

, helps us to write the proof using the preceding two characterizations of moderate and compatible maps.

First part of the proof: We will show that (α) implies (F 1 ), and (β) gives (F 2 ). Using respective definitions of moderateness and compatibility, the proof will be different for the two cases r m+1 ≤ r m and r m+1 ≥ r m . Let us start with the case r m+1 ≤ r m , where F P,r = F P,r m and K

F ). Concerning (F 2 ), take f ∈ F and k ∈ K, i.e. ∃m, ∀p : p(f ) ∈ F + r m and ∀m ′ , ∀p : p(k) ∈ K + r m ′ . Now fix M and q. With (β), there exists g such that ∀m ∃M ′ : g(F + r m ) ⊂ F + r M ′ , and there is h such that ∀M ′′ ∃m ′ :

Now we turn to the case r m+1 ≥ r m , where

F ). Finally, (F 2 ) : Take f ∈ F and k ∈ K, i.e. ∀m, ∀p : p(f) ∈ F + r m and ∃m ′ , ∀p : p(k) ∈ K + r m ′ . Now fix q. With (β), there exists h such that ∀m ′ ∃M : h(K + r m ′ ) ⊂ K + r M ; there is g such that ∀M ∃m : g(F + r m ) ⊂ F + r M , and there exists p such that [30] K-G G -E , The structure of the sequence spaces of Maddox, Canad. J. Math. 54 no.2 (1992) 298-307.
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