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Introduction

Differential algebras of generalized functions containing embedded distributions are a convenient framework for the analysis of problems with singular coefficients and/or singular data, especially for non linear problems, since multiplication and other non linear operations are in general not defined in classical generalized function spaces. Nowadays, there is a considerable literature concerning such algebras. (For example see [START_REF] Biagioni | A Nonlinear Theory of Generalized Functions[END_REF][START_REF] Colombeau | New Generalized Functions and Multiplication of the Distributions[END_REF][START_REF] Colombeau | Multiplication of Distributions[END_REF][START_REF] Grosser | Geometric generalized functions with applications to general relativity[END_REF][START_REF] Nedeljkov | Linear Theory of Colombeau's Generalized Functions[END_REF][START_REF] Rosinger | Nonlinear Partial Differential Equations -An Algebraic View of Generalized Solutions[END_REF][START_REF] Grosser | On the foundations of nonlinear generalized functions I, II[END_REF][START_REF] Grosser | A global theory of algebras of generalized functions[END_REF] and the references therein.)

We have proved in [START_REF] Delcroix | Generalized function algebras as sequence space algebras[END_REF] that these algebras, here referred to as Colombeau type algebras, can be reconsidered as a class of sequence spaces algebras, and we gave a purely topological description of them.

In analogy to embeddings of Schwarz' distributions, we show in this paper that † corresponding author: Univ. Antilles-Guyane, D.S.I., B.P. 7209, 97275 Schoelcher cedex (Martinique, F.W.I.) some classes of ultradistributions and periodic hyperfunctions can be embedded into well chosen sequence algebras. Moreover, we show that the product of enough regular elements, ultradifferentiable functions or quasianalytic periodic functions of appropriate classes, is the ordinary multiplication.

The problem of embedding of classical spaces into corresponding sequence spaces algebra is closely related to the choice of sequences of mollifiers, sequences of appropriately smooth functions converging to the delta distribution. While such a problem is easy for embedding of Schwartz distributions defined on an open subset of R n , it is essential for ultradifferentiable functions and ultradistributions, considered in section 3. The same holds for periodic quasianalytic functions and corresponding periodic hyperfunctions of section 4.

Colombeau ultradistributions corresponding to a general non-quasianalytic sequence were introduced and analyzed in [START_REF] Pilipović | Colombeau generalized Ultradistributions[END_REF]. Although we consider here the Gevrey sequence (p! m ) p , m > 1, we give sharper estimates and improve results of [START_REF] Pilipović | Colombeau generalized Ultradistributions[END_REF]: The construction of appropriate mollifiers enables us to give more precise results concerning embeddings. Colombeau periodic hyperfunctions introduced in this paper are more closely related to the global theory of generalized functions than those of [START_REF] Valmorin | Generalized Hyperfunctions on the Circle[END_REF]. In this sense, we improve results of [START_REF] Valmorin | Generalized Hyperfunctions on the Circle[END_REF].

The novelty of results related to both cited papers and the embedding of both classes of algebras into corresponding sequence space algebras, and so their topological description, are the main results of this paper. [START_REF] Delcroix | Generalized function algebras as sequence space algebras[END_REF] We use the standard notations N = { 0, 1, ... }, N * = { 1, 2, ... } and R + = [0, +∞). We recall [START_REF] Delcroix | Generalized function algebras as sequence space algebras[END_REF] that the algebra of Colombeau complex numbers is given by

General construction

C = E 0 /N 0 ≡ {x ∈ C N * : lim sup |x n | 1 log n < ∞}/{x ∈ C N * : lim sup |x n | 1 log n = 0} .
The passage from this description to Colombeau's original construction is given by the following chain of equivalences, for a complex sequence (

x n ) n ∈ C N * : lim sup |x n | 1/ log n < ∞ ⇐⇒ ∃C ∈ R + : lim sup |x n | 1/ log n = C ⇐⇒ ∃B > 0, ∃n 0 , ∀n > n 0 : |x n | ≤ B log n = n log B ⇐⇒ ∃γ ∈ R : |x n | = o(n γ ) .
On the other hand, lim sup |x n | 1/ log n = 0 (for the ideal) corresponds to taking C = 0 and thus ∀B > 0 resp. ∀γ ∈ R in the last lines.

Let us also recall our construction from [START_REF] Delcroix | Generalized function algebras as sequence space algebras[END_REF] for the case of

E = C, r n = n -1/m , n ∈ N * , where m > 0 is fixed. Let E m 0 = c = (c n ) n ∈ C N * ||| c ||| |•|,n -1/m = lim sup n→∞ |c n | n -1/m < ∞ , N m 0 = c = (c n ) n ∈ C N * ||| c ||| |•|,n -1/m = 0 .
The factor algebra C m = E m 0 /N m 0 , m > 0, is called the ring of Colombeau ultracomplex numbers for m > 1 and the ring of Colombeau hypercomplex numbers for m ≤ 1. Now we come to the general construction. Let (E µ ν , p µ ν ) µ,ν∈N * be a family of semi-

normed algebras over R or C such that ∀µ, ν ∈ N * : E µ+1 ν → E µ ν and E µ ν+1 → E µ ν (resp. E µ ν → E µ ν+1
) , where → means continuously embedded (i.e., for the ν index we consider inclusions in the two directions). Then let

← - E = proj lim µ→∞ proj lim ν→∞ E µ ν = proj lim ν→∞ E ν ν , (resp. - → E = proj lim µ→∞ ind lim ν→∞ E µ ν )
. Such projective and inductive limits are usually considered with norms instead of seminorms, and with the additional assumption that in the projective case sequences are reduced, while in the inductive case for every µ ∈ N * the inductive limit is regular, i.e. a set A ⊂ ind lim ν→∞ E µ ν is bounded iff it is contained in some E µ ν and bounded there. Consider a positive sequence r = (r n ) n ∈ (R + ) N * decreasing to zero and define (with p ≡ (p µ ν ) ν,µ ):

||| f ||| p µ ν ,r = lim sup n→∞ p µ ν (f n ) rn for f ∈ (E µ ν ) N * , ← - F p,r = f ∈ ← - E N * ∀µ, ν ∈ N * : ||| f ||| p µ ν , r < ∞ , ← - K p,r = f ∈ ← - E N * ∀µ, ν ∈ N * : ||| f ||| p µ ν , r = 0 (resp. - → F p,r = µ∈N * - → F µ p,r , - → F µ p,r = ν∈N * f ∈ (E µ ν ) N * ||| f ||| p µ ν ,r < ∞ , - → K p,r = µ∈N * - → K µ p,r , - → K µ p,r = ν∈N * f ∈ (E µ ν ) N * ||| f ||| p µ ν ,r = 0 ) .
Recall [START_REF] Delcroix | Generalized function algebras as sequence space algebras[END_REF]: 

Writing ← → • for both, ← -• or - → • , we have that ← → F p,
N * × (E µ ν ) N * → R + defined by d p µ ν (f, g) = ||| f -g ||| p µ ν ,r
is an ultrapseudometric on (E µ ν )

N *
. Moreover, (d p µ ν ) µ,ν induces a topological algebra1 structure on ← -F p,r such that the intersection of the neighborhoods of zero equals ← -K p,r .

From the properties above, the factor space ← -G p,r = ← -F p,r / ← -K p,r is a topological algebra over generalized numbers C r = G |•|,r (constructed with the sequence r = (r n ) as above for the Colombeau ultracomplex numbers). The topology of ← -G p,r is defined by the family of ultrametrics ( dp µ ν ) µ,ν where dp µ

ν ([f ], [g]) = d p µ ν (f, g), [f ] standing for the class of f . If τ µ denotes the inductive limit topology on F µ p,r = ν∈N * (( Ẽµ ν ) N * , d µ,ν ), µ ∈ N * , then - → F p,
r is a topological algebra 1 for the projective limit topology of the family (F µ p,r , τ µ ) µ . 

Colombeau ultradistributions of Gevrey class

3•1. Ultradistributions of Gevrey class

We refer to [START_REF] Komatsu | Microlocal Analysis in Gevrey Classes and in Convex Domains[END_REF] for definitions of the spaces E (m) , D (m) , E {m} , D {m} (m > 1), and their duals, Beurling and Roumieu type ultradistribution spaces. Here we construct Colombeau ultradistribution algebras corresponding to M p = p! m , m > 1. We apply the construction of section 2.

For the function space E = C ∞ (R s ), we define for all µ, ν ∈ R + and m > 1 the seminorms

p m,µ ν (f ) = sup |x|≤µ,α∈N s ν |α| α! m |f (α) (x)| and q m,µ ν = p m,µ 1/ν . Then let, for µ, ν ∈ N * , E µ ν = E p m,µ ν (resp. E µ ν = E q m,µ ν
) be the subset of E on which the given seminorm is finite. For the first case, we clearly have

E µ+1 ν → E µ ν , E µ
ν+1 → E µ ν and for the second case, we have

E µ+1 ν → E µ ν , E µ ν → E µ ν+1 for any µ, ν ∈ N * . Let m > 1, m > 0 and r n = n -1/m . Definition 3•1.
The sets of exponentially growth order ultradistribution nets and null nets of Beurling type are defined, respectively, by

E (p! m ,p! m ) exp = ← - F p m ,r , N (p! m ,p! m ) = ← - K p m ,r .
The sets of exponentially growth order ultradistribution nets and null nets of Roumieu type are defined, respectively, by

E {p! m ,p! m } exp = - → F q m ,r , N {p! m ,p! m } = - → K q m ,r . Proposition 3•2. (i) E (p! m ,p! m ) exp (resp. E {p! m ,p! m } exp
) are algebras under pointwise multiplication, and

N (p! m ,p! m ) (resp. N {p! m ,p! m } ) are ideals of them. (ii) The pseudodistances induced by ||| • ||| p m,µ ν ,m (resp. ||| • ||| q m,µ ν ,m
) are ultrapseudometrics on respective domains.

Proof. With Definition 3•1, this is just a particular case of of the general construction recalled in section 2.

The Colombeau ultradistribution algebra G

(p! m ,p! m ) (resp. G {p! m ,p! m } ) is defined by G (p! m ,p! m ) = ← - G p,r = E (p! m ,p! m ) exp /N (p! m ,p! m ) (resp. G {p! m ,p! m } = - → G p,r = E {p! m ,p! m } exp /N {p! m ,p! m } ) .
These topological algebras are invariant under the actions of ultradifferential operators of respective classes (m) and {m}, see e.g. [START_REF] Komatsu | Microlocal Analysis in Gevrey Classes and in Convex Domains[END_REF].

3•2. Embeddings of ultradifferentiable functions and ultradistributions.

In what follows, mollifiers will be constructed by elements of spaces Σ pow (resp. Σ der ), which consist of smooth functions ϕ on R with the property that for some b > 0,

σ b (ϕ) = sup β∈N,x∈R |x β ϕ(x)| b β β! < ∞ (resp. σ b (ϕ) = sup α∈N,x∈R |ϕ (α) (x)| b α α! < ∞ ) .
Both spaces are endowed with the respective inductive topologies.

Definition 3•3. Let (φ n ) n∈N * be a bounded net in Σ pow (resp. Σ der ) such that ∀n ∈ N * : R t j φ n (t) dt = δ j,0 for j ∈ 0, 1, 2, . . . , [n 1/m ] + 1 , m > 1. Then (φ n ) n∈N * with φ n = n φ n (n •) is called a net of {m, pow} (resp. {m, der})-mollifiers generated by (φ n ) n .
The following important lemma gives an explicit net of {m, pow}-and {m, der}mollifiers:

Lemma 3•4. For all n ∈ N * and x ∈ R, let h n (x) = exp n 2 - n √ n 2n + x 2n , k n (x) = exp -x 2n .
Then, for all n ∈ N * , h n (0) = k n (0) = 1 and

∀α ∈ { 1, ..., 2n -1 } : h (α) n (0) = k (α)
n (0) = 0 , and there exist r > 0 and C > 0 such that

sup n∈N * σ r (h n ) < C , sup n∈N * σ r (k n ) < C . (3•1)
Moreover, for given m > 1, the nets2 

φ n = 1 2 π FT (h g(n) ) and φ n = 1 2 π FT (k g(n) ) ,
where

g(n) = 1 2 [n 1/(m-1)
] + 1 for n ∈ N * , generate a net of {m, pow}-mollifiers and a net of {m, der}-mollifiers, respectively.

Proof. The first claims, h (α) n (0) = k (α) n (0) = δ α,0 are easily verified, and imply obviously x p FT (h n ) = x p FT (k n ) = 2π δ p,0 ∀p ∈ { 0, ..., 2n -1 }, which gives the second condition on { m, der } resp. { m, pow }-mollifiers for φ n .

So let us show (3•1), i.e. h n ∈ Σ der , k n ∈ Σ pow with constants independent of n. Consider first h n .

The function C z → n √ n 2n + z 2n has singularities at z = n e i π (2k+1)/(2n) . The nearest one to the real axis has the imaginary part n sin π 2n ≥ 1 ∀n ∈ N * . So for every x ∈ R, the open disc { |z -x| < 1 } lies in the domain of analyticity of h n . Applying Cauchy's integral formula, we have The embedding of ultradistributions into the corresponding weighted algebra of sequences is realized through the first part of the next theorem. Its second part deals with the representatives of ultradifferentiable functions implying that the multiplication of regular enough elements within corresponding algebras is the ordinary multiplication.

∀x ∈ R, ∀n ∈ N * : |h (α) n (x)| = α! 2πi |ζ-x|= 1 2 h n (ζ) dζ (ζ -x) α+1 ≤ 2 α α! max θ∈[0,2π] h n (x + 1 2 e iθ ) .

Thus we have σ

2 (h n ) ≤ C and therefore (3•1), if max |h n (x + 1 2 e iθ )| < C. So let us show that there exists C > 0 such that ∀n ∈ N * , x ∈ R : e n 2 -n n 2n + (x + 1 2 e iθ ) 2n < ln C . (3•2) Let x + 1 2 e i θ = ρ e i φ with ρ ∈ R, |φ| < π 2 .
Theorem 3•5. Assume m > 1. (i) Let ψ ∈ D (m) (resp. ψ ∈ D {m-ρ}
) with ρ > 0 such that m-ρ > 1) be compactly supported, and (φ n ) n generate a net of {m, pow}-mollifiers. Then

ψ * φ n -ψ ∈ N (p! m ,p! m ) , (φ n = n φ n (n•)) ( resp. ψ * φ n -ψ ∈ N (p! m ,p! m ) ⊂ N {p! m ,p! m } ) . (ii) Let f ∈ E (m) (resp. f ∈ E {m} ) with compact support; and (φ n ) n gener- ate a net of {m, der}-mollifiers. Then f * φ n ∈ E (p! m ,p! m-1 ) exp , (resp. f * φ n ∈ E (p! m ,p! m-1 ) exp ⊂ E {p! m ,p! m-1 } exp ). If (φ n ) n and (φ n ) n generate nets of {m, pow}-mollifiers, then ∀ψ ∈ D (m) : f * φ n -f * φ n , ψ ∈ N m 0 , ( resp. ∀ψ ∈ D {m-ρ} : f * φ n -f * φ n , ψ ∈ N m 0 ) . Remark 2. If ψ ∈ D (m) , m > 1, then (ψ) n ∈ E (p! m ,p! m )
for all m > 0. Fix a net of {m, pow}-mollifiers (φ n ) n . The embedding D (m) → E (p! m ,p! m ) can be realized through ψ → (ψ * φ n ) n as well as through ψ → (ψ) n . This is a consequence of assertion (i). The similar conclusion follows for D {m-ρ} . Thus, the product of ϕ, ψ ∈ D

(m) (resp. ϕ, ψ ∈ D {m-ρ} ) is the usual one in E (p! m ,p! m ) (resp. in E {p! m ,p! m } ).
Assertion (ii) characterizes the embedding of elements in E (m) (resp. E {m} ) into the corresponding algebra by regularizations by {m, der}-mollifiers. Moreover, we have that the regularization of elements in E (m) (resp. E {m} ) with {m, pow}-mollifiers are weakly equal in the sense of ultracomplex numbers. Note that D (m1) → D {m1} → D (m2) , m 2 > m 1 > 1, where the left space is dense in the right one. This implies D (m2) → D {m1} → D (m1) . With these relations theorem 3•5 implies various embedding results depending on the parameter m > 1.

Proof. (i) Assume supp ψ ⊂ [-µ, µ]. Since ψ * φ n -ψ = 0 for |x| > µ, n > n 0 , we assume in this proof x ∈ [-µ, µ], n > n 0 . First, we prove the assertion for the Beurling case; the Roumieu case is treated in a similar way.

Let s ∈ N. We have

(ψ * φ n -ψ) (s) (x) = R ψ (s) (x + t/n) -ψ (s) (x) φ n (t) dt = R N -1 p=0 t p n p p! ψ (p+s) (x) + t N n N N ! ψ (N +s) (ξ) -ψ (s) (x) φ n (t) dt ,
where x ≤ ξ ≤ x+t/n. For N = [n 1/m ]+1 as in the definition of {m, pow}-mollifiers,

(ψ * φ n -ψ) (s) (x) = R t N n N N ! ψ (N +s) (ξ) φ n (t) dt . Let b > 1 such that σ b (φ n ) < ∞. Then ν s s! m (ψ * φ n -ψ) (s) (x) ≤ R 1 (N + s)! m ψ (N +s) (ξ) ν s (N + s)! m n N s! m N ! t N |φ n (t)| dt . We use N ! m ≤ (N N ) m , (N + s)! ≤ e N +s N ! s! and 1 n N ≤ 2 N N N m , to get ν s s! m (ψ * φ n -ψ) (s) (x) ≤ R (2e (ν + b)) N +s (N + s)! m ψ (N +s) (ξ) N ! m N mN |t| N b N N ! |φ n (t)| dt .
Let > 1. Inserting e -N e N , with ν 0 = 2 e (ν + b), we have

r s s! m (ψ * φ n ψ) (s) (x) ≤ 2 -N p m,µ ν0 (ψ) σ b (φ n ) .
Now we use e -N ∼ e -n 1/m as n → ∞. This implies for every ν > 0 and > 0 there exist C > 0 so that

ν s s! m (ψ * φ n -ψ) (s) (x) ≤ C e -n 1/m .
Taking the supremum over all s and x, we obtain that

||| ψ * φ n -ψ ||| p m,µ ν ,n -1/m = 0 . Roumieu case: Let d > 1 such that σ d (φ n ) < ∞ and h > 0 such that p m-ρ,µ e m-ρ h (ψ) < ∞.
With arbitrary ν > 0, as above, we have

ν s s! m (ψ * φ n -ψ) (s) (x) ≤ R |ψ (N +s) (ξ)| (N + s)! m-ρ ν s (N + s)! m-ρ n N s! m N ! t N |φ n (t)| dt . ≤ R (he m-ρ ) N +s |ψ (N +s) (ξ)| (N + s)! m-ρ N ! m N N m (hν) s s! m-ρ (2dh) N s! m N ! ρ |t| N d N N ! |φ n (t)| dt . Let > 1. Note sup{ (hν) s s! m-ρ s! m , s ∈ N} < ∞, sup{ (2dhe ) N N ! ρ , N ∈ N} < ∞.
As above we have, with suitable C > 0, (inserting e -N e N ),

ν s s! m (ψ * φ n -ψ) (s) (x) ≤ C e -N p m-ρ,µ e m-ρ h (ψ) σ d (φ n ) .
Again as above we finish the proof.

(ii) We will give the proof in the Beurling case. The proof in the Roumieu case is similar. Recall [START_REF] Komatsu | Microlocal Analysis in Gevrey Classes and in Convex Domains[END_REF], if f ∈ E (m) , then there exists an ultradifferential operator of class (m), P (D) = k∈N a k D k , µ 0 > 0 and continuous functions (F k ) k∈N , with the property supp

F k ⊂ [-µ 0 , µ 0 ], sup k∈N,x∈R |F k (x)| ≤ M , such that f = k∈N a k D k F k . This implies ∀x ∈ R : f * φ n (x) = ∞ k=0 (-1) k a k n k R F k (x + t/n) D k φ n (t) dt , where (φ n ) n is a net of {m, der}-mollifiers such that σ b (φ n ) < ∞ and a k , k ∈ N satisfy ∃h, B > 0 : ∀k ∈ N : |a k | < Bh k /k! m .
As in the part (i), we take x ∈ [-µ, µ], µ > µ 0 and n > n 0 . Let ν > 1 be given and s ∈ N. We have

ν s s! m f (s) * φ n (x) = ∞ k=0 (-1) k a k n k+s ν s s! m R F k (x + t/n) D k+s φ n (t) dt ≤ ∞ k=0 B ν s h k n k+s k! m s! m R |F k (x + t/n)| |D k+s φ n (t)| dt ≤ ∞ k=0 B (νhe) s+k n k+s (k + s)! m R |F k (x + t/n)| |D k+s φ n (t)| dt ≤ ∞ k=0 B 2 k (2ebνh) s+k n k+s (k + s)! m-1 R |F k (x + t n )| b k+s (k + s)! D k+s φ n (t) dt ≤ C e (2ebνhn) 1/(m-1) σ b (φ n ) .
This proves that f * φ n ∈ E (p! m ,p! m-1 ) exp . Let us prove (for the Beurling case) that

f, ( φn -φ n ) * ψ ∈ N m 0 .
By continuity, we know that there exist µ ∈ N * , ν > 0 and C > 0 such that

| f, ( φn -φ n ) * ψ | ≤ C p µ,m ν (( φn -φ n ) * ψ) ≤ C p µ,m ν ( φn * ψ -ψ) + p µ,m ν ( φ n * ψ -ψ) . (3•3)
By the first part of the theorem we have that

ψ * φ n -ψ, ψ * φ n -ψ ∈ N (p! m ,p! m ) .
This implies that for every k > 0 there exists C > 0 such that for every n ∈ N * both addends in (3•3) are ≤ C e -k n 1/m .

Generalized hyperfunctions on the circle

For λ > 1, let Ω λ = z ∈ C | 1 λ < |z| < λ
and O λ the Banach space of bounded holomorphic functions on Ω λ . We denote by E(T) (resp. A(T) := ind lim λ→1 O λ ) the space of smooth (resp. analytic) functions on the unit circle T = {z ∈ C | |z| = 1} and by E (T) (resp. B(T)) the corresponding space of distributions (resp. hyperfunctions), cf. [11]. For f ∈ A(T), the coefficient T (k) of e k (z) = z k in the Laurent expansion of f is its k-th Fourier coefficient. Complex numbers c k , k ∈ Z, are the Fourier coefficients of some analytic function (resp. some hyperfunction) if and only if

||| (c ±k ) k∈N * ||| |•|,1/k < 1 (resp. ≤ 1).
Let m ∈ [0, 1) and ν > 0. We denote by A m,ν (T) the set of functions f ∈ A(T)

such that q m,∞ ν (f ) := sup t∈R,α∈N | f (α) (t)| ν α α! m < ∞ where f (t) = f (e it ), t ∈ R. We set A m (T) = ind lim ν→∞ A m,ν (T) and A 1 (T) = ind lim m→1 -A m (T). Clearly A 1 (T) a subalgebra of A(T) whose elements are holomorphic in C * .
To prove the following theorem, we establish Lemma 4•1. Let m ∈ (0, 1) and ρ > e/2. Then the function

ϕ : t → ρ -t t m(t+ 1 2 ) e -mt , t ∈ 1 2 , ∞ reaches its minimum in a unique point t ρ such that 1 2 < t ρ < ρ 1 m -1 2 . Moreover, ϕ is strictly increasing on [t ρ , ∞) and ϕ(ρ 1/m + 1 2 ) < √ e ρ e -mρ 1/m .
Proof. The derivative of ψ = ln ϕ, given by ψ (t) = -ln ρ+m ln t + 1 2t , is strictly increasing for t ∈ ( 1 2 , ∞) and verifies

ψ (t ρ ) = 0 ⇐⇒ t ρ e 1/2 tρ = ρ 1/m .
This yields ρ 1/m -t ρ = t ρ (e 1/2 tρ -1), and, using x < e x -1 < x e x for x = 0, the claimed inequalities on t ρ . Writing ln(ρ

1/m + 1 2 ) = 1 m ln ρ + ln(1 + 1 2 ρ 1/m ) gives ψ(ρ 1/m + 1 2 ) = 1 2 ln ρ + m(ρ 1/m + 1) ln(1 + 1 2ρ 1/m ) -m(ρ 1/m + 1 2 ). Since ln(1 + 1 2ρ 1/m ) ≤ 1 2ρ 1/m it follows that ψ(ρ 1/m + 1 2 ) ≤ 1 2 ln ρ + m( 1 2ρ 1/m -ρ 1/m
). Using ρ > e/2, and m ∈ (0, 1), we find m 2ρ 1/m < 1 2 and thus ϕ(ρ 1/m + 1 2 ) ≤ √ e ρ e -mρ 1/m . Previously, we defined the ||| • ||| norm only for sequences indexed by N. Here it is convenient to use it also for the nets f (k) indexed by Z, for which we take it to be the maximum of the norms of ( f (k)) k∈N and ( f (-k)) k∈N , or equivalently f α (t)e -ikt dt = 2π(ik) α f (k), and then consequently there is a positive constant

||| ( f (k)) k ||| ± (•) -1/m = lim sup k→∞ max(| f (k)|, | f (-k)|) k -1/m . Theorem 4•2. Let f ∈ A(T) and m ∈ (0, 1). (i) If f ∈ A m,ν (T) then: ||| ( f (k)) k ||| ± (•) -1/m ≤ e -m/ν 1/m .

Conversely if the above condition holds, then

f ∈ A m,ν (T) for all ν > ν. (ii) f ∈ A m (T) if and only if ||| ( f (k)) k ||| ± (•) -1/m < 1. (iii) f ∈ A 0,ν ( 
C 1 such that |k| α | f (k)| ≤ C 1 ν α α! m .
Using Stirling's formula: α! = α α+1/2 e -α √ 2π (1 + ε α ), ε α 0, we find a positive constant C 2 such that:

∀α ∈ N * , ∀k ∈ Z, |k| α | f (k)| ≤ C 2 ν α α m(α+1/2) e -mα .
It follows that:

∀α ∈ N * , ∀k ∈ Z * , | f (k)| ≤ C 2 ν |k| α α m(α+1/2) e -mα .
Using the notations of Lemma 4•1 by taking ρ = |k| ν with |k| > e ν, yields | f (k)| ≤ C 2 ϕ(t) for all t ∈ N * . Following the Lemma, we have ϕ(ρ

1/m + 1 2 ) ≤ √ e ρ e -mρ 1/m . Since ϕ increases on [ρ 1/m -1 2 , ρ 1/m + 1 2 ] which contains a posi- tive integer α ρ , then | f (k)| ≤ C 2 ϕ(α ρ ) ≤ C 2 √ e ρ e -mρ 1/m for |k| > eν, that is | f (k)| ≤ C 2 ( e |k| ν )
1/2 e -m/ν 1/m for |k| > eν from which inequality of (i) follows. Conversely assume that f satisfies the condition of (i). Let ν > ν. Choose ν such that ν > ν > ν and set β = m/(ν ) 1/m , β = m/(ν ) 1/m . Since e -β > e -m/ν 1/m , there exists a positive constant

C > | f (0)| such that | f (k)| ≤ Ce -β |k| 1/m for every k ∈ Z. For every α ∈ N, we have f (α) (t) = k∈Z (ik) α f (k) e ikt .
Then, using the last inequality we find

f (α) ∞ ≤ C k∈Z e -(β -β )|k| 1/m sup k∈Z |k| α e -β |k| 1/m .
Let φ(t) = t α e -β t 1/m ; t ≥ 0. A simple study of φ shows that sup t≥0 φ(t) = φ(ν α m ) = (ν ) α α mα e -mα . Using Stirling's formula, we get a positive constant C 1 such that for all α ∈ N, f (α)

∞ ≤ C 1 ν α α! m , showing that f ∈ A m,ν (T)

and proving (i).

Let f ∈ A m (T). Then f ∈ A m,ν (T) for some ν > 0 and the inequality follows from (i) and e -m/ν

1/m < 1. Conversely if ||| ( f (k)) k ||| ± (•) -1/m < 1, there exists ν > 0 such that ||| ( f (k)) k ||| ± (•) -1/m ≤ e -m/ν 1/m . From (i), it follows that f ∈ A m,ν (T) for ν > ν. Hence f ∈ A m (T) proving (ii).
Let f ∈ A 0,ν (T). The previous shows that there exists C 1 > 0 such that

|k| α | f (k)| ≤ C 1 ν α . It follows that | f (k)| ≤ C 1 ν |k| α for all k ∈ Z * and all α ∈ N. If |k| > ν, then ν |k| < 1, and making α → ∞ yields f (k) = 0. Conversely, assume that f (k) = 0 for |k| > ν. Then we have ∀z ∈ C * , f (z) = |k|≤ν f (k) z k . It follows that for all α ∈ N, f (α ) ∞ ≤ |k|≤ν f (k) ν α , that is f ∈ A 0,ν (T) proving (iii).
Claim (iv) follows from (iii) straightforwardly. Claims (ii) and (iv) show that for f ∈ A 1 (T), the series k∈Z f (k) z k converges absolutely for any z ∈ C, proving (v). Now let r = (r n ) n with r n > 0 and r n 0. For n ∈ N, we set ψ n (z) = |k|≤1/rn z k . We have

ψ n * ψ n = ψ n and lim n→∞ ψ n = δ in E (T). If H ∈ B(T), H * ψ n = |k|≤1/rn Ĥ(k)z k (where S * T = z → k∈Z S(k) T (k) z k ) and conse- quently lim n→∞ H * ψ n = H in B(T). For f ∈ O λ we set q λ (f ) = f L ∞ (Ω λ ) and qλ (f ) = sup k∈Z λ |k| | f (k)|. Recall that, for f = (f n ) n ∈ (O λ ) N , we note ||| f ||| q λ ,r = lim sup n→∞ q λ (f n ) rn and - → F q,r = f ∈ A 1 (T) N | ∃λ > 1 : ||| f ||| q λ ,r < ∞ , - → K q,r = f ∈ A 1 (T) N | ∃λ > 1 : ||| f ||| q λ ,r = 0 .
and exactly the same for q instead of q. k . It follows that there exists a positive constant C(λ, µ) such that C(λ, µ)q µ (f n ) ≤ qλ (f n ). From Cauchy's formula λ |k| | fn (k)| ≤ q λ (f n ) and then qλ (f n ) ≤ q λ (f n ). Finally we obtain

Proposition 4•3. Let λ > 1 and f = (f n ) n ∈ O N λ . Then we have for any µ ∈ (1, λ) ||| f ||| q µ ,r ≤ ||| f ||| qλ ,r ≤ ||| f ||| q λ ,r . Consequently, - → F q,r = - → F q,r and - → K q,r = - → K q,r
||| f ||| q µ ,r ≤ ||| f ||| qλ ,r ≤ ||| f ||| q λ ,
r , and then it follows straightforwardly that -→ F q,r = -→ F q,r and -→ K q,r = -→ K q,r .

Definition 4•4. Let X r (T) = -→ F q,r and N r (T) = -→ K q,r . The algebra of generalized hyperfunctions on T is G H,r = X r (T)/N r (T).

We have an embedding of B(T) in G H,r (T) which preserves the usual multiplication of elements in A 1 (T) : 

Remark 1 .

 1 The two multiplicative sets H = [0, 1] and I = [0, 1) verify the relations H • H = H, I • H = I, I • I = I, just like the sets [0, ∞) and { 0 }. Thus, similar constructions can also be made with ||| • ||| ≤ 1 and ||| • ||| < 1 instead of ||| • ||| < ∞ and ||| • ||| = 0. This is used in the setting of infra-exponential algebras and also appears in the context of periodic hyperfunctions.

  T) if and only iff (k) = 0 for |k| > ν. (iv) f ∈ A 0 (T) if and only if ( f (k)) k∈Z has finite support. (v) For all f ∈ A 1 (T) there exists g ∈ O(C * ) such that g| T = f . Proof. Let f ∈ A m,ν (T) with 0 < m < 1. For all α ∈ N, f (α) (t) = p∈Z (ip) α f (p) e ipt . It follows that π -π

Proof.

  Let λ > µ > 1 and f = (f n ) n ∈ O N λ . For every k ∈ Z, λ |k| | fn (k)| ≤ qλ (f n ) and then | fn (k)| ≤ qλ (f n )λ -|k| . Using this inequality, we find from |f n (z)| ≤ k∈Z | fn (k)| |z| k that |f n (z)| ≤ qλ (f n ) k∈Z µ λ

Theorem 4 • 5 . 1 2 1 2 1 2

 45111 Let ī : B(T) → G H,r (T) H → [(H * ψ n ) n ]and ī0 :A 1 (T) → G H,r (T) f → [(f ) n ].Then, ī is a linear embedding and ī0 is a one to one morphism of algebras such that ī| A1(T) = ī0 .Proof. The claim on ī0 is easy to prove. Let us focus on the properties of the first part related to ī. The linearity of ī is quite obvious. Let H ∈ B(T) and set h= (h n ) n with h n = H * ψ n . From Theorem 4•2,(v), we have h ∈ X (T). Now take λ > 1.From the property of the Fourier coefficients of H, there existsC > 0 such that | Ĥ(k)| ≤ C λ |k| for all k ∈ Z. It follows that λ |k| | ĥn (k)| ≤ Cλ 2/rn showing that ||| h ||| qλ ,r ≤ λ 2 . By Proposition 4•3, h ∈ X r (T). It is sufficient to consider restrictions to the spaces A m (T) with 0 < m < 1. Let f ∈ A m (T) with 0 < m < 1. There is λ > 1 such that f (z) = k∈Z f (k) z k for 1/λ ≤ |z| ≤ λ. Then we have ī0 (f ) -ī(f ) = [f n ] where f n = f -f * ψ n , that is f n (z) = |k|>1/rn f (k) z k . Then we have (f n ) n ∈ O λ .We claim that (f n ) n ∈ N r (T). From Theorem 4•2, there exist p ∈ (0, 1) andC > 0 such that every k ∈ Z, | f (k)| ≤ Cp |k| 1/m . For |k| > r -1 n , writing p |k| 1/m ≤ p |k| 1/m p1 2 r -1/m n , we find λ |k| | fn (k)| rn ≤ Cλ |k| p |k| 1/m rn p r (m-1)/m n .

  The second function is decreasing for n ≥ 2.) Again, this implies (3•2), with ln C = 1. So we have shown that ∀n ∈ N * , σ 2 (h n ) < 3, which proves (3•1) for h n . With all that precedes, it is easy to see that the given φ n generate a net of {m, pow}-mollifiers. Now turn to k n ∈ Σ pow . Estimating x β k n (x) separately for |x| ≤ 2 and |x| > 2 one can easily prove(3•1). Once again, this allows to conclude that the given φ n generate a net of {m, der}-mollifiers.

	Consider first |ρ| ≥ 3 4 n. Then, sin φ ≤ 2 3n ,
	thus 2n φ ≤ 2n arcsin 2 3n < π

2 ∀n ≥ 1. Therefore e 1 + 1 n ρ e iφ 2n > 1 and (3•2) with ln C = 0. Next, if |ρ| < 3 4 n, then e n 2 -n n 2n + (ρ e iφ ) 2n < n 2 -n 2 n 1 -3 4 2n < 1 .

(

over (C N * , ||| • ||| |•|,r), not over C: scalar multiplication is not continuous.

we denote the Fourier transform by FT (•) to avoid confusion with spaces Fp,r etc.

Since Cλ |k| p 1 2 |k| 1/m is bounded with respect to k, because of 1/m > 1 and p ∈ (0, 1), it follows that ||| f ||| qλ ,r = 0, proving our claim.