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Abstract

In a recent paper, we gave a topological description of Colombeau type algebras
introducing algebras of sequences with exponential weights. Embeddings of Schwartz
spaces into the Colombeau algebra G are well known, but for ultradistribution and
periodic hyperfunction type spaces we give new constructions. We show that the
multiplication of regular enough functions (smooth, ultradifferentiable or quasiana-
lytic), embedded into corresponding algebras, is the ordinary multiplication.
MSC: 46A45 (sequence spaces), 46F30 (generalized functions for nonlinear analysis);
secondary: 46E10, 46A13, 46A50, 46E35, 46F05.

1. Introduction

Differential algebras of generalized functions containing embedded distributions
are a convenient framework for the analysis of problems with singular coefficients
and/or singular data, especially for non linear problems, since multiplication and
other non linear operations are in general not defined in classical generalized function
spaces. Nowadays, there is a considerable literature concerning such algebras. (For
example see [1, 2, 3, 7, 12, 15, 5, 6] and the references therein.)

We have proved in [4] that these algebras, here referred to as Colombeau type
algebras, can be reconsidered as a class of sequence spaces algebras, and we gave a
purely topological description of them.

In analogy to embeddings of Schwarz’ distributions, we show in this paper that

† corresponding author:
Univ. Antilles–Guyane, D.S.I., B.P. 7209, 97275 Schoelcher cedex (Martinique, F.W.I.)
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some classes of ultradistributions and periodic hyperfunctions can be embedded into
well chosen sequence algebras. Moreover, we show that the product of enough regular
elements, ultradifferentiable functions or quasianalytic periodic functions of appro-
priate classes, is the ordinary multiplication.

The problem of embedding of classical spaces into corresponding sequence spaces
algebra is closely related to the choice of sequences of mollifiers, sequences of appro-
priately smooth functions converging to the delta distribution. While such a prob-
lem is easy for embedding of Schwartz distributions defined on an open subset of
Rn, it is essential for ultradifferentiable functions and ultradistributions, considered
in section 3. The same holds for periodic quasianalytic functions and corresponding
periodic hyperfunctions of section 4.

Colombeau ultradistributions corresponding to a general non-quasianalytic se-
quence were introduced and analyzed in [14]. Although we consider here the Gevrey
sequence (p!m)p, m > 1, we give sharper estimates and improve results of [14]: The
construction of appropriate mollifiers enables us to give more precise results con-
cerning embeddings. Colombeau periodic hyperfunctions introduced in this paper
are more closely related to the global theory of generalized functions than those
of [16]. In this sense, we improve results of [16].

The novelty of results related to both cited papers and the embedding of both
classes of algebras into corresponding sequence space algebras, and so their topolog-
ical description, are the main results of this paper.

2. General construction [4]

We use the standard notations N = { 0, 1, ... }, N∗ = { 1, 2, ... } and R+ = [0,+∞).
We recall [4] that the algebra of Colombeau complex numbers is given by

C = E0/N0 ≡ {x ∈ CN∗ : lim sup |xn|
1

logn <∞}/{x ∈ CN∗ : lim sup |xn|
1

logn = 0} .

The passage from this description to Colombeau’s original construction is given by
the following chain of equivalences, for a complex sequence (xn)n ∈ CN∗ :

lim sup |xn|1/ logn <∞ ⇐⇒ ∃C ∈ R+ : lim sup |xn|1/ logn = C

⇐⇒ ∃B > 0, ∃n0,∀n > n0 : |xn| ≤ Blogn = nlogB

⇐⇒ ∃γ ∈ R : |xn| = o(nγ) .

On the other hand, lim sup |xn|1/ logn = 0 (for the ideal) corresponds to taking C = 0
and thus ∀B > 0 resp. ∀γ ∈ R in the last lines.

Let us also recall our construction from [4] for the case of E = C, rn = n−1/m, n ∈
N∗, where m > 0 is fixed. Let

Em0 =
{
c = (cn)n ∈ CN∗ ∣∣ ||| c ||||·|,n−1/m = lim sup

n→∞
|cn|n

−1/m
<∞

}
,

Nm
0 =

{
c = (cn)n ∈ CN∗ ∣∣ ||| c ||||·|,n−1/m = 0

}
.

The factor algebra Cm = Em0 /Nm
0 , m > 0, is called the ring of Colombeau ultra-

complex numbers for m > 1 and the ring of Colombeau hypercomplex numbers for
m ≤ 1.

Now we come to the general construction. Let (Eµ
ν , p

µ
ν )µ,ν∈N∗ be a family of semi-
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normed algebras over R or C such that

∀µ, ν ∈ N∗ : Eµ+1
ν ↪→ Eµ

ν and Eµ
ν+1 ↪→ Eµ

ν (resp. Eµ
ν ↪→ Eµ

ν+1 ) ,

where ↪→ means continuously embedded (i.e., for the ν index we consider inclu-
sions in the two directions). Then let ←−E = proj lim

µ→∞
proj lim
ν→∞

Eµ
ν = proj lim

ν→∞
Eν
ν , (resp.

−→
E = proj lim

µ→∞
ind lim
ν→∞

Eµ
ν ). Such projective and inductive limits are usually considered

with norms instead of seminorms, and with the additional assumption that in the
projective case sequences are reduced, while in the inductive case for every µ ∈ N∗
the inductive limit is regular, i.e. a set A ⊂ ind lim

ν→∞
Eµ
ν is bounded iff it is contained

in some Eµ
ν and bounded there.

Consider a positive sequence r = (rn)n ∈ (R+)N∗ decreasing to zero and define
(with p ≡ (pµν )ν,µ):

||| f |||pµν ,r = lim sup
n→∞

pµν (fn)rn
(

for f ∈ (Eµ
ν )N

∗ )
,

←−
Fp,r =

{
f ∈
←−
E N∗ ∣∣ ∀µ, ν ∈ N∗ : ||| f |||pµν , r <∞

}
,

←−
Kp,r =

{
f ∈
←−
E N∗ ∣∣ ∀µ, ν ∈ N∗ : ||| f |||pµν , r = 0

}
(resp. −→Fp,r =

⋂
µ∈N∗

−→
Fµp,r ,

−→
Fµp,r =

⋃
ν∈N∗

{
f ∈ (Eµ

ν )N
∗ ∣∣ ||| f |||pµν ,r <∞} ,

−→
Kp,r =

⋂
µ∈N∗

−→
Kµp,r ,

−→
Kµp,r =

⋃
ν∈N∗

{
f ∈ (Eµ

ν )N
∗ ∣∣ ||| f |||pµν ,r = 0

}
) .

Recall [4]:

Writing←→· for both,←−· or −→· , we have that←→F p,r is an algebra and←→K p,r is an ideal
of ←→F p,r; thus, ←→G p,r =←→F p,r/

←→
K p,r is an algebra.

For every µ, ν ∈ N∗, dpµν : (Eµ
ν )N

∗
× (Eµ

ν )N
∗
→ R+ defined by dpµν (f, g) = ||| f − g |||pµν ,r

is an ultrapseudometric on (Eµ
ν )N

∗
. Moreover, (dpµν )µ,ν induces a topological algebra1

structure on←−Fp,r such that the intersection of the neighborhoods of zero equals←−Kp,r.

From the properties above, the factor space ←−Gp,r =←−Fp,r/
←−
Kp,r is a topological algebra

over generalized numbers Cr = G|·|,r (constructed with the sequence r = (rn) as
above for the Colombeau ultracomplex numbers). The topology of ←−Gp,r is defined by
the family of ultrametrics (d̃pµν )µ,ν where d̃pµν ([f ], [g]) = dpµν (f, g), [f ] standing for the
class of f .
If τµ denotes the inductive limit topology on Fµp,r =

⋃
ν∈N∗((Ẽ

µ
ν )N∗ , dµ,ν), µ ∈ N∗,

then −→Fp,r is a topological algebra1 for the projective limit topology of the family
(Fµp,r, τµ)

µ
.

Remark 1. The two multiplicative sets H = [0, 1] and I = [0, 1) verify the rela-
tions H ·H = H, I ·H = I, I ·I = I, just like the sets [0,∞) and { 0 }. Thus, similar
constructions can also be made with ||| · ||| ≤ 1 and ||| · ||| < 1 instead of ||| · ||| <∞ and
||| · ||| = 0. This is used in the setting of infra-exponential algebras and also appears
in the context of periodic hyperfunctions.

1 over (CN∗ , ||| · ||||·|,r), not over C: scalar multiplication is not continuous.
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3. Colombeau ultradistributions of Gevrey class

3·1. Ultradistributions of Gevrey class

We refer to [9] for definitions of the spaces E (m), D(m), E{m}, D{m} (m > 1), and
their duals, Beurling and Roumieu type ultradistribution spaces. Here we construct
Colombeau ultradistribution algebras corresponding to Mp = p!m, m > 1. We apply
the construction of section 2.

For the function space E = C∞(Rs), we define for all µ, ν ∈ R+ and m > 1 the
seminorms

pm,µν (f) = sup
|x|≤µ,α∈Ns

ν|α|

α!m |f
(α)(x)| and qm,µν = pm,µ1/ν .

Then let, for µ, ν ∈ N∗, Eµ
ν = Epm,µν

(resp. Eµ
ν = Eqm,µν

) be the subset of E on
which the given seminorm is finite. For the first case, we clearly have Eµ+1

ν ↪→ Eµ
ν ,

Eµ
ν+1 ↪→ Eµ

ν and for the second case, we have Eµ+1
ν ↪→ Eµ

ν , Eµ
ν ↪→ Eµ

ν+1 for any
µ, ν ∈ N∗. Let m > 1, m′ > 0 and rn = n−1/m′ .

Definition 3·1. The sets of exponentially growth order ultradistribution nets and
null nets of Beurling type are defined, respectively, by

E (p!m,p!m
′
)

exp =←−Fpm,r , N (p!m,p!m
′
) =←−Kpm,r .

The sets of exponentially growth order ultradistribution nets and null nets of Roumieu
type are defined, respectively, by

E{p!
m,p!m

′
}

exp = −→Fqm,r , N {p!
m,p!m

′
} = −→Kqm,r .

Proposition 3·2.
(i) E (p!m,p!m

′
)

exp (resp. E{p!m,p!m
′
}

exp ) are algebras under pointwise multiplication, and
N (p!m,p!m

′
) (resp. N {p!m,p!m

′
}) are ideals of them.

(ii) The pseudodistances induced by ||| · |||pm,µν ,m′ (resp. ||| · |||qm,µν ,m′) are ultrapseu-
dometrics on respective domains.

Proof. With Definition 3·1, this is just a particular case of of the general construc-
tion recalled in section 2. �

The Colombeau ultradistribution algebra G(p!m,p!m
′
) (resp. G{p!m,p!m

′
}) is defined

by

G(p!m,p!m
′
) =←−Gp,r = E (p!m,p!m

′
)

exp /N (p!m,p!m
′
)

(resp. G{p!
m,p!m

′
} = −→Gp,r = E{p!

m,p!m
′
}

exp /N {p!
m,p!m

′
} ) .

These topological algebras are invariant under the actions of ultradifferential opera-
tors of respective classes (m) and {m}, see e.g. [9].

3·2. Embeddings of ultradifferentiable functions and ultradistributions.

In what follows, mollifiers will be constructed by elements of spaces Σpow (resp.
Σder), which consist of smooth functions ϕ on R with the property that for some
b > 0,

σb(ϕ) = sup
β∈N,x∈R

|xβ ϕ(x)|
bβ β! <∞ (resp. σb(ϕ) = sup

α∈N,x∈R

|ϕ(α)(x)|
bα α! <∞ ) .
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Both spaces are endowed with the respective inductive topologies.

Definition 3·3. Let (φn)n∈N∗ be a bounded net in Σpow (resp. Σder) such that
∀n ∈ N∗ :

∫
R t

jφn(t) dt = δj,0 for j ∈
{
0, 1, 2, . . . , [n1/m] + 1

}
, m > 1. Then (φn)n∈N∗

with φn = nφn(n ·) is called a net of {m, pow} (resp. {m, der})–mollifiers generated
by (φn)n.

The following important lemma gives an explicit net of {m, pow}– and {m, der}–
mollifiers:

Lemma 3·4. For all n ∈ N∗ and x ∈ R, let

hn(x) = exp
(
n2 − n

√
n2n + x2n

)
, kn(x) = exp

(
−x2n) .

Then, for all n ∈ N∗, hn(0) = kn(0) = 1 and

∀α ∈ { 1, ..., 2n− 1 } : h(α)
n (0) = k(α)

n (0) = 0 ,

and there exist r > 0 and C > 0 such that

sup
n∈N∗

σr(hn) < C , sup
n∈N∗

σr(kn) < C . (3·1)

Moreover, for given m > 1, the nets2

φn = 1
2π FT (hg(n)) and φn = 1

2π FT (kg(n)) ,

where g(n) = 1
2 [n1/(m−1)] + 1 for n ∈ N∗, generate a net of {m, pow}–mollifiers and

a net of {m,der}–mollifiers, respectively.

Proof. The first claims, h(α)
n (0) = k(α)

n (0) = δα,0 are easily verified, and imply
obviously

∫
xpFT (hn) =

∫
xpFT (kn) = 2π δp,0 ∀p ∈ { 0, ..., 2n− 1 }, which gives

the second condition on {m, der } resp. {m, pow }–mollifiers for φn.
So let us show (3·1), i.e. hn ∈ Σder, kn ∈ Σpow with constants independent of n.

Consider first hn.
The function C 3 z 7→ n

√
n2n + z2n has singularities at z = n ei π (2k+1)/(2n). The

nearest one to the real axis has the imaginary part n sin π
2n ≥ 1 ∀n ∈ N∗. So for

every x ∈ R, the open disc { |z − x| < 1 } lies in the domain of analyticity of hn.
Applying Cauchy’s integral formula, we have

∀x ∈ R,∀n ∈ N∗ : |h(α)
n (x)| =

∣∣∣∣∣ α!
2πi

∫
|ζ−x|= 1

2

hn(ζ) dζ
(ζ − x)α+1

∣∣∣∣∣
≤ 2α α! max

θ∈[0,2π]

∣∣hn(x+ 1
2e
iθ)
∣∣ .

Thus we have σ2(hn) ≤ C and therefore (3·1), if max |hn(x + 1
2e
iθ)| < C. So let us

show that there exists C > 0 such that

∀n ∈ N∗, x ∈ R : <e
(
n2 − n

√
n2n + (x+ 1

2 e
iθ)2n

)
< lnC . (3·2)

Let x+ 1
2 e

i θ = ρ ei φ with ρ ∈ R, |φ| < π
2 . Consider first |ρ| ≥ 3

4 n. Then, sinφ ≤ 2
3n ,

thus 2nφ ≤ 2n arcsin 2
3n <

π
2 ∀n ≥ 1. Therefore <e

(
1 +

( 1
n
ρ eiφ

)2n)
> 1 and (3·2)

2 we denote the Fourier transform by FT (·) to avoid confusion with spaces Fp,r etc.
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with lnC = 0. Next, if |ρ| < 3
4 n, then

<e
(
n2 − n

√
n2n + (ρ eiφ)2n

)
< n2 − n2 n

√
1−

( 3
4
)2n

< 1 .

(The second function is decreasing for n ≥ 2.) Again, this implies (3·2), with lnC =
1. So we have shown that ∀n ∈ N∗, σ2(hn) < 3, which proves (3·1) for hn. With all
that precedes, it is easy to see that the given φn generate a net of {m, pow}–mollifiers.

Now turn to kn ∈ Σpow. Estimating xβkn(x) separately for |x| ≤ 2 and |x| > 2 one
can easily prove (3·1). Once again, this allows to conclude that the given φn generate
a net of {m, der}–mollifiers. �

The embedding of ultradistributions into the corresponding weighted algebra of se-
quences is realized through the first part of the next theorem. Its second part deals
with the representatives of ultradifferentiable functions implying that the multipli-
cation of regular enough elements within corresponding algebras is the ordinary
multiplication.

Theorem 3·5. Assume m > 1.

(i) Let ψ ∈ D(m) (resp. ψ ∈ D{m−ρ}) with ρ > 0 such that m−ρ > 1) be compactly
supported, and (φn)n generate a net of {m, pow}–mollifiers. Then

ψ ∗ φn − ψ ∈ N (p!m,p!m) , (φn = nφn(n·))
( resp. ψ ∗ φn − ψ ∈ N (p!m,p!m) ⊂ N {p!

m,p!m} ) .

(ii) Let f ∈ E ′ (m) (resp. f ∈ E ′ {m}) with compact support; and (φn)n gener-
ate a net of {m, der}–mollifiers. Then f ∗ φn ∈ E (p!m,p!m−1)

exp , (resp. f ∗ φn ∈
E (p!m,p!m−1)
exp ⊂ E{p!m,p!m−1}

exp ).
If (φn)n and (φ′n)n generate nets of {m, pow}–mollifiers, then

∀ψ ∈ D(m) : 〈f ∗ φn − f ∗ φ′n, ψ〉 ∈ Nm
0 ,

( resp. ∀ψ ∈ D{m−ρ} : 〈f ∗ φn − f ∗ φ′n, ψ〉 ∈ Nm
0 ) .

Remark 2. If ψ ∈ D(m), m > 1, then (ψ)n ∈ E(p!m,p!m
′
) for all m′ > 0. Fix a

net of {m, pow}–mollifiers (φn)n. The embedding D(m) → E(p!m,p!m) can be realized
through ψ 7→ (ψ ∗ φn)n as well as through ψ → (ψ)n. This is a consequence of
assertion (i). The similar conclusion follows for D{m−ρ}. Thus, the product of ϕ,ψ ∈
D(m) (resp. ϕ,ψ ∈ D{m−ρ}) is the usual one in E (p!m,p!m) (resp. in E{p!m,p!m}).
Assertion (ii) characterizes the embedding of elements in E ′ (m) (resp. E ′ {m}) into the
corresponding algebra by regularizations by {m, der}–mollifiers. Moreover, we have
that the regularization of elements in E ′ (m) (resp. E ′ {m}) with {m, pow}–mollifiers
are weakly equal in the sense of ultracomplex numbers.
Note that D(m1) ↪→ D{m1} ↪→ D(m2), m2 > m1 > 1, where the left space is dense
in the right one. This implies D′ (m2) ↪→ D′ {m1} ↪→ D′ (m1). With these relations
theorem 3·5 implies various embedding results depending on the parameter m > 1.

Proof. (i) Assume supp ψ ⊂ [−µ, µ]. Since ψ ∗ φn − ψ = 0 for |x| > µ, n > n0,
we assume in this proof x ∈ [−µ, µ], n > n0. First, we prove the assertion for the
Beurling case; the Roumieu case is treated in a similar way.
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Let s ∈ N. We have

(ψ ∗ φn − ψ)(s)(x) =
∫
R

(
ψ(s)(x+ t/n)− ψ(s)(x)

)
φn(t) dt

=
∫
R

(
N−1∑
p=0

tp

np p!ψ
(p+s)(x) + tN

nNN !ψ
(N+s)(ξ)− ψ(s)(x)

)
φn(t) dt ,

where x ≤ ξ ≤ x+t/n. For N = [n1/m]+1 as in the definition of {m, pow}–mollifiers,

(ψ ∗ φn − ψ)(s)(x) =
∫
R

tN

nN N !ψ
(N+s)(ξ)φn(t) dt .

Let b > 1 such that σb(φn) <∞. Then∣∣∣∣ νss!m (ψ ∗ φn − ψ)(s)(x)
∣∣∣∣

≤
∫
R

1
(N + s)!m

∣∣∣ψ(N+s)(ξ)
∣∣∣ νs(N + s)!m

nNs!mN ! tN |φn(t)| dt .

We use N !m ≤ (NN )m, (N + s)! ≤ eN+sN ! s! and 1
nN
≤ 2N

NNm
, to get∣∣∣∣ νss!m (ψ ∗ φn − ψ)(s)(x)

∣∣∣∣
≤
∫
R

(2e (ν + b))N+s

(N + s)!m
∣∣∣ψ(N+s)(ξ)

∣∣∣ N !m

NmN

|t|N

bNN ! |φ
n(t)|dt .

Let ` > 1. Inserting e−`Ne`N , with ν0 = 2 ` e (ν + b), we have∣∣∣∣ rss!m (ψ ∗ φn − ψ)(s) (x)
∣∣∣∣ ≤ 2−`Npm,µν0

(ψ)σb(φn) .

Now we use e−`N ∼ e−` n1/m as n→∞. This implies for every ν > 0 and ` > 0 there
exist C > 0 so that ∣∣∣∣ νss!m (ψ ∗ φn − ψ)(s)(x)

∣∣∣∣ ≤ C e−` n1/m
.

Taking the supremum over all s and x, we obtain that

|||ψ ∗ φn − ψ |||pm,µν ,n−1/m = 0 .

Roumieu case: Let d > 1 such that σd(φn) <∞ and h > 0 such that pm−ρ,µem−ρh(ψ) <
∞. With arbitrary ν > 0, as above, we have∣∣∣∣ νss!m (ψ ∗ φn − ψ)(s)(x)

∣∣∣∣
≤
∫
R

|ψ(N+s)(ξ)|
(N + s)!m−ρ

νs(N + s)!m−ρ

nNs!mN ! tN |φn(t)|dt .

≤
∫
R

(hem−ρ)N+s|ψ(N+s)(ξ)|
(N + s)!m−ρ

N !m

NNm

(hν)ss!m−ρ(2dh)N

s!mN !ρ
|t|N

dNN ! |φ
n(t)|dt .

Let ` > 1. Note

sup{(hν)ss!m−ρ

s!m , s ∈ N} <∞, sup{(2dhe`)N

N !ρ , N ∈ N} <∞.

As above we have, with suitable C > 0, (inserting e−`Ne`N ),∣∣∣∣ νss!m (ψ ∗ φn − ψ)(s) (x)
∣∣∣∣ ≤ C e−`N pm−ρ,µem−ρh(ψ)σd(φn) .
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Again as above we finish the proof.
(ii) We will give the proof in the Beurling case. The proof in the Roumieu case
is similar. Recall [9], if f ∈ E ′(m), then there exists an ultradifferential operator of
class (m), P (D) =

∑
k∈N akD

k, µ0 > 0 and continuous functions (Fk)k∈N, with the
property supp Fk ⊂ [−µ0, µ0], sup

k∈N,x∈R
|Fk(x)| ≤ M , such that f =

∑
k∈N akD

kFk.
This implies

∀x ∈ R : f ∗ φn(x) =
∞∑
k=0

(−1)kak nk
∫
R
Fk(x+ t/n)Dkφn(t) dt ,

where (φn)n is a net of {m, der}–mollifiers such that σb(φn) < ∞ and ak, k ∈ N
satisfy

∃h,B > 0 : ∀k ∈ N : |ak| < Bhk/k!m .

As in the part (i), we take x ∈ [−µ, µ], µ > µ0 and n > n0. Let ν > 1 be given and
s ∈ N. We have

νs

s!m
∣∣∣f (s) ∗ φn(x)

∣∣∣ =

∣∣∣∣∣∣
∞∑
k=0

(−1)kaknk+s ν
s

s!m
∫
R

Fk(x+ t/n)Dk+sφn(t) dt

∣∣∣∣∣∣
≤
∞∑
k=0

B
νshknk+s

k!ms!m
∫
R

|Fk(x+ t/n)| |Dk+sφn(t)|dt

≤
∞∑
k=0

B
(νhe)s+knk+s

(k + s)!m
∫
R

|Fk(x+ t/n)| |Dk+sφn(t)|dt

≤
∞∑
k=0

B

2k
(2ebνh)s+knk+s

(k + s)!m−1

∫
R

|Fk(x+ t
n

)|
bk+s (k + s)!

∣∣Dk+sφn(t)
∣∣ dt

≤ C e(2ebνhn)1/(m−1)
σb(φn) .

This proves that f ∗ φn ∈ E(p!m,p!m−1)
exp .

Let us prove (for the Beurling case) that〈
f, (φ̌n − φ̌′n) ∗ ψ

〉
∈ Nm

0 .

By continuity, we know that there exist µ ∈ N∗, ν > 0 and C > 0 such that

|〈f, (φ̌n − φ̌′n) ∗ ψ〉| ≤ C pµ,mν ((φ̌n − φ̌′n) ∗ ψ)

≤ C
[
pµ,mν (φ̌n ∗ ψ − ψ) + pµ,mν (φ̌′n ∗ ψ − ψ)

]
. (3·3)

By the first part of the theorem we have that

ψ ∗ φn − ψ, ψ ∗ φ′n − ψ ∈ N (p!m,p!m) .

This implies that for every k > 0 there exists C > 0 such that for every n ∈ N∗ both
addends in (3·3) are ≤ C e−k n1/m . �

4. Generalized hyperfunctions on the circle

For λ > 1, let Ωλ =
{
z ∈ C | 1

λ
< |z| < λ

}
and Oλ the Banach space of bounded

holomorphic functions on Ωλ. We denote by E(T) (resp. A(T) := ind limλ→1Oλ)
the space of smooth (resp. analytic) functions on the unit circle T = {z ∈ C |
|z| = 1} and by E ′(T) (resp. B(T)) the corresponding space of distributions (resp.
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hyperfunctions), cf. [11]. For f ∈ A(T), the coefficient T̂ (k) of ek(z) = zk in the
Laurent expansion of f is its k-th Fourier coefficient. Complex numbers ck, k ∈ Z,
are the Fourier coefficients of some analytic function (resp. some hyperfunction) if
and only if ||| (c±k)k∈N∗ ||||·|,1/k < 1 (resp. ≤ 1).

Let m ∈ [0, 1) and ν > 0. We denote by Am,ν(T) the set of functions f ∈ A(T)
such that qm,∞ν (f) := supt∈R,α∈N

|f̃(α)(t)|
ναα!m <∞ where f̃(t) = f(eit), t ∈ R. We set

Am(T) = ind lim
ν→∞

Am,ν(T) and A1(T) = ind lim
m→1−

Am(T).

Clearly A1(T) a subalgebra of A(T) whose elements are holomorphic in C∗.
To prove the following theorem, we establish

Lemma 4·1. Let m ∈ (0, 1) and ρ > e/2. Then the function

ϕ : t 7→ ρ−t tm(t+ 1
2 ) e−mt , t ∈

[ 1
2 ,∞

)
reaches its minimum in a unique point tρ such that 1

2 < tρ < ρ
1
m − 1

2 .
Moreover, ϕ is strictly increasing on [tρ,∞) and ϕ(ρ1/m + 1

2) < √e ρ e−mρ1/m .

Proof. The derivative of ψ = lnϕ, given by ψ′(t) = − ln ρ+m
(
ln t+ 1

2t
)
, is strictly

increasing for t ∈ ( 1
2 ,∞) and verifies

ψ′(tρ) = 0 ⇐⇒ tρ e
1/2 tρ = ρ1/m .

This yields ρ1/m − tρ = tρ(e1/2 tρ − 1), and, using x < ex − 1 < xex for x 6= 0,
the claimed inequalities on tρ. Writing ln(ρ1/m + 1

2) = 1
m

ln ρ + ln(1 + 1
2 ρ1/m ) gives

ψ(ρ1/m+ 1
2) = 1

2 ln ρ+m(ρ1/m+1) ln(1+ 1
2ρ1/m )−m(ρ1/m+ 1

2). Since ln(1+ 1
2ρ1/m ) ≤

1
2ρ1/m it follows that ψ(ρ1/m + 1

2) ≤ 1
2 ln ρ + m( 1

2ρ1/m − ρ1/m). Using ρ > e/2, and
m ∈ (0, 1), we find m

2ρ1/m < 1
2 and thus ϕ(ρ1/m + 1

2) ≤ √e ρ e−mρ1/m . �

Previously, we defined the ||| · ||| norm only for sequences indexed by N. Here it is
convenient to use it also for the nets f̂(k) indexed by Z, for which we take it to be
the maximum of the norms of (f̂(k))k∈N and (f̂(−k))k∈N, or equivalently

||| (f̂(k))k |||
±
(·)−1/m = lim sup

k→∞

(
max(|f̂(k)|, |f̂(−k)|)

)k−1/m

.

Theorem 4·2. Let f ∈ A(T) and m ∈ (0, 1).
(i) If f ∈ Am,ν(T) then:

||| (f̂(k))k |||
±
(·)−1/m ≤ e−m/ν

1/m
.

Conversely if the above condition holds, then f ∈ Am,ν′(T) for all ν′ > ν.
(ii) f ∈ Am(T) if and only if

||| (f̂(k))k |||
±
(·)−1/m < 1.

(iii) f ∈ A0,ν(T) if and only if f̂(k) = 0 for |k| > ν.
(iv) f ∈ A0(T) if and only if (f̂(k))k∈Z has finite support.
(v) For all f ∈ A1(T) there exists g ∈ O(C∗) such that g|T = f .

Proof. Let f ∈ Am,ν(T) with 0 < m < 1. For all α ∈ N, f̃ (α)(t) =
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p∈Z(ip)αf̂(p) eipt. It follows that

∫ π
−π f̃

α(t)e−ikt dt = 2π(ik)αf̂(k), and then con-
sequently there is a positive constant C1 such that |k|α|f̂(k)| ≤ C1ν

αα!m.
Using Stirling’s formula: α! = αα+1/2 e−α

√
2π (1 + εα), εα ↘ 0, we find a positive

constant C2 such that:

∀α ∈ N∗, ∀k ∈ Z, |k|α|f̂(k)| ≤ C2ν
ααm(α+1/2)e−mα.

It follows that:

∀α ∈ N∗, ∀k ∈ Z∗, |f̂(k)| ≤ C2

(
ν

|k|

)α
αm(α+1/2) e−mα.

Using the notations of Lemma 4·1 by taking ρ = |k|
ν

with |k| > eν, yields
|f̂(k)| ≤ C2 ϕ(t) for all t ∈ N∗. Following the Lemma, we have ϕ(ρ1/m + 1

2) ≤
√
e ρ e−mρ

1/m . Since ϕ increases on [ρ1/m − 1
2 , ρ

1/m + 1
2 ] which contains a posi-

tive integer αρ, then |f̂(k)| ≤ C2 ϕ(αρ) ≤ C2
√
e ρ e−mρ

1/m for |k| > eν, that is
|f̂(k)| ≤ C2 ( e |k|

ν
)1/2 e−m/ν

1/m for |k| > eν from which inequality of (i) follows.
Conversely assume that f satisfies the condition of (i). Let ν′ > ν. Choose ν′′ such
that ν′ > ν′′ > ν and set β′ = m/(ν′)1/m, β′′ = m/(ν′′)1/m. Since e−β′′ > e−m/ν

1/m ,
there exists a positive constant C > |f̂(0)| such that |f̂(k)| ≤ Ce−β

′′|k|1/m for every
k ∈ Z. For every α ∈ N, we have f̃ (α)(t) =

∑
k∈Z(ik)αf̂(k) eikt. Then, using the last

inequality we find

‖f̃ (α)‖∞ ≤ C
(∑
k∈Z

e−(β′′−β′)|k|1/m
)

sup
k∈Z
|k|α e−β

′|k|1/m .

Let φ(t) = tαe−β
′t1/m ; t ≥ 0. A simple study of φ shows that supt≥0 φ(t) = φ(ν′αm) =

(ν′)ααmα e−mα. Using Stirling’s formula, we get a positive constant C1 such that for
all α ∈ N,

∥∥∥f̃ (α)
∥∥∥
∞
≤ C1 ν

′αα!m, showing that f ∈ Am,ν′(T) and proving (i).
Let f ∈ Am(T). Then f ∈ Am,ν(T) for some ν > 0 and the inequality follows from

(i) and e−m/ν
1/m

< 1. Conversely if ||| (f̂(k))k |||
±
(·)−1/m < 1, there exists ν > 0 such

that ||| (f̂(k))k |||
±
(·)−1/m ≤ e−m/ν

1/m . From (i), it follows that f ∈ Am,ν′(T) for ν′ > ν.
Hence f ∈ Am(T) proving (ii).

Let f ∈ A0,ν(T). The previous shows that there exists C1 > 0 such that
|k|α|f̂(k)| ≤ C1ν

α. It follows that |f̂(k)| ≤ C1

(
ν
|k|

)α
for all k ∈ Z∗ and all α ∈ N. If

|k| > ν, then ν
|k| < 1, and making α→∞ yields f̂(k) = 0.

Conversely, assume that f̂(k) = 0 for |k| > ν. Then we have ∀z ∈ C∗, f(z) =∑
|k|≤ν f̂(k) zk. It follows that for all α ∈ N,

∥∥∥f̃ (α)
∥∥∥
∞
≤
(∑

|k|≤ν

∣∣∣f̂(k)
∣∣∣) να, that is

f ∈ A0,ν(T) proving (iii).
Claim (iv) follows from (iii) straightforwardly.
Claims (ii) and (iv) show that for f ∈ A1(T), the series

∑
k∈Z f̂(k) zk converges

absolutely for any z ∈ C, proving (v). �

Now let r = (rn)n with rn > 0 and rn ↘ 0. For n ∈ N, we set ψn(z) =∑
|k|≤1/rn z

k. We have ψn ∗ ψn = ψn and limn→∞ ψn = δ in E ′(T). If H ∈ B(T),
H ∗ ψn =

∑
|k|≤1/rn Ĥ(k)zk (where S ∗ T = z 7→

∑
k∈Z Ŝ(k) T̂ (k) zk) and conse-

quently limn→∞H ∗ ψn = H in B(T).
For f ∈ Oλ we set qλ(f) = ‖ f ‖L∞(Ωλ) and q̂λ(f) = sup

k∈Z
λ|k||f̂(k)|. Recall that, for
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f = (fn)n ∈ (Oλ)N, we note ||| f |||qλ,r = lim sup
n→∞

qλ(fn)rn and

−→
F q,r =

{
f ∈ A1(T)N | ∃λ > 1 : ||| f |||qλ,r <∞

}
,

−→
K q,r =

{
f ∈ A1(T)N | ∃λ > 1 : ||| f |||qλ,r = 0

}
.

and exactly the same for q̂ instead of q.

Proposition 4·3. Let λ > 1 and f = (fn)n ∈ ON
λ . Then we have for any µ ∈

(1, λ)
||| f |||qµ,r ≤ ||| f |||q̂λ,r ≤ ||| f |||qλ,r .

Consequently, −→F q,r = −→F q̂,r and −→K q,r = −→K q̂,r

Proof. Let λ > µ > 1 and f = (fn)n ∈ ON
λ . For every k ∈ Z, λ|k||f̂n(k)| ≤ q̂λ(fn)

and then |f̂n(k)| ≤ q̂λ(fn)λ−|k|. Using this inequality, we find from |fn(z)| ≤∑
k∈Z |f̂n(k)| |z|k that |fn(z)| ≤ q̂λ(fn)

∑
k∈Z

(
µ
λ

)k. It follows that there exists a po-
sitive constant C(λ, µ) such that C(λ, µ)qµ(fn) ≤ q̂λ(fn).
From Cauchy’s formula λ|k||f̂n(k)| ≤ qλ(fn) and then q̂λ(fn) ≤ qλ(fn). Finally we
obtain

||| f |||qµ,r ≤ ||| f |||q̂λ,r ≤ ||| f |||qλ,r,

and then it follows straightforwardly that −→F q,r = −→F q̂,r and −→K q,r = −→K q̂,r. �

Definition 4·4. Let Xr(T) = −→F q,r and Nr(T) = −→K q,r. The algebra of generalized
hyperfunctions on T is GH,r = Xr(T)/Nr(T).

We have an embedding of B(T) in GH,r(T) which preserves the usual multiplication
of elements in A1(T) :

Theorem 4·5. Let

ī : B(T) → GH,r(T)
H 7→ [(H ∗ ψn)n]

and ī0 : A1(T) → GH,r(T)
f 7→ [(f)n]

.

Then, ī is a linear embedding and ī0 is a one to one morphism of algebras such that
ī|A1(T) = ī0.

Proof. The claim on ī0 is easy to prove. Let us focus on the properties of the first
part related to ī. The linearity of ī is quite obvious. Let H ∈ B(T) and set h = (hn)n
with hn = H ∗ ψn. From Theorem 4·2,(v), we have h ∈ X (T).

Now take λ > 1. From the property of the Fourier coefficients of H, there exists
C > 0 such that |Ĥ(k)| ≤ C λ|k| for all k ∈ Z. It follows that λ|k||ĥn(k)| ≤ Cλ2/rn

showing that |||h |||q̂λ,r ≤ λ2. By Proposition 4·3, h ∈ Xr(T). It is sufficient to consider
restrictions to the spaces Am(T) with 0 < m < 1. Let f ∈ Am(T) with 0 < m < 1.
There is λ > 1 such that f(z) =

∑
k∈Z f̂(k) zk for 1/λ ≤ |z| ≤ λ. Then we have

ī0(f) − ī(f) = [fn] where fn = f − f ∗ ψn, that is fn(z) =
∑
|k|>1/rn f̂(k) zk. Then

we have (fn)n ∈ Oλ.
We claim that (fn)n ∈ Nr(T). From Theorem 4·2, there exist p ∈ (0, 1) and
C > 0 such that every k ∈ Z, |f̂(k)| ≤ Cp|k|

1/m . For |k| > r−1
n , writing

p|k|
1/m ≤ p

1
2 |k|

1/m
p

1
2 r
−1/m
n , we find

(
λ|k||f̂n(k)|

)rn
≤
(
Cλ|k|p

1
2 |k|

1/m
)rn

p
1
2 r

(m−1)/m
n .
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Since Cλ|k|p 1
2 |k|

1/m is bounded with respect to k, because of 1/m > 1 and p ∈ (0, 1),
it follows that ||| f |||q̂λ,r = 0, proving our claim. �
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