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Generalized funtions as sequene spaes withultranormsMaximilian F. Hasler, Université Antilles-Guyane, D.S.I., F�97275 ShoelherGF '04, Novi Sad, 27 September 2004AbstratWe review our reent formulation (with A. Delroix, S. Pilipovi¢ and V. Val-morin) of Colombeau type algebras as Hausdor� sequene spaes with ultra-norms, de�ned by sequenes of exponential weights. We extend previous re-sults and give several new perspetives related to ehelon type spaes, possiblegeneralisations, asymptoti algebras, onepts of assoiation, and appliationsthereof.Keywords: Generalized funtion; topologial algebra; sequene spae. MSC:46F30; 46A45; 46H05.1 IntrodutionColombeau's New Generalized Funtions [1℄ are today the most widely used asso-iative di�erential algebras ontaining the δ�distribution. Their topology is studiedsine the late 1990s [3℄, and investigation in topologial duals of suh spaes is nowemerging as important topi of researh in this �eld.We de�ne suh algebras right from the start as spaes with ultranorms [5, 4℄,whih is natural and espeially useful for pratial use of the topology, with no needfor valuations. Our onstrution allows for algebras ontaining ultradistributions andperiodi hyperfuntions [6℄. Without speializing to a onrete spae, we dedue gen-eral results about ompleteness, embedding of duals and funtoriality, and generalizeknown onepts of assoiation, revealing aspets of the underlying struture ratherhidden in other approahes. Our approah also shows better the lose link with thelassial theory of sequene spaes.2 The basi onstrutionConsider a sequene r = (rn)n ∈ (R+)N dereasing to zero. For a seminorm p on an
R� or C�vetor spae E, this de�nes a map ||| · |||p,r : EN → R+ = [0,∞],

f = (fn)n 7−→ ||| f ||| = ||| f |||p,r = lim sup
n→∞

(
p(fn)

)rn
.Lemma 2.1 (a) If 0 < lim inf p(fn) ≤ lim sup p(fn) <∞, then ||| f ||| = 1.(b) For all f, g ∈ EN, λ ∈ C∗ : ||| f + g ||| ≤ max(||| f |||, ||| g |||) and |||λf ||| = ||| f |||.() If E is a topologial algebra, then ||| f · g ||| ≤ ||| f ||| · ||| g |||.Proof. As lim rn = 0, we have lim krn = 1 for any k > 0, thus (a). Writing p(λfn) ≤

|λ| p(fn) and p(fn+gn) ≤ 2 max(p(fn), p(gn)), we have (b), and using ∃C > 0 ∀x, y ∈
E : p(x y) ≤ C p(x) p(y), we get () in the same way. �1
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De�nition 2.2 The r�generalized semi-normed spae (E, p) is the fator spae
Gr(E, p) = Fr(E, p) /Kr(E, p), where

Fr(E, p) =
{
f ∈ EN | ||| f |||p,r <∞

}
, Kr(E, p) =

{
f ∈ EN | ||| f |||p,r = 0

}
.Proposition 2.3 The map ||| · |||p,r de�nes a pseudometri dp,r on Fr(E, p), makingit a topologial ring, if E is a topologial algebra. As Kr(E, p) is the intersetion ofneighborhoods of zero, Gr(E, p) is then the assoiated Hausdor� topologial ring, onwhih dp,r is well-de�ned and an ultrametri.Proof. This is a diret onsequene of the De�nition and preeding Lemma. �Example 2.4 For E = C and p = | · |, we obtain the ring of r�generalizedomplex numbers, Cr = Gr(C, | · |). For rn = 1

log n (n > 1), this are Colombeau'sgeneralized numbers C̃, sine lim sup |xn|
1/ log n <∞ ⇐⇒ ∃γ ∈ R : |xn| = o(nγ),and lim |xn|

1/ log n = 0 ⇐⇒ ∀γ ∈ R : |xn| = o(nγ).The hoie rn = n−1/m (with m > 0), leads to ultraomplex numbers C
p!m

.Proposition 2.5 The spaes Gr(E, p) (resp. Fr(E, p)) are topologial algebras overthe generalized numbers (resp. over Fr(K, | · |)) equipped with ||| · |||�topology, but theyaren't topologial vetor spaes over the �eld K = R or C.Proof. This is seen by observing that Lemma 2.1-() also holds for f ∈ CN, whileLemma 2.1-(b) implies that |||λ f ||| does not go to zero when λ→ 0. �Example 2.6 To obtain r�generalized Sobolev algebras GW s,∞(Ω) =

Gr

(
W s,∞(Ω), ps,∞

), we hoose E = W s,∞(Ω) with norm ps,∞ =
∑

|α|<s

‖∂α · ‖L∞ .This generalizes to any normed algebra.Theorem 2.7 ((equivalent sales)) If r = (rn)n, s = (sn)n derease to zerosuh that s = O(r), then Fr(E, p) ⊂ Fs(E, p), Ks(E, p) ⊂ Kr(E, p). In par-tiular, if lim
n→∞

sn

rn
= C ∈ R∗

+, then ||| f |||p,s = (||| f |||p,r)
C , and thus Fs(E, p) =

Fr(E, p), Ks(E, p) = Kr(E, p) and Gs(E, p) = Gr(E, p).Proof. If sn = cn rn with lim sup cn = C ∈ R∗
+, we have log ||| f |||p,s =

lim sup(sn log p(fn)) = lim sup(cn rn log p(fn)) ≤ C lim sup(rn log p(fn)) =
C log ||| f |||p,r, where we assumed lim log p(fn) ≥ 0, i.e. ||| f ||| ≥ 1. Otherwise, ≤ mustbe replaed by ≥, leading to the inverse inlusion for K. �Remark 2.8 ((relation to Maddox' sequene spaes) ) Our spaes
Kr(C, |·|) and Fr(C, |·|) are the same as c0(r) =

⋂
k∈N

{
x ∈ C

N | lim |xn| k
1/rn = 0

}and ℓ∞(r) =
⋃

k∈N

{
x ∈ CN | sup |xn| k

−1/rn <∞
}, introdued in [7, 8℄ andstudied extensively by Maddox and his students [9, 10℄. To see this, observe that

∃k ∈ N : sup |xn| k
−1/rn < ∞ ⇐⇒ ∃k : lim sup |xn|

rn ≤ k ⇐⇒ |||x |||r < ∞, and
∀k : lim |xn| k

1/rn = 0 ⇐⇒ ∀ε > 0 : |xn| = o(ε1/rn) ⇐⇒ |||x |||r = 0.These spaes belong to the lasses of ehelon resp. o-ehelon spaes. As we al-ways require lim rn = 0, both are Montel and Shwartz spaes. While the ited workon sequene spaes is restrited to (C, |·|), our studies onern more general spaes.However, most of the spaes onsidered in the sequel an be written as intersetionand/or union of ehelon and o-ehelon type spaes. This also allows the general-ization of the present onstrution to any abstrat topologial module E, as will bedisussed in a forthoming publiation.
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3 Generalized loally onvex spaesDe�nition 3.1 The r�extension of a loally onvex spae (E,P) is the fatorspae Gr(E,P) = Fr(E,P) /Kr(E,P) =
⋂

p∈P

Fr(E, p)
/ ⋂

p∈P

Kr(E, p).Theorem 3.2 If (E,P) is a topologial algebra, i.e. ∀p ∈ P ∃p̄ ∈ P ∃C > 0∀x, y ∈
E : p(x y) ≤ C p̄(x) p̄(y), then Fr(E,P) is a subalgebra of EN, Kr(E,P) is an idealof Fr(E,P), and (dp,r)p∈P is a family of pseudo-distanes on Gr(E,P) making it aHausdo� topologial algebra over Cr.Proof. Lemma 2.1-(b) yields for f, g ∈ Fr, λ ∈ C, and p ∈ P : |||λf + g |||p ≤
max(||| f |||p, ||| g |||p), thus Fr and Kr are C�linear subspaes. Continuity of multiplia-tion in (E,P) gives as in 2.1-(), ∀p ∈ P , ∃p̄ ∈ P : ||| f g |||p ≤ ||| f |||p̄ · ||| g |||p̄. Thus Fris a C�subalgebra of EN, and Kr an ideal of Fr. The inequalities also imply onti-nuity of addition and multipliation, thus Fr is a topologial F|·|,r�algebra, and GPis again the assoiated Hausdor� spae. �Example 3.3 The lassial simpli�ed Colombeau algebra [1℄ is obtained for
rn = 1

log n and P =
{
pµ

ν : f 7→ sup
|α|≤ν,|x|≤µ

|f (α)(x)|
}

µ,ν∈N
on E = C∞(Ω).As a last generalization of the base spae, onsider a family of semi-normedalgebras (Eµ

ν , p
µ
ν )µ,ν∈N

with embeddings ∀µ, ν ∈ N : Eµ+1
ν →֒ Eµ

ν , Eµ
ν →֒ Eµ

ν+1resp. Eµ
ν+1 →֒ Eµ

ν . Let −→E = proj lim
µ→∞

ind lim
ν→∞

Eµ
ν , resp. ←−E = proj lim

µ→∞
proj lim

ν→∞
Eµ

ν , andassume that for all µ ∈ N the indutive limit is regular, i.e. a subset is bounded i�it is a bounded subset of (Eµ
ν )N for some ν ∈ N. Now let

Fr(
−→
E ) =

{
f ∈
−→
E N

∣∣∣ ∀µ ∈ N, ∃ν ∈ N : f ∈ (Eµ
ν )

N
∧ ||| f |||pµ

ν , r <∞
}
,

Fr(
←−
E ) =

{
f ∈

←−
E N | ∀µ, ν ∈ N : ||| f |||pµ

ν , r < ∞
}
, and the obvious de�nition for

Kr(
←→
E ), where we write←→· for both, −→· and←−· . Then again, Gr(

←→
E ) = Fr(

←→
E ) /Kr(

←→
E )is a topologial algebra for the respetive limit topology.Example 3.4 In [6℄ we showed how to embed Gevery lass ultradistributions inColombeau algebras G(p!m,p!m

′
) = Grm′ (E(m)), G{p!m,p!m

′
} = Grm′ (E{m}), where rm

n =

n
1
m and E(m), E{m} are the proj�proj resp. proj�ind limit type spaes of Beurlingresp. Roumieu ultradi�erentiable funtions, de�ned trough spaes on whih pm,µ

ν (f) =

sup
|x|≤µ,α∈Ns

ν|α|

α!m
|f (α)(x)| resp. qm,µ

ν = pm,µ
1/ν are �nite.De�nition 3.5 Consider the spaes Oλ of holomorphi funtions on Ωλ ={

z ∈ C | 1
λ < |z| < λ

} with �nite norm qλ = ‖·‖L∞(Ωλ). Analyti funtions on theunit irle are then A(T) = ind lim
λ→1

Oλ. Let −→E = ind lim
λ→1

(A1(T), qλ), where
A1(T) = ind lim

m→1−
ind lim
ν→∞

{
f ∈ A(T) | ‖f (α)‖L∞(T) =

α→∞
O(να α!m)

}
.Then, r�generalized hyperfuntions on T are de�ned as GH,r(T) = Gr(
−→
E ), quo-tient spae of Fr(

−→
E ) =

⋃
λ>0

Fr(A1(T), qλ) by Kr(
−→
E ) =

⋃
λ>0

Kr(A1(T), qλ).The same type of ultranorm an be used to haraterize generalized funtions fon the unit irle by means of their Fourier oe�ients (f̂k)k ∈ C
Z, for whih wede�ne ||| (f̂k)k∈Z

|||
±

r
= max

{
||| (f̂k)k∈N

|||
|·|,r

, ||| (f̂−k)k∈N
|||
|·|,r

}
.Fourier oe�ients of analyti funtions f ∈ A(T), Shwartz distributions

T ∈ E ′(T) and hyperfuntions H ∈ B(T) are haraterized by ||| (f̂k)k |||
±

(·)−1 < 1,
||| (T̂k)k |||

±

1/ log <∞, resp. ||| (Ĥk)k |||
±

(·)−1 ≤ 1.M.Hasler: Generalized...ultranorms . . . . . . . . �3� . . . . . . . . (ompiled February 1, 2008)



Proposition 3.6 ((Fourier haraterization)) The same spaes Fr(
−→
E ), Kr(

−→
E )are obtained in the previous de�nition if qλ is replaed by q̂λ : f 7→ sup

k∈Z

λ|k||f̂k|.Proof. If f ∈ Fr(
−→
E ), ||| f |||qλ,r < ∞, there is C > 0 suh that qλ(fn)rn < C forall n. Cauhy's inequalities in Ωλ then give |f̂n(k)| ≤ qλ(fn)λ−|k|, thus |f̂n(k)|rn ≤

C λ−|k|rn for all k ∈ Z, whene ||| f |||q̂λ,r <∞. Conversely, if f ∈ −→E N, ||| f |||q̂λ,r <∞,we have q̂λ(fn)rn < C for some C > 0 and all n, i.e. |f̂n(k)| < C1/rnλ−|k| for all
k ∈ Z. Consequently, there isM > 0 suh that qλ(fn) ≤M C1/rn , thus ||| f |||qλ,r <∞.The proof for K goes the same way. �Convolution with molli�ers φn =

∑
|k|≤1/rn

zk allows to embed hyperfuntions
B(T) into GH,r(T), preserving the usual produt of A1(T) [6℄.Proposition 3.7 ((Completeness)) Without assuming ompleteness of ←→E ,
Fr(
←−
E ) is omplete, and Fr(

−→
E ) is sequentially omplete.Proof. If (fm)m is a Cauhy sequene in Fr(

←−
E ), there are inreasing sequenes

(mµ), (nµ) ∈ NN suh that ∀µ ∈ N, ∀ k, ℓ ≥ mµ, lim sup
n→∞

pµ
µ

(
fk

n − f
ℓ
n

)rn
< 1

2µ andmore preisely ∀ k, ℓ ∈ [mµ,mµ+1] ∀n ≥ nµ : pµ
µ

(
fk

n − f
ℓ
n

)rn
< 1

2µ . Let µ̄(n) =

sup {µ | nµ ≤ n }, and onsider the sequene f̄ = (fmµ̄(n)
n )n. Then we have fm → f̄in Fr(

←−
E ). Indeed, for ε and pµ0

ν given, take µ > µ0, ν suh that 1
2µ < 1

2ε. As pµ
ν isinreasing in both indies, we have for m ∈ [mµ+s,mµ+s+1]:

pµ0
ν (fm

n − f̄n)rn ≤ pµ
µ(fm

n − f
mµ+s+1
n )rn +

∑µ̄(n)−1
µ′=µ+s+1 p

µ′

µ′(fmµ′

n − fmµ′+1
n )rn .For n > nµ+s, one has n ≥ nµ̄(n), thus pµ0

ν (fm
n − f̄n)rn <

∑µ̄(n)
µ′=µ+s

1
2µ′ < 2

2µ < ε.As Fr(
←−
E ) is a metrisable spae, this implies ompleteness.For Cauhy nets in Fr(

−→
E ), we use that for all µ there is ν(µ) suh that pµ

ν(µ) ≤ p
µ+1
ν(µ+1)and pµ

ν(µ) (fm
n − f

p
n)

rn < εµ, where (εµ)µ dereases to zero. With this, we an provethe sequential ompleteness of Fr(
−→
E ) by the same arguments as above. �Remark 3.8 ((disreteness of indued topology)) In [6℄ we have shown thata net (δn)n ∈

←→
E N suh that ∀ψ ∈←→E , limn→∞

∫
Rs δn · ψ = ψ(0), annot be boundedin←→E , under very weak assumptions. From this we dedue that the topology of anyalgebra ontaining δ and←→E must indue the disrete topology on←→E .4 Families of sales and asymptoti algebrasWe now generalize the growth onditions. Consider a family r = (rm)m of sequenes

(rm
n )n dereasing to zero as n→∞. Suppose that either(I) ∀m ∈ N : rm = O(rm+1), or (II) ∀m ∈ N : rm+1 = O(rm).Theorem 4.1 De�ne Fr(

←→
E ) =

⋂
m∈N
Frm(

←→
E ), Kr(

←→
E ) =

⋃
m∈N
Krm(

←→
E ) in ase(I), resp. Fr(

←→
E ) =

⋃
m∈N
Frm(

←→
E ), Kr(

←→
E ) =

⋂
m∈N
Krm(

←→
E ) in ase (II). Thenagain, Gr(

←→
E ) = Fr(

←→
E ) /Kr(

←→
E ) is an algebra.Proof. Using Krm(

←→
E ) · Frm(

←→
E ) ⊂ Krm(

←→
E ) and Theorem 2.7, it is easy to verifythat in both ases, Fr(

←→
E ) is a subalgebra and Kr(

←→
E ) is an ideal thereof. �Example 4.2 For rm

n = 1 if n ≤ m, 0 elsewhere, we get Egorov-type algebras.M.Hasler: Generalized...ultranorms . . . . . . . . �4� . . . . . . . . (ompiled February 1, 2008)



De�nition 4.3 Let a = (am : N→ R+)m∈Z
be an asymptoti sale, i.e. ∀m ∈ Z,

am+1 = o(am), a−m = 1/am and ∃M ∈ Z : aM = o(a2
m). The asymptoti algebrade�ned by a and a loally onvex algebra (E,P) is the fator spae A(a)(E,P) =

{
f ∈ EN | ∃m ∈ Z ∀p ∈ P : p(f) = O(am)

}

{ f ∈ EN | ∀m ∈ Z ∀p ∈ P : p(f) = o(am) }
.Example 4.4 (i) am(n) = n−m leads to Colombeau type generalized algebras.(ii) am = 1/ expm (m-fold iterated exp funtion) gives exponential algebras [2℄.Theorem 4.5 For rm

n = | log am(n)|
−1, we have Gr(E,P) = A(a)(E,P).Proof. If p(fn) < C am(n) = C e1/rm (for am > 1), then lim sup(p ◦ f)rm

< ∞and f ∈ Fr(E,P). Conversely, if lim sup(p ◦ f)1/| log am̄| < C then p ◦ f ≤ (am)
log C ,

(am, C > 1). Using the third property of sales, ∃M : p ◦ f = o(aM ).Now onsider ∀m̄ : p ◦ f = o(am̄). Take m ∈ N. Then, for any q ∈ N, there is m̂suh that am̂ = o(am
q) and p ◦ f = o(am̂) = o(am

q) = o((e−1/rm)q) = o((e−q)1/rm

).Therefore lim sup(p◦f)rm

≤ e−q, and as q was arbitrary, we have ||| f |||p,rm = 0, thus
f ∈ Kr(E,P).Finally assume ∀m̄ : lim sup p(fn)rm̄

= 0, i.e. ∀C > 0 : (p ◦ f)1/| log am̄| = o(C), thus
p(f) = O(C| log am̄| = O(am̄

| log C|). Now for any m, let m̄ = m + 1 and C = 1/e.Then p(f) = O(am̄) = o(am), as required. �A seond kind of �asymptoti� algebras is of the form
A(a)(E,P) =

{
f ∈ EN | ∀σ < 0 ∀p ∈ P : p(f) = o(aσ)

}

{ f ∈ EN | ∃σ > 0 ∀p ∈ P : p(f) = o(aσ) }
,where a = (aσ)σ∈R

is a sale (i.e. ∀σ > ρ, aσ = o(aρ), et.), indexed by a realnumber. As the subalgebra is here given as intersetion and the ideal as union ofsets, this ase is not overed by the previous one.Proposition 4.6 For rm = 1
| log a1/m| , we have A(a)(E,P) = F ′

r(P)/K′
r(P), with

F ′
r(P) = F ′

r(E,P) =
{
f ∈ EN | ∀m ∈ N ∀p ∈ P : ||| f |||p,rm ≤ 1

} and
K′

r(P) = K′
r(E,P) =

{
f ∈ EN | ∃m ∈ N ∀p ∈ P : ||| f |||p,rm < 1

}
.Example 4.7 aσ(n) = e−n σ gives algebras with infra�exponential growth [3℄, ofpartiular interest for embeddings of periodi hyperfuntions.5 Funtorial propertiesA map ϕ :

←→
E →

←→
F obviously extends anonially to Gr(ϕ) : Gr(

←→
E )→ Gr(

←→
F ) if forall f ∈ Fr(

←→
E ) and k ∈ Kr(

←→
E ), we have

(F1) : ϕ(f) = (ϕ(fn))n ∈ Fr(
←→
F ) , and (F2) : ϕ(f + k)− ϕ(f) ∈ Kr(

←→
F ) .De�nition 5.1 The r�extension of a map ϕ :

←→
E →

←→
F satisfying the aboveonditions (F1), (F2), is de�ned as the map Gr(ϕ) : Gr(
←→
E ) → Gr(

←→
F ) suh that

[f ] 7→ ϕ(f) +Kr(
←→
F ), where f is any representative of [f ] = f +Kr(

←→
E ).Example 5.2 Linear mappings ϕ of loally onvex vetor spaes (E,P) → (F,Q)are ontinuous i� ∀q ∈ Q ∃p ∈ P ∃c > 0 ∀x ∈ E : q(ϕ(x)) ≤ c p(x) .Then, ∀f ∈ EN : |||ϕ(f) |||q,r ≤ ||| f |||p,r, whene (F1) and (F2), using linearity.We onsider again a sequene of sales (rm) suh that rm+1 ≤( ≥ )rm. Let us denote

F+
rm = Frm(R+, | · |) and K+

rm = Krm(R+, | · |).M.Hasler: Generalized...ultranorms . . . . . . . . �5� . . . . . . . . (ompiled February 1, 2008)



De�nition 5.3 In ase rm+1 ≤ rm, an inreasing map g : R+ → R+ is alled
r�moderate i� ∀m ∈ N ∃M ∈ N : g(F+

rm) ⊂ F+
rM , and r�ompatible i� it isontinuous at 0 and ∀M ∈ N ∃m ∈ N : h(K+

rm) ⊂ K+
rM .In ase rm+1 ≥ rm, the de�nitions hold with ∀m ∃M ↔ ∀M ∃m exhanged.These notions allow to haraterize maps that extend anonially to Gr:De�nition 5.4 A map ϕ : (E,P)→ (F,Q) is ontinuously r�temperate i� : (a)there is an r�moderate funtion g suh that

∀q ∈ Q ∃p ∈ P ∀f ∈ E : q(ϕ(f)) ≤ g(p(f)),and (b) there is an r�moderate funtion g and an r�ompatible funtion hsuh that ∀q ∈ Q ∃p ∈ P ∀f, k ∈ E : q(ϕ(f + k)− ϕ(f)) ≤ g(p(f))h(p(k)).Theorem 5.5 Any ontinuously r�temperate map ϕ extends anonially to Gr(ϕ) :
Gr(E,P) → Gr(F,Q) , and this anonial extension is ontinuous for the topologiesindued by (||| · |||p,rm)p∈P,m∈N

resp. (||| · |||q,rm)q∈Q,m∈N
.Proof. Condition (a) of De�nition 5.4 implies (F1), and (b) gives (F2). We omit thestraightforward alulations, a bit lengthy in view of the four ases to be treated [4℄.Continuity of Gr(ϕ) is obtained in the same way as (F2), replaing p(f) ∈ F+

rm by
||| f |||p,m ≤ K, and p(k) ∈ K+

rm by ||| k |||p,m ≤ ε. �6 Assoiation in r�generalized algebrasIn several situations, e.g. when solving PDE, strong equality is impossible to obtainor not needed, and approximation expressed by assoiation is su�ient.De�nition 6.1 Generalized numbers [x], [y] ∈ Cr are assoiated i� x− y is a nullsequene, [x] ≈ [y] ⇐⇒ x − y ∈ N =
{
x ∈ CN | limx = 0

}. For s ∈ R, they are
s�assoiated, [x]

s
≈ [y], i� x− y ∈ N (s) =

{
x ∈ CN | xn = o(e−s/rn)

}.Remark 6.2 (i) The de�nition is well-posed sine Kr(C, |·|) ⊂ N .(ii) We have N (s) = e−s
r N , where er = (e

1
rn )n represents a positive unit of Cr.(iii) All elements of the open unit ball are assoiated to zero, |||x ||||·|,r < 1 =⇒

x ∈ N , and x ∈ N =⇒ |||x ||||·|,r ≤ 1, but 1
rn
→

n→∞
∞ also veri�es ||| 1r ||||·|,r = 1.De�nition 6.3 If J is an additive subset of Fr(

←→
E ) ontaining Kr(

←→
E ), two elements

F,G ∈ Gr(
←→
E ) are J �assoiated, F ≈

J
G, i� F −G ∈ J /Kr(

←→
E ).Proposition 6.4 If J is absolutely onvex, the relation ≈

J
is stable under multipli-ation with elements of the losed unit ball.Clearly, ≈

J
is ompatible with derivation i� J is stable under di�erentiation.De�nition 6.5 We all F,G ∈ Gr(E,P) strongly assoiated, F ≃ G, i� ∀p ∈

P : dp,r (F,G) < 1. For any s ∈ R, strong s�assoiation is de�ned as
F

s
≃ G ⇐⇒ ∀p ∈ P : dp,r (F,G) < e−s ⇐⇒ F ≈

J (s)
Gwhere J (s) =

{
f ∈ EN | ∀p ∈ P : ||| f |||p,r < e−s

}
=: B

(P)
e−s .Remark 6.6 If F s

≃ G for all s > 0, then F = G, beause ⋂
s>0 J

(s) = oGr(E,P).In order to de�ne weak assoiation, notie that a ontinuous bilinear form
〈·, ·〉 :

←→
E ×D → C anonially extends to Gr(

←→
E )×D → Cr (f. Example 5.2). Thisallows to de�ne, for any onvex subset M of Fr(C, | · |) ontaining 0Cr , subspaes Jof the form JM =

{
f ∈
←→
E N | ∀ψ ∈ D : 〈f, ψ〉 ∈M

}.M.Hasler: Generalized...ultranorms . . . . . . . . �6� . . . . . . . . (ompiled February 1, 2008)



De�nition 6.7 For M = N (s) resp. M = B
(|·|)
e−s , assoiation with respet to JM isalled weak (s,D′)� resp. strong�weak (s,D)�assoiation and is written F s

≈D G(⇐⇒ ∀ψ ∈ D : 〈F −G,ψ〉
s
≈ 0), resp. F s

≃D G (⇐⇒ ∀ψ ∈ D : | 〈F −G,ψ〉 |r < e−s).If s = 0, it is omitted from notation.Example 6.8 In Colombeau's ase, [f ], [g] are weakly (s,D′)�assoiated i� ns(fn−
gn)→ 0 in D′(Ω). For ultradistributions and for periodi hyperfuntions, with D =
D(m), D = D{m} resp. D = A(T), this is a new onstrution.Proposition 6.9 Strong�weak (s,D)�assoiation implies (s,D′)�assoiation, whihonversely implies strong�weak (s′,D)�assoiation only for all s′ < s.Proof. This follows from |||x |||r < e−s =⇒ x ∈ N (s) =⇒ |||x |||r < e−s′ for s′ < s,while a ounter-example for s′ = s an be built as in Remark 6.2. �In a forthoming paper, we explain in detail how these onepts of assoiationare useful in the ontext of regularity theory and miroloal analysis.Referenes[1℄ Colombeau, J-F., 1983, New Generalized Funtions (Amsterdam: North Hol-land).[2℄ Delroix, A., Sarpalézos, D., 1998, Asymptoti Sales � Asymptoti Algebras.Integral Transforms and Speial Funtions 6, 181�190.[3℄ �, 1999, Sharp topologies on (C, E ,P)�algebras, in: M Grosser et al., NonlinearTheory of Generalized Funtions (CRC Res. Notes in Mathematis, Chapman& Hall, 1999), pp. 165�173.[4℄ Delroix, A., Hasler, M F., Pilipovi¢, S., Valmorin, V., 2002, Algebras of gene-ralized funtions through sequene spaes: Funtoriality and assoiations. Int.J. Math. Si. 1 no.1, 13�31.[5℄ �, 2004, Generalized funtion algebras as sequene spae algebras. Pro. AMS132, 2031�2038.[6℄ �, 2004, Embeddings of ultradistributions and periodi hyperfuntions inColombeau type algebras through sequene spae. Math. Pro. Camb. Phil.So. 137 no.3, 697�708.[7℄ Nakano, H., 1951, Modulared sequene spaes. Pro. Japan Aad. 27, 508�512.[8℄ Simons, S., 1965, The sequene spaes ℓ(pν) and m(pν). Pro. London Math.So. 15, 422�436.[9℄ Maddox, I. J., 1968, Paranormed sequene spaes. Pro. Camb. Phil. So. 64,335�340.[10℄ �, Lasarides, C.G., 1983, Weak ompleteness of sequene spaes.J.Nat.A.Math.India 1, 86�98.
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