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Generalized functions as sequence spaces with
ultranorms

Maximilian F. HASLER, Université Antilles-Guyane, D.S.I., F-97275 Schoelcher

GF ’04, Novi Sad, 27 September 2004

Abstract

We review our recent formulation (with A. Delcroix, S. Pilipovi¢ and V. Val-
morin) of Colombeau type algebras as Hausdorff sequence spaces with ultra-
norms, defined by sequences of exponential weights. We extend previous re-
sults and give several new perspectives related to echelon type spaces, possible
generalisations, asymptotic algebras, concepts of association, and applications
thereof.

Keywords: Generalized function; topological algebra; sequence space. MSC:
46F30; 46A45; 46HO5.

1 Introduction

Colombeau’s New Generalized Functions [1] are today the most widely used asso-
ciative differential algebras containing the d—distribution. Their topology is studied
since the late 1990s [3], and investigation in topological duals of such spaces is now
emerging as important topic of research in this field.

We define such algebras right from the start as spaces with ultranorms [5, [4],
which is natural and especially useful for practical use of the topology, with no need
for valuations. Our construction allows for algebras containing ultradistributions and
periodic hyperfunctions [6]. Without specializing to a concrete space, we deduce gen-
eral results about completeness, embedding of duals and functoriality, and generalize
known concepts of association, revealing aspects of the underlying structure rather
hidden in other approaches. Our approach also shows better the close link with the
classical theory of sequence spaces.

2 The basic construction

Consider a sequence 7 = (r,),, € (Ry)" decreasing to zero. For a seminorm p on an
R or C-vector space E, this defines a map || - ||, : EN - R, =0, 0],

f=Un)y — 1=/, = 111r1nésolip(p(fn))r" :

Lemma 2.1 (a) If 0 <liminfp(f,) < limsupp(f,) < oo, then | f| = 1.
(b) Forall f,g € EN, X€ C*: || f + gl <max(| f[I.lg]l) and [ Af]| =1 f1-
(¢) If E is a topological algebra, then || f-gl <[ fI-llg].

Proof. As limr,, = 0, we have lim k™ = 1 for any k > 0, thus (a). Writing p(Af,) <
(Al p(frn) and p(frn+9gn) < 2max(p(fn), p(gn)), we have (b), and using 3C' > 0V, y €
E :p(xy) < Cp(x)ply), we get (c) in the same way. O
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Definition 2.2 The r—generalized semi-normed space (E,p) is the factor space
G- (E,p) = Fr-(E,p) /| K.(E,p), where

Fo(Bp)={feE" || fll,, <o}, Ke(E,p)={fecE"||f,,.=0}.
Proposition 2.3 The map || - ||, ,. defines a pseudometric d,, . on F,(E,p), making
it a topological Ting, if E is a topological algebra. As KC,.(E,p) is the intersection of

neighborhoods of zero, G,.(E,p) is then the associated Hausdorff topological ring, on
which dp . is well-defined and an ultrametric.

Proof. This is a direct consequence of the Definition and preceding Lemma. g

Example 2.4 For E = C and p = | - |, we obtain the ring of r—generalized
complex numbers, C,. = G,.(C,|-|). Forr, = —— (n > 1), this are Colombeau’s

_ logn
generalized numbers C, since limsup |z, |/ 18" < 0o <= Iy € R : |z,| = o(n?),
and lim |z, [/1°8" =0 <= Vy € R: |z,| = o(n?).

1

The choice r, = n='/™ (with m > 0), leads to ultracomplex numbers c” .

Proposition 2.5 The spaces G.(E,p) (resp. F.(E,p)) are topological algebras over
the generalized numbers (resp. over F.(K,|-|)) equipped with || - ||-topology, but they
aren’t topological vector spaces over the field K =R or C.

Proof. This is seen by observing that Lemma 2I}(c) also holds for f € CN, while
Lemma [ZTH(b) implies that || A f || does not go to zero when A — 0. O

Example 2.6 To obtain r-generalized Sobolev algebras Gy =
G (W5(Q),ps.), we choose E = W>(Q) with norm psoc = > |0% | e
This generalizes to any normed algebra. laf<s

Theorem 2.7 ((equivalent scales)) If r = (rn),, s = (sn), decrease to zero
such that s = O(r), then F.(E,p) C Fs(E,p), Ks(E,p) C K.(E,p). In par-
ticular, if lim 2= = C € RY, then || fl,, = (|||f|||p7r)c, and thus F4(E,p) =

Fo(E,p), Ks(E,p) =K, (E,p) and Gs(E,p) = G.(E,p).

Proof. If s, = c,r, with limsupe, = C € R}, we have log| f],, =
limsup(s, logp(fn)) = limsup(c,rylogp(fn)) < C limsup(r,logp(fn)) =
Clog| f Il,,..,» where we assumed limlogp(f,) > 0, i.e. || f|| > 1. Otherwise, < must
be replaced by >, leading to the inverse inclusion for . |
Remark 2.8 ((relation to MADDOX’ sequence spaces) ) Our spaces
K. (C,|-) and F.(C,||) are the same as co(r) = ey {z € CV | lim |z,,| K/ = 0}
and lo(r) = Upen {2 €CY|suplz,|k1/™ < oo}, introduced in [7, [8] and

studied extensively by Maddox and his students [9, [I0]. To see this, observe that
Jk € N:suplz,|k~Y™ < 00 <= Tk : limsup|z,|™ <k <= |z, < oo, and
Vk : lim |z, | kY™ =0 <= Ve > 0: |z,] = o(c/™) <= | z], =0.

These spaces belong to the classes of echelon resp. co-echelon spaces. As we al-
ways require limr, = 0, both are Montel and Schwartz spaces. While the cited work
on sequence spaces is restricted to (C,|]), our studies concern more general spaces.
However, most of the spaces considered in the sequel can be written as intersection
and/or union of echelon and co-echelon type spaces. This also allows the general-
ization of the present construction to any abstract topological module E, as will be
discussed in a forthcoming publication.
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3 Generalized locally convex spaces

Definition 3.1 The r—extension of a locally convex space (E,P) is the factor
space Gr(E,P) = F.(E,P)/ K.(E,P) = (N Fr(E,p)/ N K-(E,p).
peEP peEP

Theorem 3.2 If (E,P) is a topological algebra, i.e. Vp € P Ip € P IC > OVz,y €
E :p(zy) < Cp(z)p(y), then F.(E,P) is a subalgebra of EN, K.(E,P) is an ideal
of Fr(E,P), and (dp,;),p is a family of pseudo-distances on G.(E,P) making it a
Hausdoff topological algebra over C,.

Proof. Lemma 2I}(b) yields for f,g € 7, A € C,and p € P : [Af+g], <
max(|| fI,- ¢ll,), thus 7, and K, are C-linear subspaces. Continuity of multiplica-
tion in (£, P) gives as in2Ik(c), Vpe P, IpeP: | fgl, <l fl, lgll, Thus F,
is a C-subalgebra of EN, and K, an ideal of F,. The inequalities also imply conti-
nuity of addition and multiplication, thus F, is a topological F|, ,—algebra, and Gp
is again the associated Hausdorff space. g

Example 3.3 The classical simplified Colombeau algebra [1] is obtained for
Po= s and P = {pl:f sup [fO()|}, . on B=C=(Q).

n = logn
& o] <v,|z|<p

As a last generalization of the base space, consider a family of semi-normed
algebras (Ef,pl), ey With embeddings Vu,v € N @ EfT! — B, Bl — By,
resp. E5+1 — Bl Let E = projlimindlim E¥, resp. E= projlim projlim E¥, and

p—00  V—00 H—00 v—00
assume that for all g € N the inductive limit is regular, i.e. a subset is bounded iff
it is a bounded subset of (E#)" for some v € N. Now let

— =N N
FE)={feE"|vueNweN:feB) Alfly, <o},
FE)={f € BV [Vuv e N: | fl,,

K, (F), where we write = for both, = and . Then again, G, (f) =F, (f) /K, (E))
is a topological algebra for the respective limit topology.

< o0}, and the obvious definition for

Example 3.4 In [6] we showed how to embed Gevery class ultradistributions in
Colombeau algebras GP*"P'" ) =G .. (£(), ge" 2™} = G (4™} where r" =
nw and Em) glm} are the proj—proj resp. proj—ind limit type spaces of Beurling
resp. Roumieu ultradifferentiable functions, defined trough spaces on which pl*(f) =
lex|
sup V'—m|f(°‘) (z)| resp. g™+ = pT/lf‘ are finite.

|z <p,aeNs O

Definition 3.5 Consider the spaces O) of holomorphic functions on Q) =
{zeC| % <|z| <A} with finite norm ¢* = [l oo 2y ) - Amalytic functions on the
unit circle are then A(T) = in)(\i lilm Onr. Let E = in)(\i lilm(Al(T), q), where

A(T) = indlimincllgom{f €A | £ lpemy =_ O a!m)}.

m—1— v —00

Then, r—generalized hyperfunctions on T are defined as Gy, (T) = G, (E)), quo-
— —
tient space of F.(E) = | Fr(A1(T),q*) by K. (E) = U Kr(AL(T), ).
A>0 A>0

The same type of ultranorm can be used to characterize generalized functions f
on the unit circle by means of their Fourier coefficients (fy), € CZ, for which we

Py n ~ A
define || (Fi)yez I = max {l (Feell, o | Foidecsll b
Fourier coefficients of analytic functions f € A(T), Schwartz distributions

T € &'(T) and hyperfunctions H € B(T) are characterized by || (fk)k |||i),1 < 1,
-~ + 5 +
I (T%)y, |||1/10g < 00, resp. || (Hy), |||(.)—1 <L
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Proposition 3.6 ((Fourier characterization)) The same spaces fr(ﬁ), ICT(E))
are obtained in the previous definition if ¢* is replaced by @ : f — sup N¥| fe|.
keZ

Proof. If f € fr(ﬁ), Il fll,n, < oo, there is C > 0 such that (fu)™ < C for
all n. Cauchy’s inequalities in Qy then give |f, (k)| < ¢*(fn)A"¥I, thus | f, (k)™ <
—
C A~ Ik for all k € Z, whence || f || » . < oo. Conversely, if f € EN, || f [, < oo,
we have ¢*(fn)™ < C for some C' > 0 and all n, i.e. |f, (k)| < CY/™ ¥ for all
k € Z. Consequently, there is M > 0 such that ¢*(f,) < M C'/" thus || f || » . < 0.
The proof for K goes the same way. O
Convolution with mollifiers ¢, = E‘ K| <1/ zF allows to embed hyperfunctions
B(T) into G »(T), preserving the usual product of A;(T) [6].

Proposition 3.7 ((Completeness)) Without assuming completeness of ?,
—
F.(E) is complete, and F,.(E) is sequentially complete.

Proof. If (f™),, is a Cauchy sequence in ]-"T((E), there are increasing sequences
(my), (n,) € NY such that Vu € N, Vk, £ > m,,, lim sup p; (fF— ff;)rn < L and

20
n—oo
more precisely Vk,{ € [m,, myi1] Vn > ny, @ ph (fF - fﬁ)rn < 57.  Let oi(n) =
sup { | n, < n}, and consider the sequence f = (f™a() . Then we have f™ — f
<_
in F.(F). Indeed, for € and pH° given, take u > po, v such that

increasing in both indices, we have for m € [m4s, Mutst1]:

PO (fI = Fu) S pla(fi — frmereer ) 4 RO g e
For n > ny s, one has n > ny(,), thus pho(fm — f,)™ < Eﬁf/ﬁ)ws 57 <3¢ <&
As .7-}(2_?) is a metrisable space, this implies completeness.

2“ 25. As pt is

For Cauchy nets in Tr(ﬁ), we use that for all y there is v(p) such that pfj(#) ! (u+1)
and p‘;(#) (fm — fP)™ < e,, where (en), decreases to zero. With this, we can prove

-
the sequential completeness of F,.(F) by the same arguments as above. O

Remark 3.8 ((discreteness of induced topology)) In [6] we have shown that
a net (6,),, E?N such that Yy 6?, lim,, o0 fRS On - = 1(0), cannot be bounded
mn E}, under very weak assumptions. From this we deduce that the topology of any
algebra containing 0 and? must induce the discrete topology on?.

4 Families of scales and asymptotic algebras

We now generalize the growth conditions. Consider a family r = (™), of sequences
(r7),, decreasing to zero as n — oco. Suppose that either

() VmeN:rm=0(@™t), or (1) VmeN:r™+tl =0@rm).

> h g > p g
Theorem 4.1 Define Fr.(E) = (,,enFrm(E), Ki(E) = U, penKrm (E) in case
g g g g
(1), resp. Fr(E) = Upen Frm(E), Ki(E) = ypenKrm(E) in case (II). Then
again, QT(E)) = .7-}(?) ICT(E)) is an algebra.
Proof. Using C,m (E)) - Frm (f) C Kpm (f) and Theorem 27 it is easy to verify
> g
that in both cases, F,.(E ) is a subalgebra and IC,.(E') is an ideal thereof. O

Example 4.2 Forr]* =1 if n <m, 0 elsewhere, we get Egorov-type algebras.
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Definition 4.3 Let a = (am : N—Ry), ., be an asymptotic scale, i.e. Vm € Z,
Amy1 = o(am), a_pm = l/am and AM € Z : apr = o(a?,). The asymptotic algebra
defined by a and a locally convex algebra (E,P) is the factor space A (E,P) =
{feEY|3meZ YpeP: p(f)=0(an)}

(FeB [VmeZ YpeP: p(f) = olam)}

Example 4.4 (i) a,,(n) =n~™ leads to Colombeau type generalized algebras.
(i) a, = 1/ exp™ (m-fold iterated exp function) gives exponential algebras [2Z].

Theorem 4.5 For r™ = |logam(n)| ", we have G.(E,P) = Ay (E,P).

Proof. If p(f,) < Can(n) = Ce'/™ (for a, > 1), then limsup(p o f)"" < oo

and f € F.(E,P). Conversely, if limsup(p o f)1/1°g@n| < C then po f < (an) 2%,

(@m,C > 1). Using the third property of scales, M : po f = o(an).

Now consider Vm : po f = o(am). Take m € N. Then, for any ¢ € N, there is m

such that az = o(am?) and po f=olan) = o0(am?) = o((e= /™ )9) = o((e=9)1/™™).

Therefore limsup(po f)"" < e~9, and as q was arbitrary, we have || f || =0, thus

f ek (E,P). 7

Finally assume Vrm : limsup p(f,)" =0, i.e. YC > 0: (po f)/I1eganl = o(C), thus

p(f) = O(Cleganl = O(a,!1°8C1). Now for any m, let m = m + 1 and C = 1/e.

Then p(f) = O(am) = o(am), as required. O
A second kind of “asymptotic” algebras is of the form

{feEY|Vo<0 VpeP: p(f)=o(ar)}

{feEN|30>0 YpeP: p(f) =o(as)}’

where a = (ao),cp is a scale (i.e. Yo > p, a; = o(a,), etc.), indexed by a real

number. As the subalgebra is here given as intersection and the ideal as union of
sets, this case is not covered by the previous one.

p,r™

AR(E P) =

Proposition 4.6 For r™ = W, we have A®(E,P) = F/(P)/K.(P), with

FiP) = FUE,P)={ [ € B |[vm e NVpeP: | fll,pm <1} and
K;(P)ZK;(E,p):{feEN|3mevae7> |||f|||prm 1},

Example 4.7 a,(n) = e "9 gives algebras with infra—ezponential growth [3], of
particular interest for embeddings of periodic hyperfunctions.

5 Functorial properties

rd g P g g

A map ¢ : E — F obviously extends canonically to G.(¢) : G.(E ) — G.(F ) if for
g g

all fe F.(E) and k € K,.(E ), we have

(F): o) = (p(fa), € F(F), and (F): o(f +k) —o(f) € K(F).

Definition 5.1 The r—extension of a map ¢ : E - F satisfying the above
g

conditions (F1),(Fy), is defined as the map G,.(¢) : G.(E) — QT(?) such that
[f]— o(f) + ICT(?), where f is any representative of [f] = f + ICT(E)).

Example 5.2 Linear mappings ¢ of locally convex vector spaces (E,P) — (F,Q)
are continuous iff Vg€ Q@ Ipe P Je>0 Ve e E: qlp(x)) <cp(x) .

Then, Vf € EN : || o(f) Il <N, whence (F1) and (F2), using linearity.

We consider again a sequence of scales (r™) such that r™+1 ™. Let us denote

<r
Flu = Fon(Ry, |- ]) and K = Ko (R, |- ). (=)
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Definition 5.3 In case r™! < r™, an increasing map g : R, — R, is called
r-moderate iff Ym € N IM € N : g(Fl.) C f:M, and r—compatible iff it is
continuous at 0 and YM € N 3m € N: h(K}.) C K,

In case r™1 > r™  the definitions hold with Ym 3IM < YM Im exchanged.

These notions allow to characterize maps that extend canonically to G,:

Definition 5.4 A map ¢ : (E,P) — (F, Q) is continuously r—temperate iff : (a)
there is an r—moderate function g such that

Vge Q IpeP Ve E:q(e(f)) <g(f)),

and (b) there is an r—moderate function g and an r—compatible function h
such that Vg € @ 3p e P Vf ke E:qe(f +k)—o(f) < gp(f)) h(p(k)).

Theorem 5.5 Any continuously r—temperate map ¢ extends canonically to G, () :
G- (E,P) — G-(F,Q), and this canonical extension is continuous for the topologies

induced by (||| . |||p,’rm )p€P7m€N resp. (||| ' |||q,’rm)q€Q7m€N'
Proof. Condition (a) of Definition 5.4l implies (F}), and (b) gives (F3). We omit the
straightforward calculations, a bit lengthy in view of the four cases to be treated [4].

Continuity of G,.(p) is obtained in the same way as (F»), replacing p(f) € F;h by
I £ 1, < K, and p(k) € K by [ £, <e. 0

6 Association in r—generalized algebras

In several situations, e.g. when solving PDE, strong equality is impossible to obtain
or not needed, and approximation expressed by association is sufficient.

Definition 6.1 Generalized numbers [z], [y] € C, are assoctated iff v —y is a null
sequence, 1] = [y] <= z—ye N ={zecCVN|limz=0}. For s € R, they are

s-associated, [z] = [y], iff t —y € N = {zeCV |z, =o0(e*/m)}.

Remark 6.2 (i) The definition is well-posed since K, (C,||) C N.

(ii) We have N®) = e;* N, where e, = (ei)n represents a positive unit of C,.
(iii) All elements of the open unit ball are associated to zero, ||z, <1 =
€N, andz e N = |z, <1, but % > also verifies || I =1

Definition 6.3 If 7 is an additive subset offr(?) containing IC, ((E)), two elements

> —

F,G € G.(E) are J—associated, F%G, ifF—GeJ/K(F).

Proposition 6.4 If J is absolutely convez, the relation = is stable under multipli-
cation with elements of the closed unit ball. 7

Clearly, ? is compatible with derivation iff 7 is stable under differentiation.

Definition 6.5 We call F,G € G,.(E,P) strongly associated, F' ~ G, iff Vp €
P :dp,(F,G) < 1. For any s € R, strong s—assoctation is defined as

F2G < YeP:dy,(F,G)<e® — F ~ G
JS
where 7 = {f € EN |[Vpe P N, < e} = B7).

Remark 6.6 If I iNye for all s > 0, then F' = G, because (), T = 0g, (E,P)-

In order to define weak association, notice that a continuous bilinear form
> g

(,-) : E x D — C canonically extends to G.(E ) x D — C,. (cf. Example [(5.2)). This

allows to define, for any convex subset M of F,.(C,|-|) containing Oc,, subspaces J

of the form Jy = {f € EN | Vg € D : (f,4) € M}.
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Definition 6.7 For M = N®) resp. M = B(US), association with respect to Jys is

€
called weak (s,D')— resp. strong—weak (s, D)-association and is written F ~G

f= Y €D (F ~G,4) 20), resp. F £ G (= Ve D:|(F—G )| <)

If s =0, it is omitted from notation.

Example 6.8 In Colombeau’s case, [f], [g] are weakly (s, D")-associated iff n®(f, —
gn) — 0 in D' (Q). For ultradistributions and for periodic hyperfunctions, with D =
D) D =D resp. D = A(T), this is a new construction.

Proposition 6.9 Strong-weak (s, D)-association implies (s, D')-association, which
conversely implies strong—weak (s', D)—association only for all s < s.

Proof. This follows from [z, <e™® = z€ N®) = [z, <e® for s < s,
while a counter-example for s’ = s can be built as in Remark O

In a forthcoming paper, we explain in detail how these concepts of association
are useful in the context of regularity theory and microlocal analysis.
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