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SUMMARY

In an earlier paper [1], we developed an efficient incremental unknowns (IU) preconditioner for solving
the two-dimensional (2D) Helmholtz problem in both high and low frequency (wavenumber) regimes. The
multilevel preconditioning scheme involves separation of each grid into a coarser grid of the following
level and a complementary grid on which the IUs are defined by interpolation. This approach is efficient
as long as the mesh size of the coarsest grid is sufficiently small compared to the wavelength. In order
to overcome this restriction, the authors introduced recently (in [2]) a modified IU method combining the
conventional interpolation with the Helmholtz equation based interpolation (EBI). The EBI coefficients are
derived numerically using a sufficiently large set of analytic solutions of the Helmholtz equation on a special
hierarchy of stencils. The modified IUs using Helmholtz EBI are shown to provide improved preconditioning
on the coarse scales where the conventional interpolation can not be employed. This study deals with the
extension of this idea for solving the three-dimensional (3D) Helmholtz equation. Copyright c© 0000 John
Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

Various applications such as oil exploration, analysis of optical devices, as well as marine and aero

acoustics require efficient methods to compute numerical solutions of the Helmholtz equation. This

equation,

∆E + k2E = f (1)

equipped with various boundary conditions, is obtained by applying the Fourier transform with

respect to time to the acoustic wave equation. In (1), E represents the unknown field, f is the

volumetric source term, and k denotes the wavenumber related to the temporal frequency (ω) by

k = ω/c where c is the wave propagation velocity. When equation (1) is satisfied with a zero

right hand side (RHS), the excitation of the problem is provided by the boundary conditions. This

equation appears in many geometric configurations, but we will focus on solving it in a three-

dimensional unbounded domain. Hence, to avoid reflections, absorbing boundary conditions (ABC)
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2 P. POULLET AND A. BOAG

will be provided on the outer boundary of the solution domain. As the ABC are necessarily complex,

a finite difference approximation of the Helmholtz boundary value problem typically leads to a

large-scale indefinite complex linear system:

Ae = b with A ∈ Cn×n, and e, b ∈ Cn (2)

where e denotes the unknown discrete field, while the known RHS vector b stands for the excitation.

The latter can be provided by the boundary conditions on the surface of a scatterer, the ABC, or the

RHS of equation (1) if the source term is explicitly included. To obtain a meaningful solution, the

spatial mesh size h must be sufficiently small; usually one takes kh < π/5, which corresponds to

h of less than one tenth of the wavelength ([3]). Consequently, challenging problems occur when

the wavenumber is high. For 2D configurations, the computation of numerical solutions of such a

problem can be performed by using either direct or iterative solvers. However, in 3D configurations,

the choice of direct methods such as the LU decomposition is often no longer feasible due to the

large size of the pertinent matrices.

Though a variety of iterative methods for solving the Helmholtz equation have been introduced

over the years (see [4] for a review of most common techniques), this research area remains very

active. In particular, a class of 2D iterative solvers using a Helmholtz-type differential operator

as a preconditioner has been recently introduced in [5, 6, 7], which appears to produce the major

advance in this field. However, to solve three-dimensional problems, it is often necessary to process

very large linear systems. In such situations even building and storing an incomplete factorization

might become a computational bottleneck. Moreover, to solve an indefinite problem such as the

Helmholtz one with multigrid techniques can be a hard task [8, 9, 10]. Indeed, depending on the

wavenumber, the coarsening must be limited to catch the small eigenfrequencies of the solution,

and a suitable choice of the smoothing operator is needed to obtain a quick convergence [11, 8, 6].

During the late 80’s, the Incremental Unknowns method was developed, for the dynamic

system analysis, with the aim of modeling long-term dynamic behavior of dissipative evolutionary

equations [12]. By introducing a simple multilevel basis creating a hierarchy of unknowns for the

finite difference schemes (closely linked to the hierarchical bases in the finite element context

[13] or wavelet bases), this multilevel method facilitates an application of iterative solvers such

as the conjugate gradient algorithm to the systems in this new basis. A number of studies have

been conducted to analyze and prove the efficiency of this tool as a preconditioner for solving

elliptic partial differential equations ([14, 15, 16] in 2D, and [17, 18, 19] in 3D), similar to

classical multigrid methods. Other works have demonstrated that it is possible to modify this tool

to efficiently solve other linear problems [20, 21, 22, 1]. In particular, it has been shown that such

multilevel schemes can be efficient for solving an exterior Helmholtz problem [1]. Results obtained

by the authors were in agreement with the previous studies of indefinite elliptic boundary value

problems [23, 24]. It has been proven that for the best efficiency, the number of IU levels should

be designed for the coarsest grid to have roughly two points per linear wavelength [1]. In order

to improve on this first result, the authors developed a new method by updating the coarsening

strategy at the transition level beyond which the coarse grids can not meaningfully represent the

solution [2]. To define this new coarsening strategy a hierarchy of square cells (boxes) is considered

on the grid points of the transition level. New incremental unknowns using Helmholtz equation-

based interpolation (EBI) are introduced at all levels starting with the transition level. These EBI-

IU are computed on a cross of grid points at the middle of each box and they use interpolation

from the points located on the boundary of the cell. As this new strategy demonstrated significant

improvements in preconditioning for one and two-dimensional Helmholtz problem, this paper deals

with the extension and analysis of the method for three-dimensional domains. In this context, the

computational domain is split into a hierarchy of cubic cells. The EBI-IU class is then composed of

three orthogonal planes as a natural extension of the cross in 2D, while the class of the cubic box

boundaries appears as an analog of the square contours in 2D [2].

The paper is organized as follows. First, the multilevel decomposition that we use for the 3D

Helmholtz equation is introduced in the following section. Here, we describe a generic transition

between 3D fine and coarse grids with the conventional IUs being defined on the complementary
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EQUATION-BASED AND IU INTERPOLATION FOR SOLVING THE 3D HELMHOLTZ EQUATION 3

grid. Subsequently, we introduce the EBI-IU scheme for a multilevel hierarchy of cubic cells.

Section 3 is devoted to presenting our model problem, the scheme used to compute its approximate

solution and the numerical results. Some concluding remarks are presented in the last section.

2. MULTILEVEL DECOMPOSITION

2.1. The Incremental Unknowns in 3D

We first present the Incremental Unknowns (IUs) formulation for the case of two grids in three

dimensions. Let Gh denote the original fine grid comprising (m + 1) × (m + 1) × (m + 1) points

with with mesh size h and G2h refer to a grid with mesh size 2h whose (m/2 + 1) × (m/2 + 1) ×
(m/2 + 1) points coincide with the even points of Gh. We assume that m is a multiple of 2 and

the grid point indices range from 0 to m and from 0 to m/2 for Gh and G2h, respectively. The

IU structure is as follows: the coarse grid G2h consists of the Gh nodes of type (2i, 2j, 2l), where

i, j, l = 0, · · · ,m/2 and the complementary grid Gf = Gh \ G2h whose nodes serve to define the

IUs. This complementary grid comprises seven different families of nodes: the nodes located at mid

edge of the coarse grid in each of the three directions, the nodes located at a mid face of the closest

neighbours of the coarse grid in the three planes and the nodes at the middle of two planes defined

by the height closest neighbours of the coarse grid. Specifically:

(a) the (2i, 2j, 2l + 1) nodes are located at mid edge transversally between two nodes of the coarse

grid (type (a), in FIG. 1);

(b) the (2i + 1, 2j, 2l) nodes are located at mid edge laterally between two nodes of G2h (type (b)

in the same figure);

(c) the (2i, 2j + 1, 2l) nodes are located at mid edge vertically between two nodes of G2h (type

(c) in the same figure);

(d) the (2i + 1, 2j, 2l + 1) nodes are located at mid face laterally at the middle among four nodes

of G2h (type (d) in the same figure);

(e) the (2i, 2j + 1, 2l + 1) nodes are located at mid face transversally at the middle among four

nodes of G2h (type (e) in the same figure);

(f) the (2i + 1, 2j + 1, 2l) nodes are located at mid face vertically at the middle among four nodes

of G2h (type (f) in the same figure);

(g) the (2i + 1, 2j + 1, 2l + 1) nodes are located at the middle of two planes defined by the height

neighbours (type (g) in the same figure).
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Figure 1. An example of a mesh split in two grids, for m = 8. The coarse grid points (◦) are gathered in G2h,
the points (•) are gathered in the complementary grid Gf . This complementary grid is composed of seven
families of nodes: type (a) are (2i, 2j, 2l + 1) nodes, type (b) - (2i + 1, 2j, 2l) nodes, type (c) - (2i, 2j + 1, 2l)
nodes, type (d) - (2i + 1, 2j, 2l + 1) nodes, type (e) - (2i, 2j + 1, 2l + 1) nodes, type (f) - (2i + 1, 2j + 1, 2l)

nodes, and type (g) - (2i + 1, 2j + 1, 2l + 1) nodes.
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4 P. POULLET AND A. BOAG

If e designates the unknown field of the initial system, let y be the unknown of the coarse grid and

z - the small correction relative to the interpolated values defined by the IU on the complementary

grid (Gf ). Following Chen and Temam [17], we define y and z as:







y2i,2j,2l = e2i,2j,2l,

z2i,2j,2l+1 = e2i,2j,2l+1 −
1
2 (e2i,2j,2l + e2i,2j,2l+2) ,

z2i+1,2j,2l = e2i+1,2j,2l −
1
2 (e2i,2j,2l + e2i+2,2j,2l) ,

z2i,2j+1,2l = e2i,2j+1,2l −
1
2 (e2i,2j,2l + e2i,2j+2,2l) ,

z2i+1,2j,2l+1 = e2i+1,2j,2l+1 −
1
4 (e2i,2j,2l + e2i+2,2j,2l + e2i,2j,2l+2 + e2i+2,2j,2l+2) ,

z2i,2j+1,2l+1 = e2i,2j+1,2l+1 −
1
4 (e2i,2j,2l + e2i,2j+2,2l + e2i,2j,2l+2 + e2i,2j+2,2l+2) ,

z2i+1,2j+1,2l = e2i+1,2j+1,2l −
1
4 (e2i,2j,2l + e2i+2,2j,2l + e2i,2j+2,2l + e2i+2,2j+2,2l) ,

z2i+1,2j+1,2l+1 = e2i+1,2j+1,2l+1 −
1
8 (e2i,2j,2l + e2i,2j+2,2l + e2i,2j,2l+2 + e2i,2j+2,2l+2

+e2i+2,2j,2l + e2i+2,2j+2,2l + e2i+2,2j,2l+2 + e2i+2,2j+2,2l+2)

(3)

Gathering in a vector ē1 the new unknowns: y2i,2j,2l, z2i,2j,2l+1, z2i+1,2j,2l, z2i,2j+1,2l,
z2i+1,2j,2l+1, z2i,2j+1,2l+1, z2i+1,2j+1,2l, z2i+1,2j+1,2l+1, the formulas introduced previously can be

inverted and expressed as a linear transformation:

e = S1ē
1 (4)

which defines matrix S1. The structure of this matrix is sparse and very simple because, subject

to reordering the unknowns, it can be written as I (the identity matrix of Mm+13(IR)) plus the

negative of the interpolation coefficients of (3). After reordering the unknowns in the lexicographical

order, at each line corresponding to a coarse grid unknown, only the diagonal value is not zero and

equals to one. Whereas, at each line corresponding to an unknown of grid Gf , for example, of

the (2i, 2j, 2l + 1) type, we have, in additional to the one on the main diagonal, two other nonzero

values (on both sides of the diagonal), each equal to 1/2 at the two columns which represent the

unknowns of the G2h neighbors.

To extend this construction to a multilevel structure, we consider nested grids by dyadic

decomposition. After d levels of IU grid coarsening, one obtains the coarsest grid with (md + 1) ×
(md + 1) × (md + 1) points where md = m/2d and mesh size equals hd = l/md = 2dh. Let the

unknowns on the original grid be referred to as y0 = ē0 = e. Then, for transition between level d
and level d − 1, by analogy with formula (4), we get for d ≥ 1:

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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EQUATION-BASED AND IU INTERPOLATION FOR SOLVING THE 3D HELMHOLTZ EQUATION 5







yd−1
2i,2j,2l+1 = zd

2i,2j,2l+1 + 1
2

(

yd
2i,2j,2l + yd

2i,2j,2l+2

)

,

yd−1
2i+1,2j,2l = zd

2i+1,2j,2l + 1
2

(

yd
2i,2j,2l + yd

2i+2,2j,2l

)

,

yd−1
2i,2j+1,2l = zd

2i,2j+1,2l + 1
2

(

yd
2i,2j,2l + yd

2i,2j+2,2l

)

,

yd−1
2i+1,2j,2l+1 = zd

2i+1,2j,2l+1 + 1
4

(

yd
2i,2j,2l + yd

2i+2,2j,2l + yd
2i,2j,2l+2 + yd

2i+2,2j,2l+2

)

,

yd−1
2i,2j+1,2l+1 = zd

2i,2j+1,2l+1 + 1
4

(

yd
2i,2j,2l + yd

2i,2j+2,2l + yd
2i,2j,2l+2 + yd

2i,2j+2,2l+2

)

,

yd−1
2i+1,2j+1,2l = zd

2i+1,2j+1,2l + 1
4

(

yd
2i,2j,2l + yd

2i+2,2j,2l + yd
2i,2j+2,2l + yd

2i+2,2j+2,2l

)

,

yd−1
2i+1,2j+1,2l+1 = zd

2i+1,2j+1,2l+1 + 1
8

(

yd
2i,2j,2l + yd

2i,2j+2,2l + yd
2i,2j,2l+2 + yd

2i,2j+2,2l+2

+yd
2i+2,2j,2l + yd

2i+2,2j+2,2l + yd
2i+2,2j,2l+2 + yd

2i+2,2j+2,2l+2

)

.

(5)

Relations (5) can be expressed in a matrix form as

yd−1 = S̄d

[
yd

zd

]

. (6)

Then, ēd−1 = Sdē
d where

ēd =










yd

zd

zd−1

...

z1










and Sd =

[
S̄d 0
0 I.

]

. (7)

Note that ēd comprises the unknowns yd, zd of the dth grid Ghd
as well as zl, l = 1, · · · , d −

1 of the preceding levels. Applying the IU definitions (5)-(7) recursively, the whole d-level

decomposition can be expressed as:

e = S1S2 ē2 = S1S2 . . . Sd
︸ ︷︷ ︸

S

ēd. (8)

Using equation (8), we are able to define multilevel preconditioning schemes with the IUs. The

simplicity of this formula indicates that this process of basis transfer from the nodal basis to the IU

basis can be performed directly by an iterative solver, requiring no additional storage.

Let A be the matrix of the original linear problem and let S be the transfer matrix defined in (8).

The structure of the real-valued matrix S is studied in detail in [19]. One can introduce matrix S
in two ways: either by considering the normal equation system writen in the incremental unknowns

basis, or by setting the original system in the IU basis. In the first case, the system to solve is the

following

ST A∗AS ē = ST A∗b with Sē = e (9)

where ē is the vector of Incremental Unknowns. Note that we eliminated the superscript on ē
explicitly indicating the number of IU levels. To obtain a Hermitian system to solve, one derives

(9) by left-multiplying the normal equations with ST .

In the case of some elliptic problems (Poisson equation), it has been proved in [17] that if C is the

matrix of the discrete linear problem (with Dirichlet boundary conditions) and κ(C) - its condition

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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6 P. POULLET AND A. BOAG

number, we have

κ(ST CS) ≪ κ(C) (10)

Specifically, if h denotes the mesh size on the fine grid, they proved that the condition number of the

matrix ST CS has the asymptotic behavior O(h−1(log h)4), i.e., significantly better than that of C,

which grows as O(h−2). However, compared to the condition number estimates for the 2D problem

[15], this result indicates that the improvement generated by the IU preconditioning in 3D is lower.

2.2. Three-dimensional IUs using equation-based interpolation

The IU described in the previous section are expected to be effective for preconditioning as long as

the mesh size of the coarsest grid is sufficiently small compared to the wavelength. This conclusion

stems from the fact that the IU are based on interpolation, while solutions to the Helmholtz equation

can not be meaningfully interpolated on a uniform grid when the mesh size is equal or larger than

half the wavelength as discussed in [1]. To that end, we develop a three dimensional (3D) equation-

based interpolation (EBI) as an extension of our earlier work [2]. Let us recall that in the IU approach

the multilevel nested structure at each level must be decomposed into two classes of nodes (linked

to the solution values at these points): first, the reference class which includes the nodes from which

the interpolation will be computed, and second, the incremental class that comprises the target nodes

for which the interpolation will be computed. Note that the IUs are defined as a difference between

the actual solution and the interpolated values at the nodes of the incremental class.

The EBI is constructed as a discrete approximation of an integral representation for a solution

to the Helmholtz equation in a bounded sub-domain. Thus, for a given sub-domain, the boundary

values sampled with a sufficient density can be used to determine the solution at the interior points.

In 3D, we consider cubical (box) sub-domains filling the whole solution domain. One can then

define a hierarchy of nested sub-domains by setting the nodes on the sub-domains’ boundaries

as the reference class of points, and the incremental class comprising nodes located on the three

interior planes at the middle of each box (if O is at the center of a box, the planes are xOy, xOz,

yOz). Similarly to the approach in 2D for which the two classes are the border and the cross [2], the

incremental class in 3D comprises nodes of the 3-cross which is the cross in 3D (cf. 2).

t Like in [2], the EBI is designed specifically for the Helmholtz equation by using its solutions.

In general, a solution of the Helmholtz equation in a cube can be expressed as

E(x, y, z) =

∫ 2π

0

∫ π

0

W (θ, φ)Ψθ,φ(x, y, z)dθ dφ, (11)

where

Ψθ,φ(x, y, z) = exp{ık(x sin θ cos φ + y sin θ sin φ + z cos θ)} (12)

is referred as a plane wave with θ and φ represents respectively the elevation and azimuth of the

direction of propagation. For a specific solution E(x, y, z), function W (θ, φ) represents the weight

of the (θ, φ)-directed plane wave in the spectral representation (11). Thus, if an interpolation

rule were satisfied by Ψθ,φ(x, y, z) for all 0 ≤ θ < π, 0 ≤ φ < 2π, it would provide a perfect

interpolation for any E(x, y, z) satisfying the Helmholtz equation. In designing an interpolation

scheme involving J points {(xb
j , y

b
j , z

b
j), j = 1, . . . , J} of the cube boundary, it is sufficient to use

a subset of P ≥ J plane waves {Ψθp,φp
(x, y, z), p = 1, . . . , P} with the propagation directions

(θp, φp) uniformly spaced over the unit sphere. We require that the interpolation rule is satisfied in

the least squares sense for the P plane waves (12) to obtain an over-determined system of equations

for each target point. Specifically, for each point {(xc
i , y

c
i , z

c
i ), i = 1, . . . , s} of the three internal

median planes, we obtain a P × J system

∀1 ≤ p ≤ P,

J∑

j=1

Ψθp,φp
(xb

j , y
b
j , z

b
j) wi

j = Ψθp,φp
(xc

i , y
c
i , z

c
i ), (13)

to be solved in the least squares sense for the interpolation weights wi
j . In fact, the numerical rank

of the system is often lower than J due to the proximity of k to one of the eigenvalues of the

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



EQUATION-BASED AND IU INTERPOLATION FOR SOLVING THE 3D HELMHOLTZ EQUATION 7

Figure 2. Illustration of the equation-based interpolation (EBI): (a) Reference class nodes from which the
EBI values are computed form an array of cubic cells of the bullet nodes referred as Bl; (b) Location of
the incremental class nodes where the field is computed by the equation-based interpolation is defined as

Cl = Bl−1 \ Bl and forms an intersection of three planes inside each cubic cell.

Helmholtz problem with Dirichlet boundary conditions on a given square domain. To that end, we

seek a regularized solution for system (13) via the singular value decomposition (SVD).

The EBI-IUs can now be defined by analogy to (3) as a difference between the actual and

interpolated values:

Y b
{j} = E(xb

j , y
b
j , z

b
j), (14)

Zc
{i} = E(xc

i , y
c
i , z

c
i ) −

J∑

j=1

wi
j E(xb

j , y
b
j , z

b
j), (15)

with the subscript {j} stands for the jth unknown value on the cube border among the J values.

The subscript {i} stands for the ith value which is defined among the s values of the 3D-cross

(intersections of three planes).

The EBI-IUs construction is performed in a multilevel fashion, though here, for the sake of clarity,

we illustrated the process using a simplified notation.
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8 P. POULLET AND A. BOAG

3. THE MULTILEVEL SOLVER

In this section, the model problem is defined and its approximation by a finite difference scheme is

given. Subsequently, numerical results illustrating the solution of our model problem are presented

with the goal of studying and optimizing the performance of our multilevel method.

3.1. A scattering test problem

Let us denote by Π =] − 2, 2[3, an open origin-centered cube, and by Ω, the domain that is contained

in Π and obtained by removing from thereof a small concentric corpus. Then, if one considers

that this corpus represents a perfectly soft acoustic scatterer located in an unbounded domain, our

scattering test problem can be approximated as follows:







∆E + k2E = 0 in Ω = Π \ Σ
E = f on Σ

BE = 0 on ∂Π
(16)

where the operator B corresponds to the chosen absorbing boundary condition (ABC) that facilitates

the replacement of an unbounded problem by the finite size computational domain Ω. The second

equation in (16) represents a perfectly soft acoustic scatterer with f being the negative of the incident

field. In agreement with the previous studies in 2D or 3D ([1], [2], [25]), when using a second order

centered scheme for the Laplace operator, the accuracy of the solution is not affected by expressing

the ABC by the second-order approximation due to Mur [26]. To that end, let the boundary of

the cube ∂Π be split into six square faces Γ±l, l = 1, 2, 3 whose outward normal directions are

given by the coordinate directions ±xl). The second-order ABC on the interior points of these faces

(Γ±l, l = 1, 2, 3) reads

BintE ≡ ±
∂E

∂xl

− ıkE −
ı

2k

∑

1≤j 6=l≤3

∂2E

∂x2
j

= 0. (17)

Furthermore, according to the study [27], the singular points of the boundary require a different

treatment. In particular, the following condition is employed on the edge between the faces Γ±m

and Γ±j , denoted as Γ(±m,±j):

BedgeE ≡ −
3

2
k2E − ık

(

±
∂E

∂xm

±
∂E

∂xj

)

−
1

2

∂2E

∂x2
l

= 0. (18)

In addition, the ABC approximation

BcornE ≡ −2ıkE +

3∑

j=1

±
∂E

∂xj

= 0 (19)

should be satisfied at each of the eight corners of the cube Π.

3.2. Numerical results

In this section, we compare the performance of different multilevel methods combining the IU and

EBI-IU preconditioning. These methods are applied to solve the scattering boundary value problem

(16). At the center of the domain, the small box which plays the role of a perfectly soft acoustic

scatterer, is illuminated by a plane wave eıkx, i.e., we have f = −eıkx over Σ. All methods use the

conjugate gradient (CG) method for solving normal equations (referred as the CGNR algorithm on

p. 236 in Ref. [28] and recently used in [2, 1, 29]) with various multilevel preconditioners introduced

in the previous sections.

Table I is devoted to presenting the influence of the wavelength/wavenumber on the performance

of different methods based on the conventional IU preconditioning. To assign a name to a method,
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EQUATION-BASED AND IU INTERPOLATION FOR SOLVING THE 3D HELMHOLTZ EQUATION 9

a digit is added to ”CGIU” to represent the number of IU-levels used in the preconditioner. Then,

with the total number of grid points being fixed, the best result is obtained usually by the method

whose coarsest grid corresponds to the density of two points per wavelength. For example, consider

in Table I the case of λ = 0.25, which makes the length of the domain to comprise 16 wavelengths.

We can see that the most efficient method in this case is CGIU3. Indeed, 256 grid points in each

direction after 3 levels of IU reduce to 32 on the coarsest grid, thus reaching the threshold of 2
points per wavelength. This rule, however is not perfectly accurate, because for λ = 1.0, the solver

that uses 4 grid levels of IU gives slightly better results than CGIU5. Thus, we conclude that while

the limit of 2 points per wavelength is definitely a lower bound, coarse grids with 4 points can

sometimes be more appropriate. A similar phenomenon has been observed in 2D, where we also

demonstrated that if more IU levels, beyond the 2 point per wavelength threshold are added, the

preconditioner performance tends to deteriorate [1, 2].

λ = 0.25 λ = 0.5 λ = 1.0 λ = 2.0
CGIU1 2601 8160 11397 ***

CGIU2 1028 2930 4091 9770

CGIU3 774 1256 1687 3953

CGIU4 804 1020 1250 3264

CGIU5 1768 1074 1274 2962

CGIU6 3465 1170 1334 3768

CGIU7 5023 1670 1399 4041

CGIU8 5490 1865 1404 4051

Table I. Number of iterations required for the iterative methods to achieve convergence (i.e., to reduce

the relative L2 norm of the residual ‖b − Ax‖2/‖b‖2 below 5.10−7) for various values of the wavelength
(λ = 2π/k). Case where convergence has not been achieved within 25,000 iterations is marked with ***.

The computations are performed on a grid comprising 2573 points.

Similarly, Table II gathers the result of the same test problem with the conventional IU

preconditioning that has been solved previously (cf. Table I), but for the finest grid that is two

times coarser. Regardless of the value of the wavelength, the results that we obtained, proved that

the most efficient method reaches the density of two points per wavelength for the coarsest grid.

λ = 0.25 λ = 0.5 λ = 1.0
CG 1907 3153 6703

CGIU1 695 1100 2326

CGIU2 515 472 868

CGIU3 696 396 475

CGIU4 1737 412 472

CGIU5 3308 708 509

CGIU6 4833 1043 529

Table II. Number of iterations required for the iterative methods to achieve convergence (i.e., to reduce

the relative L2 norm of the residual ‖b − Ax‖2/‖b‖2 below 5.10−7) for various values of the wavelength

(λ = 2π/k). The computations are performed on a grid comprising 1293 points.

In Table III, we summarize the results obtained with various methods which combine the

conventional IU with the multilevel EBI, applied to the problem (16) with k = 2π. The results

show that for this value of the wavenumber, the most efficient method is obtained by adding

multilevel EBI-IU to the conventional 4-level IU preconditioner, which yields the coarsest grid

density of 4 points per wavelength. This result is consistent with our earlier statement that 4 points

per wavelength is the lowest density threshold required to sufficient resolve the acoustic wave

phenomena.
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10 P. POULLET AND A. BOAG

λ = 1 EBI-0 EBI-1 EBI-2 EBI-3 EBI-4

CGIU2 4091 3849 3605 3420 3401

CGIU3 1687 1619 1541 1525 1507

CGIU4 1250 1227 1223 1212 1213

CGIU5 1274 1277 1278 1280 1293

Table III. Number of iterations required for the iterative methods to achieve convergence (i.e., to reduce

the relative L2 norm of the residual ‖b − Ax‖2/‖b‖2 below 5.10−7) for k = 2π. The computations are

performed on a grid comprising 2573 points.

It should be noted that while in Tables I, III and II, we focus on the number of iterations required

to achieve convergence, the per-iteration complexity to some extent depends on the specific method

and problem size. For example, adding one more level of EBI with the configuration comprising

257 points in each direction, raises the complexity of each iteration by 3% to 9%, with the exact

figure depending on the number of levels of the conventional IU.

4. CONCLUDING REMARKS

This paper introduces a new multilevel method for an efficient solution of the acoustic scattering

problem in 3D. Towards development of this technique, a new type of IU that we called Helmholtz

Equation-Based Interpolation (EBI) [2] has been extended to three spatial dimensions. The proposed

approach emerges from combining the efficiency of the classical IU preconditioner for the Laplace

and Helmholtz equations with the ideas of the boundary element methods. Our results demonstrate

an improvement in the numerical efficacy compared to the method using only the classical IU.
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