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Abstract. We discuss the control of distributed systems with incomplete data following the
notion of no-regret control (or, equivalently, Pareto control) used by Lions in [C. R. Acad. Sci.
Paris Ser. I Math., 302 (1986), pp. 223–227] and [C. R. Acad. Sci. Paris Ser. I Math., 302 (1992),
pp. 1253–1257]. We associate with the no-regret control a sequence of low-regret controls defined
by a quadratic perturbation previously used by Nakoulima, Omrane, and Velin in [C. R. Acad. Sci.
Paris Ser. I Math., 330 (2000), pp. 801–806].

In the first part, we prove that the perturbed system corresponds to a sequence of standard
control problems and converges to the no-regret (or Pareto) control for which we obtain a singular
optimality system. We give also some applications.

In the second part, we show how the method can be extended to the evolution case. Equations
of parabolic type, Petrowsky type, or hyperbolic type are considered.

Key words. Pareto control, no-regret control, low-regret control, systems with incomplete data,
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1. Introduction. Let V be a real Hilbert space of dual V ′, A ∈ L(V;V ′) an
elliptic (parabolic or hyperbolic in the sections below) differential operator modeling
a distributed system, U the Hilbert space of controls, and B ∈ L(U ;V ′). Let G
be a nonempty closed vector subspace of the Hilbert space of uncertainties F , and
β ∈ L(F,V ′).

For f ∈ V ′, the state equation related to the control v ∈ U and to the uncertainty
g ∈ G is given by

Ay(v, g) = f + B v + β g.(1.1)

Supposing that A is an isomorphism from V to V ′, (1.1) is well posed in V. Denote
by y = y(v, g) the unique solution to (1.1). For every g ∈ G we have then a possible
state for which we rely on a cost function given by

J(v, g) =
∥∥∥C y − zd

∥∥∥2

H
+ N

∥∥∥v∥∥∥2

U
,(1.2)

where C ∈ L(V;H), H is a Hilbert space, zd ∈ H fixed, N > 0, and ‖.‖X is the
norm on the real Hilbert space X. We are concerned with the optimal control of the
problem (1.1)–(1.2); i.e., we want to solve

inf
v∈U

J(v, g) ∀g ∈ G,

which clearly makes no sense when G �= {0} (G being an infinite space).
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pus Fouillole 97159 Pointe-à-Pitre, Guadeloupe (FWI) (onakouli@univ-ag.fr, aomrane@univ-ag.fr,
jvelin@univ-ag.fr).

1167



1168 O. NAKOULIMA, A. OMRANE, AND J. VELIN

The idea is to look for a solution for the following minimization problem:

inf
v∈U

(
sup
g∈G

J(v, g)

)
,

but J is not upper bounded as supg∈G J(v, g) = +∞.
Lions used the notions of Pareto control [12] and no-regret control [14] in appli-

cation to control the system (1.1)–(1.2).
The concept of Pareto1 is motivated by a number of applications in economics,

and also in ecology. In his book [9], Kotarski discussed the Pareto optimum problem,
where some results of geometrical and numerical interest are obtained in the case of
optimal control. In [8], he generalized the well-known Dubovicki–Milutin theorem
(on the feasible sets of Pareto) and applied it to obtain a necessary condition for
the Pareto minimum, or necessary and sufficient conditions on the Pareto optimum,
extending a geometrical work of Censor [3]. Lions [12], [13] used the concept to obtain
controls for distributed problems with incomplete data.

The no-regret concept was introduced many years later in statistics by Savage
[18]. In several works, Lions applied this notion and a related idea called “low-
regret” control to problems of incomplete data (see [14], [15], [16], [7], [6]) for various
applications. In [14], for example, he extends the results of the work of Allwright
[1] to the infinite dimension case. In [7] with Gabay, a decision criterion is added to
the uncertainties closed subspace; it improves by extending the notion of low-regret
to many agents: each agent wishes to act with least-regret and all agents wish to
have minimum exchanges of information, in order to make things as local as possible.
The low-regret control is applied to systems where there are controls and unknown
perturbations. One then looks for the control not making things worse with respect
to a nominal control u0 (or to then doing nothing, u0 = 0), independently of the
perturbations which may be of infinite number.

We will see in section 2 that Pareto controls and no-regret controls are actually
the same.

In this work, we give a characterization of the no-regret (or the Pareto) control for
problems of incomplete data, in both the stationary and evolution cases. We improve
the results of the work in [14] (and also [12]) of Lions by giving the precise optimality
system for the low-regret control and by describing a number of applications. Thanks
to a quadratic perturbation used by the authors in [17], the optimality system for the
no-regret control appears clearly as the limit of a standard control problem.

Some of the results in this paper are summarized in [17]. The proofs in the present
paper and the treatment of the evolution cases are new.

The paper is organized as follows. In section 2, we see the main definitions, we
verify the equivalence between the two approaches of Lions, and we introduce the
low-regret control method. We then give the optimality system for the perturbed
problem and prove that the optimal controls for the perturbed problem converge to
the no-regret (Pareto) control of original problem. Moreover, by passing to the limit
in the associated optimality system of the perturbed problem, we obtain a singular
optimality system for the no-regret (Pareto) control. In section 3, we give several
examples of elliptic type. Section 4 is devoted to the evolution case. Here, we give

1Wifredo Pareto (1848–1923) was an Italian economist and a political sociologist. He defined the
efficient optimum, and in particular was the one who devised the law of trivial many and critical few
known as the 80:20 rule.
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the theoretical results for parabolic and hyperbolic distributed systems. An example
involving a parabolic system is considered in the last section.

2. No-regret control for stationary problems.

2.1. Definitions and preliminary results. We give definitions for the Pareto
and no-regret controls related to a given control here, as well as the preliminary
results.

Definition 2.1. We say that u ∈ U is a Pareto control for (1.1)–(1.2) (cf. Lions
[12]) iff J(u, g) ≤ J(v, g) ∀v ∈ U , ∀g ∈ G, and if there exists at least g0 ∈ G such
that J(u, g0) < J(v, g0) ∀v ∈ U .

Definition 2.2. Let u ∈ U be a Pareto control. We say that u is related to a
control u0 ∈ U if

J(u, g) ≤ J(u0, g) ∀g ∈ G.

Definition 2.3. We say that u ∈ U is a no-regret control for (1.1)–(1.2) related
to a control u0 if u is a solution to the following problem:

inf
v∈U

sup
g∈G

(J(v, g) − J(u0, g)) .(2.1)

When u0 = 0, Definition 2.3 reduces to the definition of no-regret control of Lions
[14].

Lemma 2.4. For any u0 ∈ U and v ∈ U we have

J(v, g) − J(u0, g) = J(v, 0) − J(u0, 0) + 2〈β∗ζ(v − u0), g〉G′,G ∀g ∈ G,

where ζ(v) ∈ V is defined for v ∈ U by

A∗ζ(v) = C∗C(y(v, 0) − y(0, 0)),

A∗ (resp., β∗) being the adjoint of A (resp., β).
Proof. We have in fact

J(v, g)−J(u0, g) = J(v, 0)−J(u0, 0)+2〈C(y(v−u0, 0)−y(0, 0)), C(y(0, g)−y(0, 0))〉H,H

∀g ∈ G. We then introduce ζ(v) ∈ V defined by A∗ζ(v) = C∗C(y(v, 0) − y(0, 0)),
where A∗ is the adjoint of A. Then

〈C(y(v, 0) − y(0, 0)), C(y(0, g) − y(0, 0))〉H,H = 〈A∗ζ(v), y(0, g) − y(0, 0)〉V′,V ,

= 〈ζ(v), βg〉V,V′ = 〈β∗ζ(v), g〉
G′,G

(notice that A(y(0, g) − y(0, 0)) = β g).
Remark 1. For sake of simplicity, we denote by S(v) = β∗ζ(v) the linear function

for v ∈ U . Then we have

J(v, g) − J(u0, g) = J(v, 0) − J(u0, 0) + 2〈S(v − u0), g〉G′,G ∀g ∈ G.(2.2)

In the applications below β = Id, and we have S(v) = ζ(v) ∀v ∈ U .
Remark 2. Of course the problem (2.1) is defined only for the controls v ∈ U such

that

sup
g∈G

(J(v, g) − J(u0, g)) < ∞.
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From (2.2) this is realized for the no-regret control (and the Pareto control) v iff
v ∈ K + u0, where K = {w ∈ U , 〈S(w), g 〉 = 0 ∀g ∈ G} .

Proposition 2.5 (cf. Lions [12]). Let be u0 ∈ U . Then there exists a unique
Pareto control related to u0. Moreover, it is the unique element of the set K + u0,
which minimizes the functional J(v, 0) on K + u0.

We can now prove the following.
Theorem 2.6. Let u0 ∈ U be a given control. Then we have the following: a

control u ∈ U is a Pareto control related to u0 iff u is a no-regret control related to
u0.

Proof. Let u be a Pareto control related to u0, and let be v ∈ K + u0. Then
〈S(u − u0), g〉 = 0 = 〈S(v − u0), g〉 ∀g ∈ G, and we have J(u, 0) ≤ J(v, 0) according
to Proposition 2.5. Hence, using (2.2)

J(u, 0) − J(u0, 0) + 2〈S(u− u0), g〉 ≤ sup
g∈G

(J(v, g) − J(u0, g)) ;

that is, supg∈G (J(u, g) − J(u0, g)) ≤ supg∈G (J(v, g) − J(u0, g)). So,

sup
g∈G

(J(u, g) − J(u0, g)) = inf
v∈K+u0

(
sup
g∈G

(J(v, g) − J(u0, g))
)
.

Now, let be v ∈ U\ {K + u0}. There is at least one g0 ∈ G such that 〈S(v−u0), g0〉 �=
0. Then we have

sup
g∈G

(J(v, g) − J(u0, g)) = J(v, 0) − J(u0, 0) + 2 sup
g∈G

〈S(v − u0), g〉 = +∞.

(Note that G is a vector space, and henceforth we have the only two possibilities:
supg∈G〈S(w), g〉 = 0 or supg∈G〈S(w), g〉 = +∞. Indeed, limt→+∞〈S(v − u0), tg0〉 =
+∞.)

From another side, as u is a Pareto control we have J(u, g)−J(u0, g) ≤ 0 ∀g ∈ G;
hence

J(u, g) − J(u0, g) ≤ 0 ≤ sup
g∈G

(J(v, g) − J(u0, g)) ∀g ∈ G.

Finally,

sup
g∈G

(J(u, g) − J(u0, g)) = inf
v∈U\(K+u0)

(
sup
g∈G

(J(v, g) − J(u0, g))
)
.

In conclusion, u is a no-regret control related to u0.
Conversely, let u be a no-regret control related to u0. We have

sup
g∈G

(J(u, g) − J(u0, g)) ≤ sup
g∈G

(J(v, g) − J(u0, g)) ∀v ∈ U .

Then for v = u0,

J(u, 0) + sup
g∈G

〈S(u− u0), g〉 ≤ J(u0, 0) = c constant.

As J(u, 0) ≥ 0, we have supg∈G〈S(u − u0), g〉 ≤ c. We deduce that supg∈G〈S(u −
u0), g〉 = 0. Consequently, 〈S(u − u0), g〉 ≤ 0 ∀g ∈ G, and hence 〈S(u − u0), g〉 = 0.
So, u ∈ K + u0, and we have

J(u, 0) ≤ J(v, 0) ∀v ∈ K + u0.

In conclusion, u is a Pareto control related to u0.
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Remark 3. By Proposition 2.5, we know that there exists a unique Pareto control
related to u0, and that is the only one which minimizes the functional infv∈K+u0

J(v, 0).
In the second part of Theorem 2.6, it is proved that the no-regret control related to
u0—if it exists—also minimizes this functional. As a matter of fact, that suffices to
show the existence of a unique no-regret control related to u0 and that the Pareto
control and no-regret control for the problem (1.1)–(1.2) are actually the same.

We are interested in the existence and the characterization of the no-regret (or
Pareto) control related to u0. We follow the lines of [14] where Lions introduced the
method of low-regret control.

2.2. Low-regret control. As in [17], we define the low-regret control by relax-
ing the problem (2.1) as follows:

inf
v∈U

sup
g∈G

[
J(v, g) − J(u0, g) − γ‖g‖2

G

]
,(2.3)

where u0 ∈ U is a given control, and where γ is a strictly positive parameter. The
solution to problem (2.3), if it exists, will be the low-regret control related to u0, of
the problem (1.1)–(1.2).

Remark 4 (cf. Lions [15]). With the “low-regret control,” we admit the possibility
of making a choice of controls v “slightly worse” (J(v, g)− J(u0, g) ≤ γ‖g‖2

G
and not

J(v, g)−J(u0, g) ≤ 0 as for the no-regret control) than by doing better than u0—but
not much better—if we choose γ small enough (compared to the worst things that
could happen with the “pollution” g).

The best possible choice of v is then given by (2.3).
From (2.2) the problem (2.3) also writes

inf
v∈U

[
J(v, 0) − J(u0, 0) + sup

g∈G

(
〈2S(v − u0), g〉 − γ‖g‖2

G

)]
.

Remark 5. By the perturbation (2.3) we have explicitly the conjugate

sup
g∈G

(
〈2S(v − u0), g〉 − γ‖g‖2

G

)

as we find

sup
g∈G

(
〈2S(v − u0), g〉 − γ‖g‖2

G

)
=

1

γ

∥∥∥S(v − u0)
∥∥∥2

G′
.

With this, if we identify G and G′, the problem (2.3) takes the form

inf
v∈U

J γ(v),(2.4)

where

J γ(v) = J(v, 0) − J(u0, 0) +
1

γ

∥∥∥S(v − u0)
∥∥∥2

G

.(2.5)

We recognize then a standard optimization problem of a quadratic cost functional.
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2.3. Approached optimality system. Now we give the optimality system for
the low-regret control uγ .

Proposition 2.7. The problem (2.4)–(2.5) admits a unique solution uγ called
the low-regret control related to u0.

Proof. We have J γ(v) ≥ −J(u0, 0) ∀v ∈ U . Then dγ = infv∈U J γ(v) exists. Let
then vn = vn(γ) be a minimizing sequence such that dγ = limn→∞ J γ(vn). We have

−J(u0, 0) ≤ J γ(vn) = J(vn, 0) − J(u0, 0) +
1

γ

∥∥∥S(vn)
∥∥∥2

G

≤ dγ + 1.

Then we deduce the bounds∥∥∥vn∥∥∥
U
≤ cγ ,

1√
γ

∥∥∥S(vn − u0)
∥∥∥

G

≤ cγ ,
∥∥∥Cy(vn, 0) − zd

∥∥∥
H
≤ cγ ,

where the constant cγ (independent of n) is not the same each time.
There exists uγ ∈ U such that vn ⇀ uγ weakly in the Hilbert space U . Also,

y(vn, 0) → y(uγ , 0) (continuity w.r.t the data). We also deduce from the strict con-
vexity of the cost function J γ that uγ is unique.

Theorem 2.8. The solution uγ of the relaxed problem (2.4)–(2.5) weakly con-
verges in U as γ → 0 to the unique no-regret control related to u0.

Proof. Let uγ be the solution to (2.4)–(2.5). Then

J(uγ , 0)−J(u0, 0)+
1

γ

∥∥∥S(uγ −u0)
∥∥∥2

G

≤ J(v, 0)−J(u0, 0)+
1

γ

∥∥∥S(v−u0)
∥∥∥2

G

∀v ∈ U .

Particularly for v = u0, we have

J(uγ , 0) − J(u0, 0) +
1

γ

∥∥∥S(uγ − u0)
∥∥∥2

G

≤ 0,

and the structure of J(uγ , 0) in (1.2) gives

∥∥∥Cy(uγ , 0) − zd

∥∥∥2

H
+ N

∥∥∥uγ

∥∥∥2

U
+

1

γ

∥∥∥S(uγ − u0)
∥∥∥2

G
≤ J(u0, 0).(2.6)

We deduce that ‖uγ‖U ≤ c. Then we can extract a subsequence uγ which weakly
converges towards u ∈ U , the solution to (2.4).

Now for v ∈ U we have

J(v, g) − J(u0, g) − γ‖g‖2 ≤ J(v, g) − J(u0, g) ∀g ∈ G.

Then

J(uγ , g) − J(u0, g) − γ‖g‖2 ≤ sup
g∈G

(J(v, g) − J(u0, g)) ∀g ∈ G,

and passing to the limit in γ we obtain

J(u, g) − J(u0, g) ≤ sup
g∈G

(J(v, g) − J(u0, g)) ∀g ∈ G.

We deduce easily that u is a no-regret control related to u0.
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Now we give the optimality system for the low-regret control.
Proposition 2.9. The low-regret control uγ solution to (2.4)–(2.5) is character-

ized by the unique solution {yγ , ζγ , ργ , pγ} of the optimality system⎧⎨
⎩
Ayγ = f + Buγ ,
A ργ = 1

γββ
∗ζγ ,

B∗pγ + Nuγ = 0 in U .

A∗ζγ = C∗C(yγ − y(0, 0)),
A∗pγ = C∗(Cyγ − zd) + C∗Cργ ,

Proof. Let uγ be the solution of (2.4)–(2.5) on U . The Euler–Lagrange necessary
condition gives for every w ∈ U

〈C∗ (Cy(uγ , 0) − zd) , y(w, 0)−y(0, 0)〉H×H+〈Nuγ , w〉U×U +2

〈
1

γ
S(uγ), S(w)

〉
G×G

≥ 0.

Denoting yγ = y(uγ , 0) and ξγ(v) = βS(v) we have

A∗ξγ = C∗C(yγ − y(0, 0)).

Let ργ be the solution to

Aργ =
1

γ
ββ∗ξ.

And as it is classical, we introduce the adjoint state pγ defined by

B∗pγ = C∗(Cyγ − zd) + C∗Cργ

so that we obtain

〈B∗pγ + Nuγ , w〉 ≥ 0 ∀w ∈ U .

But also we have 〈B∗pγ + Nuγ , w〉 ≤ 0 ∀w ∈ U . The optimality system fol-
lows.

2.4. Singular optimality system. Now, we give the optimality system for the
no-regret control.

As in [12] let R be an operator defined as follows.
We solve first

Aρ = β g, g ∈ G, ρ ∈ V,

then

A∗σ = C∗Cρ, σ ∈ V,

and we set R g = B∗ σ. We suppose that∥∥∥R g
∥∥∥

Ĝ

≥ c
∥∥∥g∥∥∥

G

, c > 0, for any g ∈ G,(2.7)

where Ĝ is the completion of G in F , containing the elements Rg.
Remark 6. The space Ĝ is in fact the completion of G for a subspace (H, ‖.‖‖.‖) of

F which can be bigger than G. This will be made precise in the applications below.
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Remark 7. The hypothesis (2.7) is very useful theoretically but is not necessary
in practice. We need only to make sure that the adjoint state pγ of Proposition 2.9
is bounded in a suitable Hilbert space, which is the case in the applications given
below.

Theorem 2.10. Suppose that (2.7) holds true. Then the no-regret control u
related to u0, solution to (2.1), is characterized by the unique {y, λ, ρ, p} solution to
the singular optimality system⎧⎨

⎩
Ay = f + Bu,
Aρ = λ,
B∗p + Nu = 0,

A∗p = C∗(Cy − zd) + C∗Cρ,

with λ ∈ Ĝ.
Proof. From the relation (2.6) and Theorem 2.8, the sequence {uγ} weakly con-

verges in U to u the unique no-regret control related to u0. The operator B being
continuous from U to V ′, {Buγ} weakly converges in V ′ to Bu. Now, from the above
optimality system of Proposition 2.9, the sequence {Ayγ} is bounded in V ′ and, as A
is an isomorphism, weakly converges to Ay in V ′. Passing to the limit in the first equa-
tion we obtain Ay = f+B u. We also deduce from Proposition 2.9 that B∗pγ = −Nuγ

is bounded in V ′. According to the hypothesis (2.7), let R be the operator such that
R( 1

γβ
∗ξγ) = B∗pγ . We deduce under (2.7) that { 1

γβ
∗ξγ} is bounded in G subset

of the Hilbert space F . Then it converges to λ ∈ Ĝ ⊂ F . Hence, Aργ = 1
γβ

∗ξγ
is bounded, and then {ργ}—also bounded thanks to the isomorphism of A—weakly
converges to ρ ∈ V. Consequently, Aργ ⇀ Aρ.

From the boundness of {ργ} and {yγ} we obtain that A∗pγ is bounded. Then
{pγ} converges to p. The optimality system follows.

Remark 8. The situation described by Theorem 2.10, as indicated by Lions in
[12], is completely general, but with λ which should be in the completion of G. This
will be made precise in the following applications.

3. Application. In this section, we apply the above method throughout the
examples given below in different situations: control and uncertainty given in the
interior domain, as well as on the boundary.

Example 1. A distributed control, uncertain boundary values, and a boundary
cost function.

Let Ω be a bounded open domain of R
N of regular boundary Γ. We consider the

distributed system ⎧⎨
⎩
−Δy + y = f + v in Ω,

∂y

∂ν
= g on Γ,

(3.1)

where v ∈ U = L2(Ω), and where g ∈ G ⊂ F = L2(Γ), G a closed subspace of F . If
f ∈ L2(Ω), there exists a unique y(v, g) ∈ H3/2(Ω) solution to (3.1).

We associate with the state y(v, g) the cost function

J(v, g) =
∣∣∣y(v, g) − zd

∣∣∣2
L2(Γ)

+ N
∥∥∥v∥∥∥2

L2(Ω)

.(3.2)

For u0 ∈ U , there exists a unique no-regret control u related to u0. For simplicity,
take u0 = 0. The problem now is to give the optimality system for the no-regret
control u.
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Notice that

J(v, g) − J(0, g) = J(v, 0) − J(0, 0) + 2 (y(v, 0) − y(0, 0), y(0, g) − y(0, 0))
L2(Γ)

and that the function v �−→ y(v, 0) − y(0, 0) (resp., g �−→ y(0, g) − y(0, 0)) is linear
w.r.t v (resp., g) and is the solution to{

Az = v in Ω
∂z
∂ν = 0 on Γ

(
resp.,

{
Az = 0 in Ω,
∂z
∂ν = g on Γ

)
,

where A = −Δ + I. Using the Green formula

(ϕ,Aψ)
L2(Ω)

− (ψ,Aϕ)
L2(Ω)

=

∫
Γ

ϕ
∂ψ

∂νA
dγ −

∫
Γ

ψ
∂ϕ

∂νA
dγ,(3.3)

we find

0 =

∫
Γ

(y(0, g) − y(0, 0)) (y(v, 0) − y(0, 0)) dγ −
∫

Γ

S(v) g dγ,

where v �−→ S(v) is a linear function so that AS = 0, ∂S
∂ν = y(v, 0) − y(0, 0).

Moreover, the following regularity result holds: We have y(0, g) − y(0, 0) ∈
H3/2(Ω) as ∂

∂νA
(y(0, g) − y(0, 0)) ∈ L2(Γ), and as S(v) ∈ H2(Ω) we have also

∂S
∂ν = y(v, 0) − y(0, 0) ∈ H3/2(Ω).

From section 2, the low-regret control method associated with (3.1)–(3.2) is de-
fined by

J γ(v) = J(v, 0) − J(0, 0) +
1

γ

∥∥∥S(v)
∥∥∥2

L2(Γ)

,(3.4)

where S(v) = ζ(v) is the solution of{
AS(v) = 0 in Ω,
∂S
∂νA

= y(v, 0) − y(0, 0) on Γ.

The problem

inf
v∈U

J γ(v)(3.5)

admits a unique solution v = uγ . Then the necessary condition of first order of Euler
on U for every w ∈ U writes

(y(uγ , 0) − zd, y(w, 0) − y(0, 0)) + (Nuγ , w) +

(
1

γ
S(uγ), S(w)

)
≥ 0.(3.6)

We have the following proposition.
Proposition 3.1. The low-regret control uγ solution to (3.4)–(3.5) is character-

ized by the unique {yγ , ζγ , ργ , pγ} solution to⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ayγ = f + uγ , Aζγ = 0, A ργ = 0, A pγ = 0,

∂yγ
∂ν

= 0,
∂ζγ
∂ν

= yγ − y(0, 0),
∂ργ
∂ν

= 1
γ ζγ ,

∂pγ
∂ν

= yγ − zd + ργ ,

pγ + Nuγ = 0 in L2(Ω),



1176 O. NAKOULIMA, A. OMRANE, AND J. VELIN

with

uγ ∈ L2(Ω) and yγ , ζγ , ργ , pγ ∈ H3/2(Ω).

Proof. Denote yγ = y(uγ , 0), and let ζ(uγ) be the solution of Aζγ = 0,
∂ζγ
∂ν =

yγ − y(0, 0). Let now ργ be the solution of Aργ = 0,
∂ργ

∂ν = 1
γ ζγ . Then by the above

Green formula(
1

γ
ζγ(uγ), ζγ(w)

)
L2(Γ)

= (Aργ , ζ)L2(Ω) − (ργ , Aζγ)L2(Ω) +

(
ργ ,

∂ζγ
∂ν

)
L2(Γ)

=

(
ργ ,

∂ζγ
∂ν

)
L2(Γ)

.

The inequality (3.6) becomes

(yγ − zd + ργ , y(w, 0) − y(0, 0)) + (Nuγ , w) ≤ 0.

Now, and as it is classical, we calculate the adjoint state pγ such that Apγ = 0,
∂pγ

∂ν = yγ − zd + ργ .
This is for any w in the vector space U . Then we have

pγ + Nuγ = 0.

Remark 9. The passage to the limit on γ for the no-regret control is an adaptation
of the proof of the Theorem 2.10. Let us note that we do not need the hypothesis
(2.7) as we have B∗ = B = Id.

We obtain the following theorem.
Theorem 3.2. The no-regret control u related to u0 = 0 of the problem (3.1)–

(3.2) is characterized by the unique solution {y, λ, ρ, p} of the optimality system⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ay = f + u, A ρ = 0, A p = 0 in Ω,

∂y

∂ν
= 0,

∂ρ

∂ν
= λ,

∂p

∂ν
= y − zd + ρ on Γ,

p + Nu = 0 in L2(Ω),

with{
u ∈ L2(Ω), y ∈ H3/2(Ω), p ∈ L2(Ω),

λ ∈ Ĝ completion of G for the norm H−5/2(Γ), ρ ∈ H−1(Ω).

Example 2. A boundary control, boundary uncertainty, boundary cost function.
Let Ω be an open domain from R

N of boundary ∂Ω = Γ0 ∪ Γ1, with Γ0 and Γ1

being two regular boundaries such that Γ0 ∩ Γ1 = ∅.
We consider the distributed parameter system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Δy + y = 0 in Ω,

∂y

∂ν
= v on Γ0,

∂y

∂ν
= g on Γ1.

(3.7)
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For v ∈ U = L2(Γ0) and g ∈ G ⊂ L2(Γ1), (3.7) admits a unique solution y(v, g) ∈
H3/2(Ω).

We associate with the state y(v, g) the cost function

J(v, g) =
∣∣∣y(v, g) − zd

∣∣∣2
L2(Γ0)

+ N
∣∣∣v∣∣∣2

L2(Γ0)

.(3.8)

For u0 fixed in U , there exists a unique no-regret control u related to u0. We suppose
that u0 = 0.

The low-regret control associated is defined by the following cost function:

J γ(v) = J(v, 0) − J(0, 0) +
1

γ

∥∥∥S(v)
∥∥∥2

L2(Γ1)

,(3.9)

where S(v) = ζ(v) is the solution to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AS(v) = 0 in Ω,

∂S

∂ν
= y(v, 0) on Γ0,

∂S

∂ν
= 0 on Γ1

(3.10)

and where A = −Δ + I.
Indeed,

J(v, g) − J(0, g) = J(v, 0) − J(0, 0) + 2(y(v, 0), y(0, g))L2(Γ0)×L2(Γ0).

Then by the Green formula we obtain

(y(v, 0), y(0, g))L2(Γ0)×L2(Γ0) = (S(v), g)L2(Γ0)×L2(Γ0),

with S(.) the solution to (3.10). The problem

inf
v∈U

J γ(v)(3.11)

admits a unique solution uγ called the low-regret control.
Proposition 3.3. The low-regret control uγ solution to (3.9)–(3.11) is charac-

terized by the unique solution {yγ , ζγ , ργ , pγ} of the optimality system⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ayγ = 0, Aζγ = 0, A ργ = 0, A pγ = 0 in Ω,

∂yγ
∂ν

= uγ ,
∂ζγ
∂ν

= yγ ,
∂ργ
∂ν

= 0,
∂pγ
∂ν

= yγ − zd + ργ on Γ0,

∂yγ
∂ν

= 0,
∂ζγ
∂ν

= 0,
∂ργ
∂ν

= 1
γ ζγ ,

∂pγ
∂ν

= 0 on Γ1,

pγ + Nuγ = 0 on Γ0,

with, uγ ∈ L2(Γ0), and yγ ∈ H3/2(Ω), ζγ ∈ H5/2(Ω), ργ ∈ H7/2(Ω), pγ ∈ H1/2(Ω).
Proof. The Euler condition gives

(yγ − zd, y(w, 0))
L2(Γ1)×L2(Γ1)

+ N (uγ , w)
L2(Γ0)×L2(Γ0)

+

(
1

γ
ξ(uγ), ξ(w)

)
L2(Γ1)×L2(Γ1)

≥ 0.

(3.12)
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We first solve for ργ : Aργ = 0, with
∂ργ

∂ν = 0 on Γ0, and
∂ργ

∂ν = 1
γ ξ(uγ) on Γ1. Hence

(
1

γ
ξ(uγ), ξ(w)

)
L2(Γ1)×L2(Γ1)

= (ργ , y(w, 0))
L2(Γ0)×L2(Γ0)

so that (3.12) becomes

(yγ − zd + ργ , y(w, 0))
L2(Γ0)×L2(Γ0)

+ N (uγ , w)
L2(Γ0)×L2(Γ0)

≥ 0.

Let now pγ be the solution of Apγ = 0, with
∂pγ

∂ν = yγ − zd on Γ0, and
∂pγ

∂ν = 0 on
Γ1.

We have then

(yγ − zd + ργ , y(w, 0))
L2(Γ0)×L2(Γ0)

= (pγ , w)
L2(Γ0)×L2(Γ0)

.

Finally, as L2(Γ0) is a vector space, we have

pγ + Nuγ = 0 ∀w ∈ L2(Γ0).

The passage to the limit on γ leads to the following theorem.
Theorem 3.4. The no-regret control u of the system (3.7)–(3.8) is characterized

by the unique solution {y, λ, ρ, p} of the optimality system⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ay = 0, A ρ = 0, A p = 0 in Ω,

∂y

∂ν
= u,

∂ρ

∂ν
= 0,

∂p

∂ν
= y − zd + ρ on Γ0,

∂y

∂ν
= 0,

∂ρ

∂ν
= λ,

∂p

∂ν
= 0 on Γ1,

p + Nu = 0 in L2(Γ0),

with {
u ∈ L2(Ω), y ∈ H3/2(Ω), p ∈ H1/2(Ω),

λ ∈ Ĝ completion of G in H−2(Γ), ρ ∈ H−1/2(Ω).

4. The evolution case.

4.1. No-regret control for systems of parabolic type. In this section, A ∈
L(V;V ′) is an elliptic differential operator

(Av , v ) ≥ α
∥∥∥v∥∥∥2

, α > 0,
∥∥∥∥∥∥ = norm in V,

B ∈ L (U ;L2(0, T ;V ′)
)
, and F is the real Hilbert space of uncertainties such that

V ⊂ F ⊂ V ′.

Let then G be the closed vector subspace of F .
For f ∈ L2(0, T ;V ′), the state equation that we consider is

∂y

∂t
+ Ay = f + B v,(4.1)
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with

y(t = 0, v, g) = y0 + g,(4.2)

where y0 is a given data in F and where g ∈ G.
For chosen v and g, the problem (4.1)–(4.2) admits a unique solution noted

y(v, g) ∈ L2(0, T ;V).
For a fixed t ∈ (0, T ), and for any g ∈ G we have then a possible state for which

we attach a cost function given by

J(v, g) =

∫ T

0

‖Cy(v, g) − zd‖2
Hdt + N

∫ T

0

‖v‖2
U dt,(4.3)

where

C ∈ L (L2(0, T ;V);H ),(4.4)

the set H is a Hilbert space, zd ∈ H fixed, N > 0, and ‖.‖X represents the norm
defined on the Hilbert space X.

When G = {0}, a standard control problem is to find

inf
v∈U

J(v, 0).(4.5)

We now develop the approach of the first part to this evolution case, when G �= {0}.
4.1.1. Least regret control. Approached optimality system. Following

the lines of [13] and using the notations in [17], we have then

J(v, g) − J(u0, g) = J(v, 0) − J(u0, 0) + 2〈 ξ(v − u0), g 〉G′×G
,(4.6)

where

S(v) = ζ(t = 0, v)(4.7)

and where ζ is the solution to the backwards problem{−ζ ′ + A∗ ζ = C∗C(y(v, 0) − y(0, 0)),
ζ (t = T, v) = 0,

(4.8)

with ζ ′ = ∂ζ
∂t .

Then the low-regret control associated with the problem (4.1)–(4.3) is defined by

inf
v∈U

J γ(v),(4.9)

J γ(v) = J(v, 0) − J(u0, 0) +
1

γ

∥∥∥ζ(0, v − u0)
∥∥∥2

G′
,(4.10)

where G′ is the dual of G which can be identified to G. The problem (4.9)–(4.10) has
a unique solution uγ called low-regret control.

Proposition 4.1. The low-regret control uγ solution to (4.9)–(4.10) is charac-
terized by the unique solution {yγ , ζγ , ργ , pγ} of the optimality system⎧⎪⎪⎨

⎪⎪⎩
y′γ + Ayγ = f + Buγ ,
ρ′γ + Aργ = 0,
yγ(t = 0) = y0, ργ(0) = 1

γ ζγ ,

B∗pγ + Nuγ = 0 in U .

−ζ ′γ + A∗ζγ = C∗C(yγ − y(0, 0)),
−p′γ + A∗pγ = C∗(Cyγ − zd) + C∗Cργ ,
ζγ(T ) = 0, pγ(T ) = 0,
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Proof. Let uγ be the solution of the problem (4.9)–(4.10). The Euler first order
condition gives the following optimality system:

(Cy(uγ , 0) − zd, C(y(w, 0) − y(0, 0)) )
H×H

+ (Nuγ , w )
U×U

(4.11)

+

(
1

γ
ζ(0, uγ − u0), ζ(0, w)

)
G×G

≥ 0.

With this in mind, let yγ = y(uγ , 0), and look for ζγ = ζ(0, uγ −u0) to be the solution
of (4.8) and ργ ∈ V the solution of{

ρ′γ + Aργ = 0,
ργ(t = 0) = 1

γ ζγ .

As it is classical, we introduce the adjoint state pγ defined by

−p′γ + A∗pγ = C∗(Cyγ − zd) + C∗Cργ , with pγ(T ) = 0.

Hence we deduce from (4.11)

B∗pγ + Nuγ = 0 in U .(4.12)

This ends the proof.

4.1.2. Singular optimality system. We now give the optimality system for
the no-regret control. We need a supplementary hypothesis. Let ρ ∈ L2(0, T ;V ) be
defined by

ρ′ + Aρ = 0, ρ(0) = g, g ∈ G,

and σ ∈ L2(0, T ;V ) as

−σ′ + A ∗σ = C∗C ρ, σ(T ) = 0.

Setting Rg = B∗σ, then we define the continuous operator g �→ Rg from F to U , and
we do the hypothesis ∥∥∥Rg

∥∥∥
U
≥ c

∥∥∥g∥∥∥
F

c > 0 ∀g ∈ G.(4.13)

Theorem 4.2. We suppose that (4.13) holds true. Then the no-regret control
u related to u0, for the system (4.1)–(4.3), is characterized by the unique solution
{y, λ, ρ, p} to the optimality system⎧⎪⎪⎨

⎪⎪⎩
y′ + Ay = f + Bu,
ρ′ + Aρ = 0,
y(0) = y0, ρ(0) = λ,
B∗p + Nu = 0 in U ,

−ζ ′ + A∗ζ = C∗C(y − y(0, 0)),
−p′ + A∗p = C∗(Cy − zd) + C∗Cρ,
ζ(T, u) = 0, p(T ) = 0,

with λ ∈ Ĝ.
Proof. The proof holds from the approached optimality system of Proposi-

tion 4.1 for which a priori estimates allow us to pass to the limit when γ → 0 as
in section 2.
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4.2. No-regret control for well-posed systems of Petrowsky type. We
now consider an elliptic differential operator A such as

A∗ = A,

and to simplify we consider the state equation

y′′ + Ay = v,(4.14)

with

y ∈ L∞(0, T ;V ), y′ ∈ L∞(0, T ;F ),(4.15)

y(0) = y0 + g0, y′(0) = y1 + g1,(4.16)

where {y0, y1} is bounded in V × F and where{
g0 ∈ G0, G0 = closed vector subspace of V,
g1 ∈ G1, G1 = closed vector subspace of F.

(4.17)

Let y(v, g) be the solution of (4.14)–(4.16), g = (g0, g1). Let C be defined by (4.4)
and the cost function J(v, g) be defined by (4.3). We look for the no-regret control
related to u0 = 0. We define y = y(v, 0) and ζ(t, v) (or ζ(t)), respectively, by

y′′ + Ay = v, y(t = 0) = y0, y′(t = 0) = y1,(4.18)

ζ ′′ + Aζ = C∗C y(v, 0), ζ(T ) = 0, ζ ′(T ) = 0.(4.19)

Set z = y(0, g) − y(0, 0). Then z is the solution of⎧⎨
⎩
z′′ + Az = 0,
z(0) = g0,
z′(0) = g1.

Then by the Green formula we obtain

J(v, g) − J(0, g) = J(v, 0) − J(0, 0) + 2

∫ T

0

( ζ ′′ + Δζ, z ) dt

= J(v, 0) − J(0, 0) + 2 ( ζ(0), g1 )G0,G1
− 2 ( ζ ′(0), g0 )G1,G0

.

As the low-regret control solution is defined by the

inf
v∈U

(
sup

g∈G0×G1

(
J(v, g) − J(0, g) + γ

∥∥∥g0

∥∥∥2

G0

− γ
∥∥∥g1

∥∥∥2

G1

))
,

the low-regret control method reads

inf
v∈U

J γ(v) = inf
v∈U

(
J(v, 0) − J(0, 0) +

1

γ

∥∥∥ζ(0)
∥∥∥2

G1

− 1

γ

∥∥∥ζ ′(0)
∥∥∥2

G0

)
.(4.20)

And we have for the Petrowsky systems the following result.
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Theorem 4.3. The no-regret control u related to u0 = 0 is characterized by the
unique solution {y, λ0, λ1, ζ, ρ, p} to the optimality system⎧⎪⎪⎨

⎪⎪⎩
y′′ + Ay = 0, ζ ′′ + Aζ = 0, ρ′′ + Aρ = 0, p′′ + Ap = 0,
y(0) = y0, ζ(T ) = 0, ρ(0) = λ0, p(T ) = 0,
y′(0) = y1, ζ ′(T ) = 0, ρ′(0) = λ1, p′(T ) = 0,

p + Nu = 0,

with⎧⎪⎨
⎪⎩
λ0 = − lim

γ→0

1

γ
ζ ′(0), λ0 ∈ Ĝ0 completion of G0 for the norm

∥∥∥.∥∥∥
G0

,

λ1 = lim
γ→0

1

γ
ζ(0), λ1 ∈ Ĝ1 completion of G1 for the norm

∥∥∥.∥∥∥
G1

.

Remark 10. These results are also valid for well-posed problems of hyperbolic
type.

5. Application. Hereafter, we discuss an example of parabolic type with bound-
ary control, boundary uncertainty, and cost function.

Let Ω be an open set of R
N of boundary Γ0∪Γ1, with Γ0 and Γ1 being two regular

boundaries of empty set intersection. We consider the distributed system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y′ − Δ y + y = 0 in Ω,

y(0, x, v, g) = 0 on {0} × Ω,

∂y

∂ν
= v on ]0, T [×Γ0 = Σ0,

∂y

∂ν
= g on ]0, T [×Γ1 = Σ1.

(5.1)

For v ∈ U = L2(Σ0), g ∈ G, a vector closed subspace of L2(Σ1), (5.1) has a unique
solution y(t, x, v, g) noted y(v, g). We associate with the state y(v, g) the cost function

J(v, g) =
∣∣∣y(v, g) − zd

∣∣∣2
L2(Σ0)

+ N
∣∣∣v∣∣∣2

L2(Σ0)

.(5.2)

For u0 fixed in U , there exists a unique control u related to u0. Take u0 = 0. Then
the associated low-regret control is defined by the following cost function:

J γ(v) = J(v, 0) − J(0, 0) +
1

γ

∣∣∣ζ(v)∣∣∣2
L2(Σ1)

,(5.3)

where ζ is the solution of⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−ζ ′ + Aζ = 0 in Ω,

ζ(T, v) = 0 on {T} × Ω,

∂ζ

∂νA
= y(v, 0) on Σ0,

∂ζ

∂νA
= 0 on Σ1

and where A = −Δ + I = A∗.
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The problem

inf
v∈U

J γ(v)(5.4)

has a unique solution: the low-regret control uγ . We set yγ = y(uγ , 0) and ζγ = ζ(uγ).
We then have immediately the following proposition.

Proposition 5.1. The low-regret control uγ is characterized by the unique solu-
tion {yγ , ζγ , ργ , pγ} of the optimality system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′
γ + Ayγ = 0, −ζ′γ + Aζ = 0, ργ + Aργ = 0, −p′γ + Apγ = 0,

yγ(0) = 0, ζγ(T ) = 0, ργ(0) = 0, pγ(T ) = 0,

on Σ0,
∂yγ
∂ν

= uγ ,
∂ζγ
∂ν

= y(v, 0),
∂ργ
∂ν

= 0,
∂pγ
∂ν

= yγ − zd + ργ ,

on Σ1,
∂yγ
∂ν

= 0,
∂ζγ
∂ν

= 0,
∂ργ
∂ν

= 1
γ
ζγ ,

∂pγ
∂ν

= 0,

pγ + Nuγ = 0 in L2(Σ0),

with,

uγ ∈ L2(Σ0), and yγ ∈ L2((0, T );H3/2(Ω)), ζγ ∈ L2((0, T );H5/2(Ω)), ργ ∈ L2((0, T );H7/2(Ω)),

pγ ∈ L2((0, T );H1/2(Ω)).

For the proof, we use the same technique as detailed for the stationary Example 2
in section 3.

We also deduce easily the following theorem.
Theorem 5.2. The no-regret control u related to u0 = 0 of the system (5.1)–(5.2)

is characterized by the unique solution {y, λ, ρ, p} of the optimality system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′ + Ay = 0, −ζ ′ + Aζ = 0, ρ′ + Aρ = 0, −p′ + Ap = 0 in Ω,

y(0) = 0, ζ(T ) = 0, ρ(0) = 0, p(T ) = 0,

∂y

∂ν
= u,

∂ζ

∂ν
= y,

∂ρ

∂ν
= 0,

∂p

∂ν
= y − zd + ρ on Σ0,

∂y

∂ν
= 0,

∂ζ

∂ν
= 0,

∂ρ

∂ν
= λ,

∂p

∂ν
= 0 on Σ1,

p + Nu = 0 in L2(Σ0),

with ⎧⎨
⎩
u ∈ L2((0, T );L2(Ω)), y ∈ L2((0, T );H3/2(Ω)),

λ ∈ Ĝ completion of G in L2((0, T );H−2(Σ1)),
ρ ∈ L2((0, T );H−1/2(Ω)), p ∈ L2((0, T );H1/2(Ω)).

Conclusion. As we have seen, the low-regret control method allows us to trans-
form systematically a problem with uncertainty to a standard control problem. It is
then easier to obtain optimality systems applying the Euler–Lagrange formula.

This method can be used for the control of singular distributed systems as in [4]
(see also [5]). Here, the singularity of the backward heat equation is taken off by
adding the needed data which may belong to the unknown vector closed subspace G
of a given Hilbert space of uncertainties. The system becomes regular, but it contains
incomplete data. We then give an optimality system to the no-regret control. In [4],
the comparison with the classical penalization method for the control of the backward
heat equation in Lions [11] is discussed.
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Ser. I Math., 319 (1994), pp. 1249–1256.
[8] W. Kotarski, Characterization of Pareto optimal points in problems with multi-equality con-

straints, Optimization, 20 (1989), pp. 93–106.
[9] W. Kotarski, Some Problems of Optimal and Pareto Optimal Control for Distributed Pa-

rameter Systems, Pr. Nauk. Uniw. Sl. Katow. 1668, Wydawnictwo Universytetu Slaskiego,
Katowice, Poland, 1997.
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