Group structure on projective spaces and cyclic codes over finite fields - Université des Antilles
Article Dans Une Revue Finite Fields and Their Applications Année : 2000

Group structure on projective spaces and cyclic codes over finite fields

Résumé

We study the geometrical properties of the subgroups of the multiplicative group of a finite extension of a finite field endowed with its vector space structure, and we show that in some cases the associated projective space has a natural groupe structure. We construct some cyclic codes related to Reed-Muller codes by evaluating polynomials on these subgroups. The geometrical properties of these groups give a fairly simple description of these codes of the Reed-Muller kind.

Dates et versions

hal-00770256 , version 1 (04-01-2013)

Identifiants

Citer

Gilles Lachaud, Isabelle Lucien, Dany-Jack Mercier, Robert Rolland. Group structure on projective spaces and cyclic codes over finite fields. Finite Fields and Their Applications, 2000, 6 (2), pp.119-129. ⟨10.1006/ffta.1999.0268⟩. ⟨hal-00770256⟩
190 Consultations
0 Téléchargements

Altmetric

Partager

More