Group structure on projective spaces and cyclic codes over finite fields
Résumé
We study the geometrical properties of the subgroups of the multiplicative group of a finite extension of a finite field endowed with its vector space structure, and we show that in some cases the associated projective space has a natural groupe structure. We construct some cyclic codes related to Reed-Muller codes by evaluating polynomials on these subgroups. The geometrical properties of these groups give a fairly simple description of these codes of the Reed-Muller kind.