Preconditioned Newton methods using incremental unknowns methods for the resolution of a steady-state Navier-Stokes-like problem

Abstract : In a previous work, one of the authors has studied a numerical treatment (by fully implicit discretizations) of a two-dimensional Navier-Stokes-like problem and has proved existence and convergence results for the resulting discretized systems with homogeneous Dirichlet boundary conditions. In this work, we propose some new preconditioned multilevel versions of inexact-Newton algorithms to solve these equations. We also develop another multilevel preconditioner for a nonlinear GMRES algorithm. All of the preconditioners are based on incremental unknowns formulations.
Type de document :
Article dans une revue
Applied Mathematics and Computation, Elsevier, 1997, pp.289-311. 〈10.1016/S0096-3003(96)00304-9〉
Liste complète des métadonnées

https://hal.univ-antilles.fr/hal-00770269
Contributeur : Pamphile Isch <>
Soumis le : vendredi 4 janvier 2013 - 20:56:39
Dernière modification le : lundi 26 février 2018 - 21:24:49

Lien texte intégral

Identifiants

Collections

Citation

Olivier Goyon, Pascal Poullet. Preconditioned Newton methods using incremental unknowns methods for the resolution of a steady-state Navier-Stokes-like problem. Applied Mathematics and Computation, Elsevier, 1997, pp.289-311. 〈10.1016/S0096-3003(96)00304-9〉. 〈hal-00770269〉

Partager

Métriques

Consultations de la notice

82