Homogeneous polynomials on a finite field vanishing on the all space

Abstract : Here is a description of an ideal that plays an important part in the construction of projective Reed-Muller codes. The use of Eagon-Northcott complex which is a generalisation of the Koszul complex gives us a method to compute dimensions of projective Reed-Muller codes. Moreover a calculus of dimensions gives us a combinatoric identity. This communication is issued from a paper admitted in the Journal of Pure and Applied Algebra and we have adjoined a straightforward and subtle proof of the combinatoric identity given by Michel Quercia.
Type de document :
Communication dans un congrès
Caribbean Mathematical Colloquium, 1996, Pointe-à-Pitre, Guadeloupe. 1996
Liste complète des métadonnées

https://hal.univ-antilles.fr/hal-00771897
Contributeur : Pamphile Isch <>
Soumis le : mercredi 9 janvier 2013 - 15:31:59
Dernière modification le : jeudi 21 décembre 2017 - 13:28:03

Identifiants

  • HAL Id : hal-00771897, version 1

Collections

Citation

Dany-Jack Mercier, R. Rolland. Homogeneous polynomials on a finite field vanishing on the all space. Caribbean Mathematical Colloquium, 1996, Pointe-à-Pitre, Guadeloupe. 1996. 〈hal-00771897〉

Partager

Métriques

Consultations de la notice

55