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Extensions of the CQ Algorithm for the Split

Feasibility and Split Equality Problems

Charles L. Byrne∗and Abdellatif Moudafi†

January 1, 2013

Abstract

The convex feasibility problem (CFP) is to find a member of the intersection
of finitely many closed convex sets in Euclidean space. When the intersection is
empty, one can minimize a proximity function to obtain an approximate solu-
tion to the problem. The split feasibility problem (SFP) and the split equality
problem (SEP) are generalizations of the CFP. The approximate SFP (ASFP)
and approximate SEP (ASEP) involve finding only approximate solutions to
the SFP and SEP, respectively.

We present here the SSEA, a simultaneous iterative algorithm for solving
the ASEP. When this algorithm is applied to the ASFP it resembles closely,
but is not equivalent to, the CQ algorithm. The SSEA involves orthogonal
projection onto the given closed convex sets. The relaxed SSEA (RSSEA) is an
easily implementable variant of the SSEA that uses orthogonal projection onto
half-spaces at each step to solve the SEP.

The perturbed version of the SSEA (PSSEA) is similar to the RSSEA, but
uses orthogonal projection onto a sequence of epi-convergent closed convex sets.

Key Words: convex feasibility; split feasibility; split equality; iterative algo-
rithms; CQ algorithm.

1 Introduction

Recently, the second author presented the ACQA algorithm [15] and the RACQA

algorithm [16]. Both algorithms solve the SEP. In the ACQA, the step-length param-

eters are allowed to vary, while in the RACQA the parameters do not vary, but the

projections are onto half-spaces, instead of onto the given closed convex sets. The
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ACQA and the RACQA can be viewed as generalizations of the original CQ algo-

rithm [2, 3]. Because they are sequential, rather than simultaneous, algorithms, they

converge only when the SEP has an exact solution; they do not, in general, provide

approximate solutions when no exact solutions exist; that is, they solve the SEP,

but do not solve the ASEP. In this paper we propose variations of the ACQA and

RACQA algorithms, the simultaneous split equality algorithm (SSEA) and relaxed

and perturbed variants, the RSSEA and PSSEA, that do provide solutions of the

ASEP.

2 Preliminaries

Let C ⊆ R
N and Q ⊆ R

M be closed, non-empty convex sets, and let A and B be J

by N and J by M real matrices, respectively. The split equality problem (SEP) is to

find x ∈ C and y ∈ Q such that Ax = By; the approximate split equality problem

(ASEP) is to minimize the function

f(x, y) =
1

2
‖Ax − By‖2

2, (2.1)

over x ∈ C and y ∈ Q. When J = M and B = I, the SEP reduces to the split

feasibility problem (SFP) and the ASEP becomes the approximate split feasibility

problem (ASFP). Moreover, if we take N = M = J in the ASEP and let C and Q be

in R
N , the problem becomes that of minimizing the distance between the two sets.

The SSEA then is a variant of the Cheney-Goldstein alternating projection algorithm

[6].

We present here what we call the simultaneous split equality algorithm (SSEA),

an iterative algorithm for solving the ASEP. The SSEA is a particular case of the

projected Landweber (PLW) algorithm. When the SSEA is applied to the ASFP it

resembles closely, but is not equivalent to, the CQ algorithm. We also present easily

implementable relaxed versions of these algorithms, involving sub-gradient projec-

tions.

3 The CQ Algorithm

The CQ algorithm is an iterative method for solving the ASFP [2, 3]. It was noted

in [8] that the CQ algorithm is a particular case of the forward-backward splitting

algorithm.
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Algorithm 3.1 (CQ) For arbitrary x0, let

xk+1 = PC(xk − γAT (I − PQ)Axk). (3.1)

The operator

T = PC(I − γAT (I − PQ)A) (3.2)

is averaged whenever γ is in the interval (0, 2/L), where L is the largest eigenvalue of

AT A, and so the CQ algorithm converges to a fixed point of T , whenever such fixed

points exist. When the SFP has a solution, the CQ algorithm converges to a solution

of the SFP; when it does not, the CQ algorithm converges to a minimizer, over C, of

the proximity function g(x) = 1
2
||PQAx−Ax||22, whenever such minimizers exist, and

so solves the ASFP. The function g(x) is convex and its gradient is

∇g(x) = AT (I − PQ)Ax. (3.3)

The convergence of the CQ algorithm then follows from the Krasnosel’skĭi-Mann-

Opial Theorem [10, 12, 17].

4 The Projected Landweber Algorithm

Let S be a closed, nonempty, convex subset of R
I , G a real K by I matrix, and

L = ρ(GT G).

Theorem 4.1 (The Projected Landweber Algorithm) Let ǫ lie in the interval

(0, 1
L
). The sequence {wk} generated by the iterative step

wk+1 = PS(wk − γkG
T (Gwk − b)) (4.1)

converges to a minimizer, over w ∈ S, of the function f(w) = 1
2
‖Gw− b‖2, whenever

such minimizers exist, for any γk in the interval [ǫ, 2
L
− ǫ].

Proof: Let z ∈ S minimize f(w) over w ∈ S. Then we have

z = PS(z − γkG
T (Gz − b)),

for all k, so that

‖z − wk+1‖2 = ‖PS(z − γkG
T (Gz − b)) − PS(wk − γkG

T (Gwk − b))‖2

≤ ‖z − wk − γkG
T (Gz − Gwk)‖2
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= ‖z − wk‖2 − 2γk〈z − wk, GT (Gz − Gwk)〉 + γ2
k‖G

T (Gz − Gwk)‖2

≤ ‖z − wk‖2 − (2γk − γ2
kL)‖Gz − Gwk‖2.

Therefore,

‖z − wk‖2 − ‖z − wk+1‖2 ≥ (2γk − γ2
kL)‖Gz − Gwk‖2

≥ Lǫ2‖Gz − Gwk‖2.

It follows that the sequence {‖z −wk‖2} is decreasing, the sequence {‖Gz −Gwk‖2}

converges to zero, the sequence {wk} is bounded, and a subsequence converges to some

w∗ ∈ S with Gw∗ = Gz. Consequently, {‖w∗ − wk‖2} is decreasing, and therefore

must converge to zero.

5 The SSEA

Our simultaneous iterative algorithm for solving the ASEP, the SSEA, is an applica-

tion to the ASEP of the projected Landweber algorithm.

Let I = M + N , S = C × Q in R
N × R

M = R
I . Define

G = [ A −B ] ,

w =

[

x
y

]

,

so that

GT G =

[

AT A −AT B
−BT A BT B

]

.

The original problem can now be reformulated as finding w ∈ S with Gw = 0, or,

more generally, minimizing the function ‖Gw‖ over w ∈ S.

The iterative step of the PLW algorithm in this case is the following:

wk+1 = PS(wk − γkG
T (Gwk)). (5.1)

Expressing this in terms of x and y, we obtain

xk+1 = PC(xk − γkA
T (Axk − Byk)), (5.2)

and

yk+1 = PQ(yk + γkB
T (Axk − Byk)). (5.3)

The PLW converges, in this case, to a minimizer of ‖Gw‖ over w ∈ S, whenever such

minimizers exist, for ǫ ≤ γk ≤ 2
ρ(GT G)

− ǫ.
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6 Solving the SFP

When J = M and B = I, the iterations in Equations in (5.2) and (5.3) become

xk+1 = PC(xk − γkA
T (Axk − yk)), (6.1)

and

yk+1 = PQ(yk + γk(Axk − yk)). (6.2)

This application of the SSEA to the ASFP resembles, but is not equivalent to, the

original CQ algorithm, but it does solve the same problem.

7 The Relaxed PLW Algorithm

The projected Landweber algorithm requires the orthogonal projection onto S at each

step of the iteration. In this section we modify the PLW algorithm so that, at the

kth step, we project onto a half-space, using sub-gradient projection. In a subsequent

section we apply this relaxed PLW (RPLW) algorithm to obtain the relaxed SSEA

(RSSEA) that solves the SEP.

We assume now that S = {w|h(w) ≤ 0}, where h(w) is convex and sub-differentiable

on R
I and the sub-differential is bounded on bounded sets. For each k we define

Sk := {w|〈ξk, w − wk〉 + h(wk) ≤ 0},

where ξk is an arbitrarily chosen member of the sub-differential ∂h(wk). It follows

that S ⊆ Sk, for all k. We assume that there is z ∈ S with Gz = 0. We prove the

following theorem:

Theorem 7.1 Let ǫ lie in the interval (0, 1
L
). For each k, define

wk+1 = PSk
(wk − γkG

T Gwk). (7.1)

The sequence {wk} converges to w∗ ∈ S with Gw∗ = 0, for any γk in the interval

[ǫ, 2
L
− ǫ].

Proof: A vector yk in Sk minimizes the function f(t) = 1
2
‖Gt‖2 over all t in Sk if and

only if

〈∇f(yk), t − yk〉 ≥ 0,
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for all t ∈ Sk. This is equivalent to

0 ≤ 〈yk − (yk − γk∇f(yk)), t − yk〉 ≥ 0,

from which we conclude that

yk = PSk
(yk − γk∇f(yk)).

Since Gz = 0, z minimizes f(t) over t ∈ Sk, for all k, so that

z = PSk
z = PSk

(z − γkG
T Gz),

for all k. Then we have

‖z − wk+1‖2 = ‖PSk
(z − γkG

T Gz) − PSk
(wk − γkG

T Gwk)‖2

≤ ‖z − γkG
T Gz − wk + γkG

T Gwk‖2

= ‖z − wk‖2 − 2γk〈z − wk, GT Gz − GT Gwk〉 + γ2‖GT Gz − GT Gwk‖2.

Therefore,

‖z − wk‖2 − ‖z − wk+1‖2 ≥ (2γk − γ2
kL)‖Gz − Gwk‖2.

Continuing as in the previous proof, we find that the sequence {‖z−wk‖} is decreasing,

the sequence {‖Gwk‖2} converges to zero, the sequence {wk} is bounded, and there

is a subsequence converging to some w∗ with Gw∗ = 0. We need to show that w∗ is

in the set S.

We show first that the sequence {wk} is asymptotically regular, that is, the se-

quence {‖wk − wk+1‖} converges to zero. From

‖wk − wk+1‖2 = ‖z − wk‖2 − ‖z − wk+1‖2 + 2〈wk+1 − wk, wk+1 − z〉,

〈wk+1 − (wk − γkG
T Gwk), z − wk+1〉 ≥ 0,

and

〈wk − wk+1, z − wk+1〉 ≤ γk〈G
T Gwk, z − wk+1〉 ≤ γk‖G

T Gwk‖ ‖z − wk+1‖

we have

‖wk − wk+1‖2 ≤ ‖z − wk‖2 − ‖z − wk+1‖2 + 2γk‖G
T Gwk‖ ‖z − wk+1‖.

Since the sequence {‖z − wk+1‖} is bounded, the right hand side converges to zero.

Therefore, the left hand side also converges to zero.
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Suppose that the subsequence {wkn} converges to w∗ with Gw∗ = 0. Since wkn+1

is in Skn
, we have

〈ξkn , wkn+1 − wkn〉 + h(wkn) ≤ 0.

Therefore,

h(wkn) ≤ −〈ξkn , wkn+1 − wkn〉 ≤ ξ‖wkn+1 − wkn‖,

where ‖ξkn‖ ≤ ξ, for all n. The lower semi-continuity of h(w) and the asymptotic

regularity of {wk} lead to

h(w∗) ≤ lim inf
n→∞

h(wkn) ≤ 0.

Consequently, w∗ ∈ S. It follows now that the sequence {‖w∗ − wk‖} converges to

zero. This completes the proof.

8 The Relaxed SSEA

We assume now that c : R
N → R and q : R

M → R are convex, sub-differentiable

functions, and that the sub-differentials are bounded on bounded sets. We define

C := {x|c(x) ≤ 0},

and

Q := {y|q(y) ≤ 0}.

For each k we define

Ck := {x|c(xk) + 〈ξk, x − xk〉 ≤ 0},

and

Qk := {y|q(yk) + 〈ηk, y − yk〉 ≤ 0},

where ξk ∈ ∂c(xk) and ηk ∈ ∂q(yk). It follows from the definition of sub-differential

that C ⊆ Ck and Q ⊆ Qk, for all k.

We define h : R
N × R

M to be h(w) = h(x, y) = c(x) + q(y). Then C × Q ⊆ S,

where S = {w|h(w) ≤ 0}. The RPLW algorithm now takes the form

xk+1 = PCk
(xk − γkA

T (Axk − Byk)), (8.1)

and

yk+1 = PQk
(yk + γkB

T (Axk − Byk)), (8.2)
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where

βk =

[

ξk

ηk

]

is an arbitrary member of ∂h(wk) = ∂h(xk, yk).

It is easily shown that

∂h(wk) = ∂c(xk) × ∂q(yk).

Therefore, ξk ∈ ∂c(xk) and ηk ∈ ∂q(yk). Since {wk} is asymptotically regular, so are

the sequences {xk} and {yk}. Proceeding as in the final paragraph of the proof of

Theorem 7.1, we find that {wk} converges to a vector

w∗ =

[

x∗

y∗

]

with x∗ ∈ C, y∗ ∈ Q, and Ax∗ = By∗.

9 A Relaxed PLW Algorithm for the SFP

When J = M and B = I, the iterations in Equations in (8.1) and (8.2) become

xk+1 = PCk
(xk − γkA

T (Axk − yk)), (9.1)

and

yk+1 = PQk
(yk + γk(Axk − yk)). (9.2)

This application of the SSEA to the SFP resembles, but is not equivalent to, the

original CQ algorithm, but it does solve the same problem. Because our proof of

convergence of the RPLW algorithm assumed that Gz = 0, we have established

convergence for the iterative algorithm given by Equations (9.1) and (9.2) only in the

consistent case when there is z ∈ C with Az ∈ Q. This algorithm for the SFP is

closely related to the relaxed CQ algorithm of Xu [19], which also applies only in the

consistent case.

10 A Perturbed PLW Algorithm

Our next algorithm is a modification of the PLW algorithm that we call a perturbed

PLW (PPLW) algorithm. We denote by NCCS(RI) the family of all nonempty, closed

and convex subsets of R
I . We begin with a definition and a proposition that are also

used in [5].
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Definition 10.1 Let S and (Sk)
∞

k=0 be a set and a sequence of sets in NCCS(RI),

respectively. The sequence (Sk)
∞

k=0 is said to epi-converge to the set S if the following

two conditions hold:

• (i) for every x ∈ S, there exists a sequence (Sk)
∞

k=0 such that xk ∈ Sk for all

k ≥ 0, and limk→∞ xk = x; and

• (ii) If xkn ∈ Skn
for all n ≥ 0, and limn→∞ xkn = x, then x ∈ S.

Let S be a closed, nonempty, convex subset of R
I , G a real K by I matrix, and

L = ρ(GT G). We assume there is z ∈ S with Gz = 0. Let ǫ lie in the interval (0, 1
L
).

Theorem 10.1 (The Perturbed PLW Algorithm PPLW) Assume that S ⊆ Sk

for all k ≥ 0, and that (Sk)
∞

k=0 epi-converges to S. The sequence {wk} generated by

the iterative step

wk+1 = PSk
(wk − γkG

T Gwk) (10.1)

converges to w∗ ∈ S with Gw∗ = 0, for any γk in the interval [ǫ, 2
L
− ǫ].

Proof: Let z ∈ S such that Gz = 0. We have

‖z − wk+1‖2 = ‖PSk
z − PSk

(wk − γkG
T Gwk)‖2

≤ ‖z − wk + γkG
T Gwk‖2 ≤ ‖z − wk‖2 − (2γk − γ2

kL)‖Gwk‖2.

Therefore,

‖z − wk‖2 − ‖z − wk+1‖2 ≥ γk(2 − γkL)‖Gwk‖2.

It follows that the sequence {‖z − wk‖} is decreasing, and the sequence {Gwk} con-

verges to zero. Since {wk} is bounded, there is a subsequence converging to some

w∗ with Gw∗ = 0. By the epi-convergence of the sequence {Sk} to S, we know that

w∗ ∈ S. Replacing z with w∗ above, we find that wk → w∗. This completes the proof.

We find it necessary to assume that Gz = 0, rather than simply that z minimize

the function f(w) = 1
2
‖Gw‖2 over w ∈ S. Since S ⊆ Sk, the latter assumption would

not be sufficient to conclude that z also minimizes f(w) over w ∈ Sk. A similar

problem arises in [5]; the proof given there for Lemma 5.1 is incorrect.

It is well-known that, when S ⊆ Sk+1 ⊆ Sk, the sequence Sk epi-converges to

S = ∩k∈INSk. Furthermore, the half-space approximations (Sk) considered previously

in connection with the RPLW algorithm may not epi-converge to S, so Theorem 7.1

cannot be derived from Theorem 10.1.
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11 Removing the Set-Inclusion Assumption

The following proposition is found in [9, 18] . For completeness, we include a proof

of the proposition here.

Proposition 11.1 Let S and (Sk)
∞

k=0 be a set and a sequence of sets in NCCS(RI),

respectively. If (Sk)
∞

k=0 epi-converges to S and limk→∞ yk = y, then

lim
k→∞

PSk
yk = PSy.

Proof: Let x = PSy. Since x ∈ S, there is a sequence {xk} converging to x, with

xk ∈ Sk, for each k. Using

‖PSk
x − x‖ ≤ ‖xk − x‖,

we conclude that the sequence {PSk
x} also converges to x. From

‖PSk
y − PSk

x‖ ≤ ‖y − x‖,

it follows that the sequence {PSk
y} is bounded. From

‖PSk
yk − PSk

y‖ ≤ ‖yk − y‖,

it follows that the sequence {PSk
yk} is bounded. Then there is a z ∈ S and a

subsequence {PSkn
ykn} converging to z. Because

‖PSkn
ykn − ykn‖ ≤ ‖PSkn

x − ykn‖,

taking limits, we conclude that

‖z − y‖ ≤ ‖x − y‖.

Therefore, z = PSy = x.

With a stronger assumption on the convergence of {PSk
x} to PSx we can remove

the set-inclusion assumption in Theorem 10.1. We need the following result from

[7, 1].

Lemma 11.1 Let {ak} and {ǫk} be positive sequences, with ak+1 ≤ ak + ǫk, and
∑

∞

k=1 ǫk < +∞. Then the sequence {ak} is convergent.

To remove the set inclusion assumption S ⊆ Sk we propose the following.
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Theorem 11.1 Assume that there is z ∈ S with Gz = 0, that the sequence {Sk}
∞

k=0

epi-converges to S, and that
∑

∞

k=0 ‖PSk
x−x‖ < +∞ for all x ∈ S. Then the sequence

{wk} given by Equation (10.1) converges to w∗ ∈ S with Gw∗ = 0.

Proof: We can write

‖z − wk+1‖ = ‖z − PSk
(wk − γkG

T Gwk)‖

≤ ‖z − wk + γkG
T Gwk‖ + ‖PSk

z − z‖.

Therefore

‖z − wk+1‖ ≤
√

‖z − wk‖2 − γk(2 − γkL)‖Gwk‖2 + ‖PSk
z − z‖. (11.1)

Applying Lemma 11.1 to the inequality (11.1), combined with Proposition 11.1 and

the same argument as in the proof of Theorem 10.1, allows us to conclude that the

sequence {wk} converges.

12 A Perturbed SSEA Algorithm

Now, let I = M + N , S = C × Q in R
N × R

M = R
I and remember that, by defining

G = [ A −B ] ,

w =

[

x
y

]

,

the SEP can be reformulated as finding w ∈ S with Gw = 0. Let Sk = Ck × Qk

in R
N × R

M = R
I , where Ck and Qk are sequences of sets satisfying C ⊆ Ck and

Q ⊆ Qk for all k ≥ 0, that (Ck)
∞

k=0 epi-converges to C and (Qk)
∞

k=0 epi-converges to

Q. In this case the perturbed PLW algorithm PPLW gives a perturbed SSEA that

we call the PSSEA:

xk+1 = PCk
(xk − γkA

T (Axk − Byk)), (12.1)

and

yk+1 = PQk
(yk + γkB

T (Axk − Byk)). (12.2)

This PPLW iteration converges to w∗ ∈ S with Gw∗ = 0; in other words, {wk}

converges to a vector

w∗ =

[

x∗

y∗

]

with x∗ ∈ C, y∗ ∈ Q, and Ax∗ = By∗.
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13 Related Algorithms

In a previous paper [15] Moudafi presented the ACQA algorithm. The ACQA algo-

rithm has the following iterative step:

xk+1 = PC(xk − γkA
T (Axk − Byk)), (13.1)

and

yk+1 = PQ(yk + γkB
T (Axk+1 − Byk)). (13.2)

Here the parameters γk are allowed to vary with each iterative step.

In [16] the same author proposed a second iterative algorithm, the RACQA, to

solve the SEP. The RACQA algorithm has the following iterative step:

xk+1 = PCk
(xk − γAT (Axk − Byk)), (13.3)

and

yk+1 = PQk
(yk + γBT (Axk+1 − Byk)). (13.4)

The {Ck} and {Qk} are the sequences of half-spaces defined previously that contain

C and Q, respectively. Now the parameters do not vary, but the projections are onto

half-spaces, instead of onto the sets C and Q.

Both the ACQA and the RACQA can be viewed as generalizations of the original

CQ algorithm. Because they are sequential, rather than simultaneous, algorithms,

they converge only when the SEP has an exact solution; they do not, in general,

provide a minimizer of the function ‖Ax − By‖ over x ∈ C and y ∈ Q.

14 Conclusions

The approximate split equality problem (ASEP) is to minimize the function f(x) =
1
2
‖Ax − By‖2, over x ∈ C and y ∈ Q. The simultaneous split equality algorithm

(SSEA), obtained from the projected Landweber algorithm (PLW), is an iterative

procedure that solves the ASEP, and, therefore, the approximate split feasibility

problem (ASFP). As applied to the ASFP, the SSEA is similar, but not equivalent,

to the CQ algorithm.

The relaxed PLW (RPLW) algorithm replaces orthogonal projection onto S with

orthogonal projection onto half-spaces Sk containing S; the relaxed SSEA (RSSEA)
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is a particular case of the RPLW algorithm. We are able to prove convergence of the

RSSEA for the case in which there are x ∈ C and y ∈ Q with Ax = By.

The perturbed PLW algorithm PPLW is similar to the RPLW algorithm and use

orthogonal projection onto sets Sk epi-converging to S. The PSSEA algorithm is the

application of PPLW, to the SEA problem. As is the case for the RSSEA, we are able

to prove that the PSSEA algorithm generates sequences that converge to solutions of

the SEA problem.

Finally, note that our results are still valid in an infinite dimensional Hilbert

space with weak convergence. To reach strong convergence, a first approach is the

introduction of a quadratic term for ε > 0, namely to consider the function

fε(w) =
1

2
‖Gw − b‖2 +

ε

2
‖w‖2.

The minimizer wε of this function can be computed by the following regularized PLW

algorithm

wk+1 =
1

1 + γε
PS(wk − γGT (Gwk − b)). (14.1)

For γ ∈ (0, 2
L
), the function

w 7→
1

1 + γε
PS(w − γGT (Gw − b))

is a contraction, hence the iteration converges linearly to the unique minimizer of fǫ.

One can easily show that there exist sequences of minimizers wǫ which converge to a

minimizer w∗ (the minimun-norm solution) for f . A further alternative is to consider,

for instance, the following diagonal version

wk+1 =
1

1 + γkεk

PS(wk − γkG
T (Gwk − b)). (14.2)

Roughly speaking, if the sequence of the regularized parameters (εk) converges slowly

to zero, one can show that the sequence (wk) generated by (14.2) strongly converges

to a particular minimizer (the minimum-norm solution) of f . For more details about

Tikhonov (or viscosity) approximation, see, for example, [14] or [19] and the references

therein.
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