A Regularized Hybrid Steepest Descent Method for Variational Inclusions

Abstract : This article is concerned with a generalization of the hybrid steepest descent method from variational inequalities to the multivalued case. This will be reached by replacing the multivalued operator by its Yosida approximate, which is always Lipschitz continuous. It is worth mentioning that the hybrid steepest descent method is an algorithmic solution to variational inequality problems over the fixed point set of certain nonexpansive mappings and has remarkable applicability to the constrained nonlinear inverse problems like image recovery and MIMO communication systems
Type de document :
Article dans une revue
Numerical Functional Analysis and Optimization, Taylor & Francis, 2012, 33 (1), pp.39-47. 〈10.1080/01630563.2011.619676〉
Liste complète des métadonnées

https://hal.univ-antilles.fr/hal-00776641
Contributeur : Pamphile Isch <>
Soumis le : mardi 15 janvier 2013 - 20:26:30
Dernière modification le : mercredi 18 juillet 2018 - 20:11:27

Identifiants

Collections

Citation

Abdellatif Moudafi. A Regularized Hybrid Steepest Descent Method for Variational Inclusions. Numerical Functional Analysis and Optimization, Taylor & Francis, 2012, 33 (1), pp.39-47. 〈10.1080/01630563.2011.619676〉. 〈hal-00776641〉

Partager

Métriques

Consultations de la notice

104