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This paper is concerned with the study of a penalization-gradient algorithm for solving variational
inequalities, namely, find x ∈ C such that 〈Ax, y − x〉 ≥ 0 for all y ∈ C, where A : H → H
is a single-valued operator, C is a closed convex set of a real Hilbert space H. Given Ψ : H →
� ∪ {+∞} which acts as a penalization function with respect to the constraint x ∈ C, and a
penalization parameter βk, we consider an algorithmwhich alternates a proximal step with respect

to ∂Ψ and a gradient step with respect to A and reads as xk = (I + λkβk∂Ψ)−1(xk−1 − λkAxk−1).
Under mild hypotheses, we obtain weak convergence for an inverse strongly monotone operator
and strong convergence for a Lipschitz continuous and strongly monotone operator. Applications
to hierarchical minimization and fixed-point problems are also given and the multivalued case is
reached by replacing themultivalued operator by its Yosida approximatewhich is always Lipschitz
continuous.

1. Introduction

LetH be a real Hilbert space,A : H → H a monotone operator, and let C be a closed convex
set in H , we are interested in the study of a gradient-penalization algorithm for solving the
problem of finding x ∈ C such that

〈
Ax, y − x

〉 ≥ 0 ∀y ∈ C, (1.1)

or equivalently

Ax +NC(x) 
 0, (1.2)
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where NC is the normal cone to a closed convex set C. The above problem is a variational
inequality, initiated by Stampacchia [1], and this field is now a well-known branch of pure
and applied mathematics, and many important problems can be cast in this framework.

In [2], Attouch et al., based on seminal work by Passty [3], solve this problem with a
multivalued operator by using splitting proximal methods. A drawback is the fact that the
convergence in general is only ergodic. Motivated by [2, 4] and by [5]where penalty methods
for variational inequalities with single-valued monotone maps are given, we will prove that
our proposed forward-backward penalization-gradient method (1.9) enjoys good asymptotic
convergence properties. We will provide some applications to hierarchical fixed-point and
optimization problems and also propose an idea to reach monotone variational inclusions.

To begin with, see, for instance [6], let us recall that an operator with domain D(T)
and range R(T) is said to be monotone if

〈
u − v, x − y

〉 ≥ 0 whenever u ∈ T(x), v ∈ T
(
y
)
. (1.3)

It is said to be maximal monotone if, in addition, its graph, gphT := {(x, y) ∈ H × H : y ∈
T(x)}, is not properly contained in the graph of any other monotone operator. An operator
sequence Tk is said to be graph convergent to T if (gph(Tk)) converges to gph(T) in the
Kuratowski-Painlevé’s sense, that is, lim supk gph(Tk) ⊂ gph(T) ⊂ lim infk gph(Tk). It is well-
known that for each x ∈ H and λ > 0 there is a unique z ∈ H such that x ∈ (I + λT)z.
The single-valued operator JTλ := (I + λT)−1 is called the resolvent of T of parameter λ. It is a
nonexpansive mappingwhich is everywhere defined and is related to its Yosida approximate,
namely Tλ(x) := (x − JT

λ
(x))/λ, by the relation Tλ(x) ∈ T(JT

λ
(x)). The latter is 1/λ-Lipschitz

continuous and satisfies (Tλ)μ = Tλ+μ. Recall that the inverse T−1 of T is the operator defined

by x ∈ T−1(y) ⇔ y ∈ T(x) and that, for all x, y ∈ H , we have the following key inequality

∥∥∥JTλ (x) − JTλ
(
y
)∥∥∥2

≤ ∥∥x − y
∥∥2 +

∥∥∥(I − JTλ

)
(x) −

(
I − JTλ

)(
y
)∥∥∥2

. (1.4)

Observe that the relation (Tλ)μ(x) = Tλ+μ(x) leads to

JTλμ (x) =
λ

λ + μ
x +

(
1 − λ

λ + μ

)
JTλ+μ(x). (1.5)

Now, given a proper lower semicontinuous convex function f : H → � ∪ {+∞}, the
subdifferential of f at x is the set

∂f(x) =
{
u ∈ H : f

(
y
) ≥ f(x) +

〈
u, y − x

〉 ∀y ∈ H
}
. (1.6)

Its Moreau-Yosida approximate and proximal mapping fλ and proxλf are given, respectively,
by

fλ(x) = inf
y∈H

{
f
(
y
)
+

1

2λ

∥∥y − x
∥∥2

}
, proxλf(x) = argmin

y∈H

{
f
(
y
)
+

1

2λ

∥∥y − x
∥∥2

}
. (1.7)
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We have the following interesting relation (∂f)λ = ∇fλ. Finally, given a nonempty closed
convex set C ⊂ H , its indicator function is defined as δC(x) = 0 if x ∈ C and +∞ otherwise.
The projection onto C at a point u is PC(u) = infc∈C‖u − c‖. The normal cone to C at x is

NC(x) = {u ∈ H : 〈u, c − x〉 ≤ 0 ∀c ∈ C} (1.8)

if x ∈ C and ∅ otherwise. Observe that ∂δC = NC, proxλf = J
∂f

λ
, and JNC

λ
= PC.

Given some xk−1 ∈ H , the current approximation to a solution of (1.2), we study the
penalization-gradient iteration which will generate, for parameters λk > 0, βk → +∞, xk as
the solution of the regularized subproblem

1

λk
(xk − xk−1) +Axk−1 + βk∂Ψ(xk) 
 0, (1.9)

which can be rewritten as

xk =
(
I + λkβk∂Ψ

)−1(xk−1 − λkAxk−1). (1.10)

Having in view a large range of applications, we shall not assume any particular structure or
regularity on the penalization function Ψ. Instead, we just suppose that Ψ is convex, lower
semicontinuous and C = argminΨ/= ∅. We will denote by VI(A,C) the solution set of (1.2).

The following lemmas will be needed in our analysis, see for example [6, 7],
respectively.

Lemma 1.1. Let T be a maximal monotone operator, then (βkT) graph converges to NT−1(0) as βk →
+∞ provided that T−1(0)/= ∅.

Lemma 1.2. Assume that αk and δk are two sequences of nonnegative real numbers such that

αk+1 ≤ αk + δk. (1.11)

If limk→+∞δk = 0, then there exists a subsequence of (αk) which converges. Furthermore, if∑∞
k=0 δk < +∞, then limk→+∞αk exists.

2. Main Results

2.1. Weak Convergence

Theorem 2.1. Assume that VI(A,C)/= ∅, A is inverse strongly monotone, namely

〈
Ax −Ay, x − y

〉 ≥ 1

L

∥∥Ax −Ay
∥∥2 ∀x, y ∈ H, for some L > 0. (2.1)
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If

∞∑
k=0

∥∥∥x − J
βk∂Ψ
λk

(x − λkAx)
∥∥∥ < +∞ ∀x ∈ VI(A,C), (2.2)

and λk ∈]ε, 2/L − ε[ (where ε > 0 is a small enough constant), then the sequence (xk)k∈� generated
by algorithm (1.9) converges weakly to a solution of Problem (1.2).

Proof. Let x be a solution of (1.2), observe that x solves (1.2) if and only if x = (I+λkNC)
−1(x−

λkAx) = PC(x − λkAx). Set xk = (I + λkβk∂Ψ)−1(x − λkAx), by the triangular inequality, we
can write

‖xk − x‖ ≤ ‖xk − xk‖ + ‖xk − x‖. (2.3)

On the other hand, by virtue of (1.4) and (2.1), we successively have

‖xk − xk‖2 ≤ ‖xk−1 − x − λk(Axk−1 −Ax)‖2 − ‖xk−1 − xk − λk(Axk−1 −Ax) + xk − x‖2

≤ ‖xk−1 − x‖2 − λk

(
2

L
− λk

)
‖Axk−1 −Ax‖2

− ‖xk−1 − xk − λk(Axk−1 −Ax) + xk − x‖2.

(2.4)

Hence

‖xk − x‖ <
√
‖xk−1 − x‖2 − ε2‖Axk−1 −Ax‖2 − ‖xk−1 − xk − λk(Axk−1 −Ax) + xk − x‖2

+ ‖x − xk‖.
(2.5)

The later implies, by Lemma 1.2 and the fact that (2.2) insures limk→+∞‖x − xk‖ = 0,
that the positive real sequence (‖xk − x‖2)k∈� converges to some limit l(x), that is,

l(x) = lim
k→+∞

‖xk − x‖2 < +∞, (2.6)

and also assures that

lim
k→+∞

‖Axk−1 −Ax‖2 = 0,

lim
k→+∞

‖xk−1 − xk − λk(Axk−1 −Ax) + xk − x‖2 = 0.
(2.7)

Combining the two latter equalities, we infer that

lim
k→+∞

‖xk−1 − xk‖2 = 0. (2.8)
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Now, (1.9) can be written equivalently as

xk−1 − xk

λk
+Axk −Axk−1 ∈

(
A + βk∂Ψ

)
(xk). (2.9)

By virtue of Lemma 1.1, we have (βk∂Ψ) graph converges to NargminΨ because

(∂Ψ)−1(0) = ∂Ψ∗(0) = argminΨ. (2.10)

Furthermore, the Lipschitz continuity of A (see, e.g., [8]) clearly ensures that the sequence
(A + βk∂Ψ)graph converges in turn to A +NargminΨ.

Now, let x∗ be a cluster point of {xk}. Passing to the limit in (2.9), on a subsequence
still denoted by {xk}, and taking into account the fact that the graph of a maximal monotone
operator is weakly strongly closed in H ×H , we then conclude that

0 ∈ (A +NC)x∗, (2.11)

because A is Lipschitz continuous, (xk) is asymptotically regular thanks to (2.8), and (λk) is
bounded away from zero.

It remains to prove that there is no more than one cluster point, our argument is
classical and is presented here for completeness.

Let x̃ be another cluster of {xk}, we will show that x̃ = x∗. This is a consequence of
(2.6). Indeed,

l(x∗) = lim
k→+∞

‖xk − x∗‖2, l(x̃) = lim
k→+∞

‖xk − x̃‖2, (2.12)

from

‖xk − x̃‖2 = ‖xk − x∗‖2 + ‖x∗ − x̃‖2 + 2〈xk − x∗, x∗ − x̃〉, (2.13)

we see that the limit of 〈xk − x∗, x∗ − x̃〉 as k → +∞ must exists. This limit has to be zero
because x∗ is a cluster point of {xk}. Hence at the limit, we obtain

l(x̃) = l(x∗) + ‖x∗ − x̃‖2. (2.14)

Reversing the role of x̃ and x∗, we also have

l(x∗) = l(x̃) + ‖x∗ − x̃‖2. (2.15)

That is x̃ = x∗, which completes the proof.

Remark 2.2. (i) Note that, we can remove condition (2.2), but in this case we obtain that there
exists a subsequence of (xk) such that every weak cluster point is a solution of problem

(1.2). This follows by Lemma 1.2 combined with the fact that x = J∂δCλ∗ (x − λ∗Ax) and that
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(βk∂Ψ) graph converges to ∂δC. The later is equivalent, see for example [6], to the pointwise

convergence of J
βk∂Ψ
λk

to J∂δCλ∗ and therefore ensures that

lim
k→+∞

∥∥∥x − J
βk∂Ψ
λk

(x − λkAx)
∥∥∥ = 0. (2.16)

(ii) In the special case Ψ(x) = (1/2)dist(x, C)2, (2.2) reduces to
∑∞

k=0 1/βk < +∞, see
Application (2) of Section 3.

Suppose now that Ψ(x) = dist(x, C), it well-known that proxγΨ(x) = PC(x) if
dist(x, C) ≤ γ . Consequently,

J
βk∂Ψ
λk

(x) = PC(x) if dist (x, C) ≤ λkβk, (2.17)

which is the case for all k ≥ κ for some κ ∈ � because (λk) is bounded and limk→+∞βk = +∞.

Hence limk→+∞‖x − J
βk∂Ψ
λk

(x − λkAx)‖ = 0, for all k ≥ κ, and thus (2.2) is clearly satisfied.
The particular case Ψ = 0 corresponds to the unconstrained case, namely, C = H . In

this context the resolvent associated to βk∂Ψ is the identity, and condition (2.2) is trivially
satisfied.

2.2. Strong Convergence

Now, we would like to stress that we can guarantee strong convergence by reinforcing
assumptions on A.

Proposition 2.3. Assume that A is strong monotone with constant α > 0, that is,

〈
Ax −Ay, x − y

〉 ≥ α
∥∥x − y

∥∥2 ∀x, y ∈ H, for some α > 0, (2.18)

and Lipschitz continuous with constant L > 0, that is,

∥∥Ax −Ay
∥∥ ≤ L

∥∥x − y
∥∥ ∀x, y ∈ H, for some L > 0. (2.19)

If λk ∈ ]ε, 2α/L2 − ε[ (where ε > 0 is a small enough constant) and limk→+∞λk = λ∗ > 0, then the
sequence generated by (1.9) strongly converges to the unique solution of (1.2).

Proof. Indeed, by replacing inverse strong monotonicity of A by strong monotonicity and
Lipschitz continuity, it is easy to see from the first part of the proof of Theorem 2.1 that the
operator of I − λkA satisfies

∥∥(I − λkA)(x) − (I − λkA)
(
y
)∥∥2 ≤

(
1 − 2λkα + λ2

kL
2
)∥∥x − y

∥∥2
. (2.20)
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Following the arguments in the proof of Theorem 2.1 to obtain

‖xk − x‖ ≤
√
1 − 2λkα + λ2

kL
2‖xk−1 − x‖ + δk(x) with δk(x) :=

∥∥∥x − J
βk∂Ψ
λk

(x − λkAx)
∥∥∥.
(2.21)

Now, by setting Θ(λ) =
√
1 − 2λα + λ2L2, we can check that 0 < Θ(λ) < 1 if and only

if λk ∈ ]0, 2α/L2[, and a simple computation shows that 0 < Θ(λk) ≤ Θ∗ < 1 with
Θ∗ = max{Θ(ε),Θ(2α/L2 − ε)}. Hence,

‖xk − x‖ ≤ (Θ∗)k‖x0 − x‖ +
k−1∑
j=0

(Θ∗)jδk−j(x). (2.22)

The result follows fromOrtega and Rheinboldt [9, page 338] and the fact that limk→+∞δk(x) =
0. The later follows thanks to the equivalence between graph convergence of the sequence of
operators (βk∂Ψ) to ∂δC and the pointwise convergence of their resolvent operators combined
with the fact that limk→+∞λk = λ∗.

3. Applications

(1) Hierarchical Convex Minimization Problems

Having in mind the connection between monotone operators and convex functions, we may
consider the special case A = ∇Φ, Φ being a proper lower semicontinuous differentiable
convex function. Differentiability of Φ ensures that ∇Φ+NargminΨ = ∂(Φ + δargminΨ) and (1.2)
reads as

min
x∈argminΨ

Φ(x). (3.1)

Using definition of the Moreau-Yosida approximate, algorithm (1.9) reads as

xk = argmin
y∈H

{
f
(
y
)
+

1

2λk

∥∥y − (I − λkA)xk−1
∥∥2
}
. (3.2)

In this case, it is well-known that the assumption (2.1) of inverse strong monotonicity of
∇Φ is equivalent to its L-Lipschitz continuity. If further we assume

∑∞
k=1 δk(x) < +∞ for

all x ∈ VI(∇Φ, C) and λk ∈ ]ε, 2/L − ε[, then by Theorem 2.1 we obtain weak convergence
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of algorithm (3.2) to a solution of (3.1). The strong convergence is obtained, thanks to
Proposition 2.3, if in addition Ψ is strongly convex (i.e., there is α > 0;

(
1 − μ

)
Ψ(x1) + μΨ(x2) ≥ Ψ

((
1 − μ

)
x1 + μx2

)
+
α

2
μ
(
1 − μ

)‖x1 − x2‖2 (3.3)

for all μ ∈ [0, 1], all x1, x2 ∈ H) and (λk) a convergent sequence with λk ∈ ]ε, 2α/L2 − ε[. Note
that strong convexity of Ψ is equivalent to α-strong monotonicity of its gradient. A concrete
example in signal recovery is the Projected Land weber problem, namely,

min
x∈C

Φ(x) :=
1

2
‖Lx − z‖2, (3.4)

L being a linear-bounded operator. SetA(x) := ∇Φ(x) = L∗(Lx − z). Consequently,

∀x, y ∈ H
∥∥A(x) −A

(
y
)∥∥ =

∥∥L∗L
(
x − y

)∥∥ ≤ ‖L‖2∥∥x − y
∥∥, (3.5)

and A is therefore Lipschitz continuous with constant ‖L‖2. Now, it is well-known that the
problem possesses exactly one solution if L is bounded below, that is,

∃κ > 0 ∀x ∈ H ‖L(x)‖ ≥ κ‖x‖. (3.6)

In this case, A is strongly monotone. Indeed, it is easily seen that f is strongly convex:
consider x, y ∈ H and μ ∈ ]0, 1[, one has

∥∥μ(Lx − z) +
(
1 − μ

)(
Ly − z

)∥∥2

2
≤ μ‖Lx − z‖2

2
+

(
1 − μ

)∥∥Ly − z
∥∥2

2
− κ2μ

(
1 − μ

)∥∥x − y
∥∥2

2
.

(3.7)

(2) Classical Penalization

In the special case where Ψ(x) = (1/2)dist(x, C)2, we have

∂Ψ(x) = x − ProjC(x), (3.8)

which is nothing but the classical penalization operator, see [10]. In this context, taking into
account the fact that

((
∂f

)
λ

)
μ
= ∇fλ+μ, J

∂f

λ = I − λ
(
∂f

)
λ = I − λ∇fλ, (δC)λ =

1

λ
Ψ, (3.9)
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and that x solves (1.2), and thus x = PC(x − λkAx), we successively have

‖xk − x‖ =
∥∥∥Jβk∂Ψλk

(x − λkAx) − JNC

λk
(x − λkAx)

∥∥∥
= λk

∥∥∥(βk∂Ψ)
λk
(x − λkAx) − (NC)λk(x − λkAx)

∥∥∥
= λk

∥∥∥βk(∂Ψ)λkβk (x − λkAx) − ∇(δC)λk(x − λkAx)
∥∥∥

= λk

∥∥∥βk(∂(δC)1)λkβk (x − λkAx) − ∇(δC)λk(x − λkAx)
∥∥∥

= λk

∥∥∥βk∇(δC)1+λkβk (x − λkAx) − ∇(δC)λk (x − λkAx)
∥∥∥

= λk

(
1

λk
− βk
1 + λkβk

)
‖(x − λkAx) − PC(x − λkAx)‖

=
1

1 + λkβk
‖λkAx‖ ≤ 1

βk
‖Ax‖.

(3.10)

So condition on the parameters reduces to
∑∞

k=1 1/βk < +∞, and algorithm (1.9) is nothing
but a relaxed projection-gradient method. Indeed, using (1.5) and the fact that JNC

λ = PC, we
obtain

xk =
(

1

1 + λkβk
I +

λkβk

1 + λkβk
PC

)
(I − λkA)xk−1. (3.11)

An inspection of the proof of Theorem 2.1 shows that the weak converges is assured with
λk ∈ ]ε, 2/L − ε[.

(3) A Hierarchical Fixed-Point Problem

Having in mind the connection between inverse strongly monotone operators and
nonexpansive mappings, we may consider the following fixed-point problem:

(I − P)x +NC(x) 
 0, (3.12)

with P a nonexpansive mapping, namely, ‖Px − Py‖ ≤ ‖x − y‖.
It is well-known that A = I − P is inverse strongly monotone with L = 2. Indeed, by

definition of P , we have

∥∥(I −A)x − (I −A)y
∥∥ ≤ ∥∥x − y

∥∥. (3.13)

On the other hand

∥∥(I −A)x − (I −A)y
∥∥2 =

∥∥x − y
∥∥2 +

∥∥Ax −Ay
∥∥2 − 2

〈
x − y,Ax −Ay

〉
. (3.14)
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Combining the two last inequalities, we obtain

〈
x − y,Ax −Ay

〉 ≥ 1

2

∥∥Ax −Ay
∥∥2

. (3.15)

Therefore, by Theorem 2.1 we get the weak convergence of the sequence (xk) generated by
the following algorithm:

xk = proxβkΨ((I − λk)xk−1 + λkPxk−1) (3.16)

to a solution of (3.12) provided that
∑∞

k=1 δk(x) < +∞ for all x ∈ VI(I −P, C) and λk ∈]ε, 1−ε[.
The strong convergence of (1.9) is obtained, by applying Proposition 2.3, for P a contraction
mapping, namely, ‖Px−Py‖ ≤ γ‖x−y‖ for 0 < γ < 1 which is equivalent to the (1− γ)-strong
monotonicity of (I − P), and (λk) is a convergent sequence with λk ∈ ]ε, 2(1− γ)/(1 + γ)2 − ε[.
It is easily seen that in this case I − P is (1 + γ)-Lipschitz continuous.

4. Towards the Multivalued Case

Now, we are interested in (1.2) when A : H → 2H is a multi-valued maximal monotone
operator.With the help of the Yosida approximatewhich is always inverse stronglymonotone
(and thus single-valued), we consider the following partial regularized version of (1.2):

Aγx
∗
γ +NC

(
x∗
γ

)

 0, (4.1)

where Aγ stands for the Yosida approximate of A.
It is well-known thatAγ is inverse strongly monotone. More precisely, we have

〈
Aγx −Aγy, x − y

〉 ≥ γ
∥∥Aγx −Aγy

∥∥2
. (4.2)

Using definition of the Yosida approximate, algorithm (1.9) applied to (4.1) reads as

x
γ

k =
(
I + λkβk∂Ψ

)−1((
1 − λk

γ

)
x
γ

k−1 +
λk

γ
JAγ

(
x
γ

k−1
))

. (4.3)

From Theorem 2.1, we infer that x
γ

k
converges weakly to a solution xγ provided that λk ∈

]ε, 2γ − ε[. Furthermore, it is worth mentioning that if A is strongly monotone, Aγ is also
strongly monotone, and thus (4.1) has a unique solution xγ . By a result in [8, page 35], we
have the following estimate:

∥∥x − xγ∥∥ ≤ o
(√

γ
)
. (4.4)

Consequently, (4.3) provides approximate solutions to the variational inclusion (1.2) for small
values of γ . Furthermore, when A = ∇Φ, we have

(∂Φ)γ(x) +NC(x) = ∇Φγ(x) +NC(x) = ∂
(
Φγ + δC

)
(x), (4.5)
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and thus (4.1) reduces to

min
x∈C

Φγ(x). (4.6)

If (3.1) and (4.1) are solvable, by ([11] Theorem 3.3), we have for all γ > 0

0 ≤ min
x∈C

Φ(x) −min
x∈C

Φγ(x) ≤ γ
∥∥y∥∥2

, (4.7)

where y = ∇Φ(y)(∈ −NC(x)) with x a solution of (3.1). The value of (3.1) is thus close to
those of (4.1) for small values of γ , and hence, this confirmed the pertinence of the proposed
approximation idea to reach the multi-valued case. Observe that in this context, algorithm
(4.3) reads as

x
γ

k = proxβkΨ

((
1 − λk

γ

)
x
γ

k−1 +
λk

γ
proxγΦ

(
x
γ

k−1
))

. (4.8)

5. Conclusion

The authors have introduced a forward-backward penalization-gradient algorithm for
solving variational inequalities and studied their asymptotic convergence properties. We
have provided some applications to hierarchical fixed-point and optimization problems and
also proposed an idea to reach monotone variational inclusions.
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