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Approximate inertial proximal methods using the enlargement of maximal monotone operators

Abdellatif Moudafi, E.

Introduction and preliminaries

In this paper we will focus our attention on the classical problem of nding a zero of a maximal monotone operator T on a real Hilbert space H: nd x 2 H such that T x 3 0:

(1.1) This is a well-known problem which includes, as special cases, optimization and min-max problems, complementarity problems, and variational inequalities. One of the fondamental approaches to solving (1.1) is the proximal method, which generates the next iterates x k+1 by solving the subproblem 0 2 k T (x) + (x ? x k );

(1.2) where x k is the current iterate and k is a regularization parameter. The literature on this subject is vast (see 8] for a survey).

Recently, an inertial proximal algorithm was proposed by Alvarez in 1] in the context of convex minimization. Afterwards, Attouch and Alvarez considered its extension to maximal monotone operators in 2]. It works as follows. Given x k?1 ; x k 2 H and two parameters k 2 0; 1 and k > 0, nd x k+1 2 H such that k T (x k+1 ) + x k+1 ? x k ? k (x k ? x k?1 ) 3 0:

(1.3) It is well known that the proximal iteration may be interpreted as an implicit one-step discretisation method for the evolution di erential inclusion dx dt (t) + T (x(t)) 3 0 a.e. t 0;

(1. [START_REF] Attouch | Variational convergence for functions and operators[END_REF] where the parameter k is a (variable) stepsize. While the inspiration for (1.3) comes from the implicit discretization of the di erential system of the secondorder in time, namely d2 x dt 2 (t) + dx dt (t) + T (x(t)) 3 0 a.e. t 0;

(1.5) where > 0 is a damping or a friction parameter. Under appropriate conditions on k and k Attouch & Alvarez proved that if the solution set S = T ?1 (0) is nonempty, then for every sequence fx k g generated by (1.3), there exists an x 2 S such that fx k g converges to x weakly in H as k ! 1.

For developing implementable computational techniques, it is of particular importance to treat the case when (1.3) is solved approximately. Before introducing our approximate method, let us recall the following concepts which are of common use in the context of convex and nonlinear analysis. Troughout, H is a real Hilbert space, h ; i denotes the associated scalar product and j j stands for the corresponding norm. An operator is said to be monotone if hu ? v; x ? yi 0 whenever u 2 T (x); v 2 T (y): It is said to be maximalmonotone if, in addition, the graph, f(x; y) 2 H H : y 2 T (x)g, is not properly contained in the graph of any other monotone operator.

It is well-known that for each x 2 H and > 0 there is a unique z 2 H such that x 2 (I + T )z. The single-valued operator J T := (I + T ) ?1 is called the resolvent of T of parameter . It is a nonexpansive mapping which is everywhere de ned and satis es: z = J T z, if and only if, 0 2 T z. Let us also recall a notion which is clearly inspired by the approximate subdi erential. In 16], Iusem, Burachik and Svaiter de ned T " (x), an "-enlargement of a monotone operator T , as T " (x) := fv 2 H; hu ? v; y ? xi ?" 8y; u 2 T (y)g;

(1.6) where " 0. Since T is assumed to be maximal monotone, T 0 (x) = T (x), for any x. Furthermore, directly from the de nition it follows that Thus T " is an enlargement of T . The use of elements in T " instead of T allows an extra degree of freedom, which is very useful in various applications. On the other hand, setting " = 0 one retrieves the original operator T , so that the classical method can be also treated. For all these reasons, we consider the following scheme: nd x k+1 2 H such that k T "k (x k+1 ) + x k+1 ? y k 3 0:

(1.7) where y k := x k + k (x k ? x k?1 ); k ; k ; " k are nonnegative real numbers.

We will impose the following tolerance criteria on the term " k which are standard in the literature: (1.9)

The rst condition is typically needed to establish global convergence, while the second is required for local linear rate of convergence result under additional natural assumptions. The remainder of the paper is organized as follows: In section 2, we present a weak convergence result for the sequence generated by (1.7) under criterion (1.8). We also consider various conditions for which the convergence is strong. In section 3, we present an application to convex minimization and study the convergence of a perturbed version of (1.7) as well as conditions ensuring the convergence for both the values and the iterates.

The main results

A weak convergence result

Theorem 2.1 Let fx k g H be a sequence such that 0 2 x k+1 ? x k ? k (x k ? x k?1 ) + k T "k (x k+1 ); k = 1; 2; where T : H ! P(H) is a maximal monotone operator with S := T ?1 (0) 6 = ;, and the parameters k ; k and " k satisfy:

1. 9 > 0 such that 8k 2 IN ; k . 2. 9 2 0; 1 such that 8k 2 IN ; 0 k .

P +1

k=1 k " k < +1.

If the following condition holds +1 X k=1 k jx k ? x k?1 j 2 < +1;

(2.10) then, there exists x 2 S such that fx k g weakly converges to x as k ! +1. Proof. Fix x 2 S = T ?1 (0), since 0 2 x k+1 ?x k ? k (x k ?x k?1 )+ k T "k (x k+1 ), from de nition (1.6) it follows that hx k+1 ? x k ? k (x k ? x k?1 ); x k+1 ? xi k " k :

De ne the auxiliary real sequence ' k := 1 2 jx k ? xj 2 . It is direct to check that hx k+1 ? x k ? k (x k ? x k?1 ); x k+1 ? xi = ' k+1 ? ' k + 1 2 jx k+1 ? x k j 2 ? k hx k ? x k?1 ; x k+1 ? xi;

and since

hx k ? x k?1 ; x k+1 ? xi = hx k ? x k?1 ; x k ? xi + hx k ? x k?1 ; x k+1 ? x k i = ' k ? ' k?1 + 1 2 jx k ? x k?1 j 2 + hx k ? x k?1 ; x k+1 ? x k i; it follows that ' k+1 ? ' k ? k (' k ? ' k?1 ) ? 1 2 jx k+1 ? x k j 2 + k hx k ? x k?1 ; x k+1 ? x k i + k 2 jx k ? x k?1 j 2 + k " k = ? 1 2 jx k+1 ? x k ? k (x k ? x k?1 )j 2 + k+ 2 k 2 jx k ? x k?1 j 2 + k " k :
Hence ' k+1 ? ' k ? k (' k ? ' k?1 ) ? 1 2 jv k+1 j 2 + k jx k ? x k?1 j 2 + k " k : (2.11) Setting k := ' k ? ' k?1 and k := k jx k ? x k?1 j 2 + k " k , we obtain k+1 k k + k k k ] + + k ; where t] + := max(t; 0), and consequently k+1 ] + k ] + + k ; with 2 0; 1 given by (2).

The rest of the proof follows that given in 2] and is presented here for completeness and to convey the idea in 2]. The latter inequality yields

k+1 ] + k 1 ] + + k?1 X i=0 i k?i ;
and therefore

1 X k=1 k+1 ] 1 1 ? ( 1 ] + + 1 X k=1 k );
which is nite thanks to (3) and (2.10). Consider the sequence de ned by t k := ' k ? P k i=1 i ] + . Since ' k 0 and P k i=1 i ] + < +1, it follows that t k is bounded from below. But

t k+1 = ' k+1 ? k+1 ] + ? k X i=1 i ] + ' k+1 ? ' k+1 + ' k ? k X i=1 i ] + = t k ;
so that ft k g is nonincreasing. We thus deduce that ft k g is convergent and so is f' k g. On the other hand, from (2.11) we obtain the estimate 1 2 jv k+1 j 2 ' k ? ' k+1 + k ] + + k : Passing to the limit in the latter inequality and taking into account that f' k g converges, k ] + and k go to zero as k tends to +1, we obtain lim k!+1 v k+1 = 0: Now let x be a weak cluster point of fx k g. There exists a subsequence fx g which converges weakly to x and satis es v +1 + T " (x +1 ) 3 0. By de nition (1.6), we have h? v +1 ? z; x +1 ? yi ?" 8z 2 T (y):

Passing to the limit, as ! +1, we obtain h?z; x ? yi 0; this being true for any z 2 T (y), from maximal monotonicity of T , it follows that 0 2 T ( x), that is x 2 S. We end the proof by applying the well-known 2. Under assumptions of theorem 2.1 and in view of its proof, it is clear that fx k g is bounded if, and only if, there exists at least one solution to (1.1).

Strong convergence results

First, we give a result showing that the criterion (1.9) ensures the strong convergence of the sequence generated by:

x k+1 ? y k + k T "k (x k+1 ) 3 0;

(2.12)

where y k = x k + k (x k ? x k?1 ), " k and k are positive reals. Theorem 2.2 Let fx k g be any sequence generated by (1.7) using criterion (1.9) with f k g nondecreasing ( k " 1 +1). Furthermore, if we assume that lim k!+1 k k jx k ? x k?1 j = 0; then, the sequence fx k g strongly converges to x. Proof. The rst part of the proof follows that given in 15] and is presented here for completeness. The sequence fx k g being bounded, also satis es condition 3) of theorem 2.1 for " k = k jx k+1 ? y k j, so the conclusions of theorem 2.1 are in force. Now, let xk+1 be the exact solution of the k-th inertial proximal method, that is k T xk+1 + xk+1 ? y k 3 0:

(2.13) De nition of T "k combined with relations (2.12) and (2.13) leads to hy k ? x k+1 ? (y k ? xk+1 ); x k+1 ? xk+1 i ? k " k ; which implies that jx k+1 ? x k+1 j 2 k " k . The latter together with (1.9) yield jx k+1 ? x k+1 j k jx k+1 ? y k j:

(2.14) Therefore jx k+1 ? y k j jx k+1 ? x k+1 j + jx k+1 ? y k j (1 + k )jx k+1 ? y k j; which, using the convergence of v k+1 := x k+1 ? y k ! 0 (theorem 2.1), implies that jx k+1 ? y k j ! 0. Because f k g is bounded away from zero, we further conclude that w k = 1 k (y k ? xk+1 ) ! 0. Using the Lipschitz continuity of T ?1 around 0, we have, for indices k su ciently large, that: jx k+1 ? xj ajw k j = a k jx k+1 ? y k j:

(2. The result follows from Ortega and Rheinboldt 14; p:338], since by hypothesis lim k!+1 k = 0:

Remark 2.2 1. When k = 0, we obtain the linear convergence estimate obtained by Solodov & Svaiter 15] which is strictly better than the one for the classical proximal algorithm, namely, ~ k = k+ k 1? k ( 14], theorem 2). 2. The condition of Lipschitz continuity above holds true if T ?1 is globally Lipschitz continuous which is satis ed, for instance, when T is strongly monotone.

3. The condition of local Lipschitz continuity above is also satis ed if T ?1 is di erentiable at 0, that is, T ?1 (0) = f xg and 9A : H ! H a continuous linear transformation such that, for > 0 T ?1 (0) ? x + Aw o(jwj)B if jwj ; where B stands for the closed unit ball.

We close this section with a special result showing that the Inertial Proximal Method can converge in nitely many iterations: Theorem 2.3 Let fx k g be any sequence generated by (1.8) under the criterion (1.9) with k bounded away from zero. Suppose that fx k g is bounded and that 9

x 2 H such that 0 2 intT x:

(2.18) Then, for all k su ciently large, it holds that J T k (x k + k (x k ? x k?1 )) = x: Moreover, the sequence fx k g strongly converges to x. Proof. Let xk+1 be the exact solution of the k-th inertial proximal method, that is k T xk+1 + xk+1 ? y k 3 0: Hypothesis (2.18) and [START_REF] Ortega | Rheinboldt Iterative solution of nonlinear equations in several variables[END_REF], theorem 3) imply the existence of a positive real " such that jxj " ) T ?1 x = f xg:

But the hypothesis of the present theorem recovers those of theorem 2.1. therefore, we know that 1 k (y k ? xk+1 ) ! 0. Since xk+1 2 T ?1 ( 1 k (y k ? xk+1 )), assumption (2.18) implies that, for k su ciently large, xk+1 = x. Thus the inertial proximal method in its exact form converges to x in a nite number of iterations from any starting points x 0 and x 1 . From which we deduce, for all k su cientely large, that jx k+1 ? xj 2 = jx k+1 ? xk+1 j 2 k " k : The strong convergence of the sequence fx k g to x follows by passing to the limit in the last inequality, since condition (1.8) implies that lim k!+1 k " k = 0.

3 Convex Minimization

Approximate methods

An interesting case is obtained by taking T = @f, @f stands for the subdi erential of a proper convex lower-semicontinuous function f : X ! IR f+1g.

Indeed, @f is well-known to be a maximal monotone operator and problem (1.1) reduces to the one of nding a minimizer of the function f. In 1], Alvarez proposed the following approximate inertial proximal method: k @ "k f(x k+1 ) + x k+1 ? x k ? k (x k ? x k?1 ) 3 0; (3.19) where @ "k f is the approximate subdi erential of f. Since in the case T = @f the enlargement given in (1.6) is larger than the the approxiamte subdi erential, i.e. @ " f (@f) " , we can write @ "k f(x k+1 ) (@f) "k (x k+1 ); which leads to k (@f) "k (x k+1 ) + x k+1 ? x k ? k (x k ? x k?1 ) 3 0;

(3.20) which is a particular case of the method proposed in this paper with T = @f. As a consequence of theorem 2.1 and theorem 2.2, we obtain the following convergence result which recover and completes a result by Alvarez 1]. Corollary 3.1 Let fx k g H be a sequence such that 0 2 x k+1 ? x k ? k (x k ? x k?1 ) + k @ "k f(x k+1 ); k = 1; 2;

(

where f is a proper closed convex function with Argmin f 6 = ;, and the parameters k ; k and " k satisfy:

1. 9 > 0 such that 8k 2 IN; k . 2. 9 2 0; 1 such that 8k 2 IN; 0 k .

P +1

k=1 k " k < +1.

If the following condition holds +1 X k=1 k jx k ? x k?1 j 2 < +1;

(

then fx k g weakly converges to a minimizer of f and lim

k!+1 f(x k ) = inf x2H f(x).
Moreover, if we replace condition 3) of theorem 2.1 by criterion (1.9) and we assume in addition that @f is Lipschitz continuous around zero, the convergene is strong. The function f stands for the Fenchel conjuguate of f, namely,

f(x ) = sup x2H (hx ; xi ? f(x)). Remark 3.1 The formula lim k!+1 f(x k ) = inf x2H f(x) is obtained from relation (3.19
), de nition of the approximate subdi erential, lower semicontinuity of the function f and the fact that lim k!+1 v k+1 = 0 (see the proof of theorem 2.1).

A perturbed Inertial Proximal Method

When f is nonsmooth, subproblems (3.19) may be very hard to solve and several authors proposed to approximate f by a sequence f k of more tractable convex functions (see for example 6], 7] and 11]). In this section we consider f k ; k = 2; 3 , a monotone decreasing sequence of proper closed convex function on H, f be such that f = cl(inf k f k ). Now, x 0 ; x 1 be given in H, let us consider a sequence fx k g generated by the following perturbed method: 0 2 x k ? x k?1 ? k (x k?1 ? x k?2 ) + k @ "k f k (x k ); k = 2; 3; Proof. For all x 2 H, by de nition of the approximate subdi erential, we have f k (x) f k (x k ) ? 1 k hx k ? x k?1 ? k (x k?1 ? x k?2 ); x ? x k i ? " k : (3.25) Setting x = x k?1 and taking into account the following inequalities ?hx k ? x k?1 ? k (x k?1 ? x k?2 ); x k?1 ? x k i 1 2 jx k ? x k?1 j 2 ? k hx k?1 ? x k?2 ; x k ? x k?1 i = ? 2 k 2 jx k?1 ? x k?2 j 2 + 1 2 jx k ? x k?1 ? k (x k?1 ? x k?2 )j 2 ; we infer that

f k (x k ) + 1 2 k jv k j 2 f k (x k?1 ) + 2 k 2 k jx k?1 ? x k?2 j 2 + k ;
where v k := 1 2 jx k ? x k?1 ? k (x k?1 ? x k?2 )j.

This combined with the fact that f k decreases yields

f k (x k ) + 1 2 k jv k j 2 f k?1 (x k?1 ) + 2 k 2 k
jx k?1 ? x k?2 j 2 + k :

(3.26)

Now let I = fk 2 IN; f k (x k ) > f k?1 (x k?1 )g.

If I is not nite

Passing to the limit in the inequality (2.26) and in the light of (3.24), we get lim k2I 1 k jv k j = 0. On the other hand, since f k # f = cl(inf k f k ), we have that ff k g converges to f in the Mosco epi-convergence sense (see 3], theorem 3.20). Namely, for any z 2 H, the following statements hold true 1. 9z k satisfying z = s ?lim k!+1 z k and lim sup k!+1 f k (z k ) f (z). 2. 8z k with z = w ? lim k!+1 z k one has lim inf k!+1 f k (z k ) f (z).

By setting x = z k with lim k!+1 z k = z and lim sup k!+1 f k (z k ) f (z), and by passing to the limit in ( 

(k) = k if k 2 I maxfl; l < k; l 2 Sg if k = 2 I: We have lim k!+1 i(k) = +1 and f k (x k ) f i(k) (x i(k) )
, which combined with (2.27) gives relation (2.28).

If I is empty or nite

For every k large enough, we have f k (x k ) f k?1 (x k?1 ). So the sequence ff k (x k )g converges in I R. If lim k!+1 f k (x k ) = ?1, then, thanks to the fact that ff k g decreases, we have lim k!+1 f k (x k ) = inf f = ?1.

Otherwise, from (3.26), we infer that lim k!+1 1 k jv k j = 0, and as in the previous case, we get directly (3.28).

In all cases we have proved relation (2.28). From which we deduce

lim k!+1 f k (x k ) = inf f;
because the sequence ff k g decreases.

To conclude, we use an Mosco epi-convergence argument. Let x be any weak cluster point of fx k g and fx g a subsequence which weakly converges to x. According to de nition of the Mosco epi-convergence we can write f ( x) lim inf !+1 f (x ) = inf f: That is x is a minimizer of f . Proposition 3.1 If, in addition to the hypothesis of Corollary 3.1, we assume for every solution x 2 S, that +1 X k=2 k maxf(f k (x) ? f k (x k )); 0g < +1: Proof. From the proof of theorem 2.1, relation (2.25) can be rewritten as k (f k (x)?f k (x k )) ' k ?' k?1 ? k (' k?1 ?' k?2 )+ 1 2 jv k j2 ? k jx k?1 ?x k?2 j 2 ? k " k : Taking any x 2 S and according to relation (3.29), we obtain ' k ? ' k?1 ? k (' k?1 ? ' k?2 ) ? 1 2 jv k j 2 + k ; with k = k maxf(f k (x) ? f k (x k )); 0g + k jx k?1 ? x k?2 j 2 + k " k which is nothing but relation (2.11). So, from the proof of theorem 2.1, we deduce that ' k (x) = lim k!+1 1 Remark 3.2 It is worth mentioning that (3.29) is satis ed when f k = f, for all k. Indeed, in this case f(x) ? f(x k ) 0. Furthermore, for the sequence of barrier functions, see the example below (resp. Tikhonov regularization, namely f k ( ) = f( )+ k j j 2 ), this assumption amounts to imposing a rate of convergence on the barrier (resp. Thikonov) parameters. More precisely, it can be proved easily that, if P +1 k=2 k k < +1, then the functions f k satisfy (3.29). This is, for instance, the case when f k g is bounded and k = 1 k ; 8k with > 1.

To conclude this section, let us now give some examples of such perturbation.

Example 1 Constrained convex minimization.

In the classical constrained minimization problem, we are given a convex func- Where C is described by nitely many convex inequalities: g i (x) 0; i = 1; , an other example of such an approximation uses the sequence of the inverse barrier functions associated with the closed convex set C, namely f k := h + k with k (x) = ? k m X i=1 1 ln(?g i (x))

; x 2 int C; (3.32) and +1 otherwise, where the sequence f k g of positive barrier parameters is strictly decreasing to 0.

Indeed, it is easy to check, in the both cases, that f k # f.

( 3 .

 3 23)where the parameters k , " k and k are nonnegative real numbers. Theorem 3.1 Suppose that the sequence fx k g is bounded and that the following 1 ? x k?2 j = 0;(3.24) then lim k!+1 f k (x k ) = inf f and every weak cluster point of fx k g is a minimizer of f.

( 3 .

 3 29)Then the whole sequence fx k g generated by (3.23) converges weakly to a minimizer of f.

  tion h from H to IR, and a nonempty closed convex set C, and we wish to nd a solution of min x2H (h(x) + C (x)):(3.30)An example of such an approximation of f := h + C is obtained by taking an interior approximation of the feasible set C, namely f k := h + Ck , where fC k g is a sequence of nonempty closed convex sets chosen in such a way that C = C k and C k C k+1 C for k = 1; 2;(3.31) 
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	We further obtain	
	jy k ? xj 2 = jy k ? xk+1 j 2 + jx k+1 ? xj 2 + 2hy k ? xk+1 ; xk+1 ? xi = jy k ? xk+1 j 2 + jx k+1 ? xj 2 + 2 k hw k ; xk+1 ? xi (1 + ( k a ) 2 )jx k+1 ? xj 2 : jy k ? xk+1 j 2 + jx k+1 ? xj 2	(2.16)
	Hence, by setting k := a p a 2 + 2 k Using the latter relation and (2.14), we further obtain , we obtain jx k+1 ? xj k jy k ? xj:
		jx k+1 ? xj	jx k+1 ? xk+1 j + jx k+1 ? xj k jx k+1 ? y k j + k jy k ? xj:	(2.17)
	Similarly,	jx k+1 ? y k j	jx k+1 ? xk+1 j + jx k+1 ? y k j k jx k+1 ? y k j + jy k ? xj;
	where also (2.16) was used in the last inequality. Therefore jx k+1 ? y k j 1 1 ? k jy k ? xj:
	Now, combining the latter relation with (2.17) and using the triangular inequal-ity, we obtain
		jx k+1 ? xj k jy k ? xj k jx k ? xj + k k jx k ? x k?1 j;
	where k := k 1? k + k , from which we deduce easily, by taking into account conditions on k and k , the existence of a range K such that
		jx k+1 ? xj jx k ? xj + k ;
	where 2]0; 1 and k := (2 k + a k ) k jx k ? x k?1 j. Hence, jx k ? xj k jx 0 ? xj + k X j	k?j :
			j=1

"

"

) T "1 (x) T "2 (x):

jx k ? xj 2 = 0, for all x 2 S. This together with theorem

[START_REF] Alvarez | An inertial proximal method for maximal monotone operators via discretization of a non linear oscillator with damping[END_REF].1 gives the convergence of the whole sequence fx k g by applying Opial's lemma.
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