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An approximate inertial proximal methodusing the enlargement of a maximalmonotone operatorA. Moudafi and E. ElisabethUniveristé Antilles Guyane, DSI-GRIMAAG97200 Schoelcher, Martinique, France.abdellatif.mouda�@martinique.univ-ag.frAbstract: An approximate procedure for solving the problem of �nding a zero of amaximal monotone operator is proposed and its convergence is established under var-ious conditions. More precisely, it is shown that this method weakly converges undernatural assumptions and strongly converges provided that either the inverse of theinvolved operator is Lipschitz continuous around zero or the interior of the solutionset is nonempty. A particular attention is given to the convex minimization case.AMS Subject Classi�cation: Primary, 90C25; Secondary, 49M45, 65C25.Key words. monotone operators, elargements, proximal point algorithm, lo-cal Lipschitz continuity, approximate subdi�erential, convergence, convex min-imization. 1 Introduction and preliminariesIn this paper we will focus our attention on the classical problem of �nding azero of a maximal monotone operator T on a real Hilbert space H:�nd x 2 H such that Tx 3 0: (1.1)This is a well-known problem which includes, as special cases, optimization andmin-max problems, complementarity problems, and variational inequalities.One of the fondamental approaches to solving (1.1) is the proximal method,which generates the next iterates xk+1 by solving the subproblem0 2 �kT (x) + (x� xk); (1.2)where xk is the current iterate and �k is a regularization parameter. The liter-ature on this subject is vast (see [8] for a survey).1



2 A. Mouda� and E. ElisabethRecently, an inertial proximal algorithm was proposed by Alvarez in [1] in thecontext of convex minimization. Afterwards, Attouch and Alvarez consideredits extension to maximal monotone operators in [2]. It works as follows. Givenxk�1; xk 2 H and two parameters �k 2 [0; 1[ and �k > 0, �nd xk+1 2 H suchthat �kT (xk+1) + xk+1 � xk � �k(xk � xk�1) 3 0: (1.3)It is well known that the proximal iteration may be interpreted as an implicitone-step discretisation method for the evolution di�erential inclusiondxdt (t) + T (x(t)) 3 0 a.e. t � 0; (1.4)where the parameter �k is a (variable) stepsize. While the inspiration for (1.3)comes from the implicit discretization of the di�erential system of the second-order in time, namelyd2xdt2 (t) + 
 dxdt (t) + T (x(t)) 3 0 a.e. t � 0; (1.5)where 
 > 0 is a damping or a friction parameter.Under appropriate conditions on �k and �k Attouch & Alvarez proved that ifthe solution set S = T�1(0) is nonempty, then for every sequence fxkg gener-ated by (1.3), there exists an �x 2 S such that fxkg converges to �x weakly in Has k !1.For developing implementable computational techniques, it is of particular im-portance to treat the case when (1.3) is solved approximately. Before introduc-ing our approximate method, let us recall the following concepts which are ofcommon use in the context of convex and nonlinear analysis. Troughout, H isa real Hilbert space, h�; �i denotes the associated scalar product and j � j standsfor the corresponding norm. An operator is said to be monotone ifhu� v; x� yi � 0 whenever u 2 T (x); v 2 T (y):It is said to be maximalmonotone if, in addition, the graph, f(x; y) 2 H�H : y 2T (x)g, is not properly contained in the graph of any other monotone operator.It is well-known that for each x 2 H and � > 0 there is a unique z 2 H suchthat x 2 (I + �T )z. The single-valued operator JT� := (I + �T )�1 is called theresolvent of T of parameter �. It is a nonexpansive mapping which is everywherede�ned and satis�es: z = JT� z, if and only if, 0 2 Tz. Let us also recall a notionwhich is clearly inspired by the approximate subdi�erential. In [16], Iusem,Burachik and Svaiter de�ned T "(x), an "-enlargement of a monotone operatorT , as T "(x) := fv 2 H; hu� v; y � xi � �" 8y; u 2 T (y)g; (1.6)where " � 0. Since T is assumed to be maximal monotone, T 0(x) = T (x), forany x. Furthermore, directly from the de�nition it follows that0 � "1 � "2 ) T "1(x) � T "2(x):



An approximate inertial proximal method 3Thus T " is an enlargement of T . The use of elements in T " instead of T allowsan extra degree of freedom, which is very useful in various applications. Onthe other hand, setting " = 0 one retrieves the original operator T , so thatthe classical method can be also treated. For all these reasons, we consider thefollowing scheme: �nd xk+1 2 H such that�kT "k(xk+1) + xk+1 � yk 3 0: (1.7)where yk := xk + �k(xk � xk�1); �k; �k; "k are nonnegative real numbers.We will impose the following tolerance criteria on the term "k which are standardin the literature: +1Xk=1�k"k < +1; (1.8)and p�k"k � �kkxk+1 � ykk with +1Xk=1 �k < +1: (1.9)The �rst condition is typically needed to establish global convergence, while thesecond is required for local linear rate of convergence result under additionalnatural assumptions.The remainder of the paper is organized as follows: In section 2, we presenta weak convergence result for the sequence generated by (1.7) under criterion(1.8). We also consider various conditions for which the convergence is strong.In section 3, we present an application to convex minimization and study theconvergence of a perturbed version of (1.7) as well as conditions ensuring theconvergence for both the values and the iterates.2 The main results2.1 A weak convergence resultTheorem 2.1 Let fxkg � H be a sequence such that0 2 xk+1 � xk � �k(xk � xk�1) + �kT "k(xk+1); k = 1; 2; � � �where T : H ! P(H) is a maximal monotone operator with S := T�1(0) 6= ;,and the parameters �k; �k and "k satisfy:1. 9� > 0 such that 8k 2 IN�; �k � �.2. 9� 2 [0; 1[ such that 8k 2 IN�; 0 � �k � �.3. P+1k=1 �k"k < +1.



4 A. Mouda� and E. ElisabethIf the following condition holds+1Xk=1�kjxk � xk�1j2 < +1; (2.10)then, there exists �x 2 S such that fxkg weakly converges to �x as k ! +1.Proof. Fix x 2 S = T�1(0), since 0 2 xk+1�xk��k(xk�xk�1)+�kT "k(xk+1),from de�nition (1.6) it follows thathxk+1 � xk � �k(xk � xk�1); xk+1 � xi � �k"k:De�ne the auxiliary real sequence 'k := 12 jxk � xj2. It is direct to check thathxk+1 � xk � �k(xk � xk�1); xk+1 � xi = 'k+1 � 'k + 12 jxk+1 � xkj2��khxk � xk�1; xk+1 � xi;and sincehxk � xk�1; xk+1 � xi = hxk � xk�1; xk � xi+ hxk � xk�1; xk+1� xki= 'k � 'k�1 + 12 jxk � xk�1j2 + hxk � xk�1; xk+1� xki;it follows that'k+1 � 'k � �k('k � 'k�1) � �12 jxk+1� xkj2 + �khxk � xk�1; xk+1 � xki+�k2 jxk � xk�1j2 + �k"k= �12 jxk+1� xk � �k(xk � xk�1)j2+�k+�2k2 jxk � xk�1j2 + �k"k:Hence'k+1 � 'k � �k('k � 'k�1) � �12 jvk+1j2 + �kjxk � xk�1j2 + �k"k: (2.11)Setting �k := 'k � 'k�1 and �k := �kjxk � xk�1j2 + �k"k, we obtain�k+1 � �k�k + �k � �k[�k]+ + �k;where [t]+ := max(t; 0), and consequently[�k+1]+ � �[�k]+ + �k;with � 2 [0; 1[ given by (2).The rest of the proof follows that given in [2] and is presented here for com-pleteness and to convey the idea in [2]. The latter inequality yields[�k+1]+ � �k[�1]+ + k�1Xi=0 �i�k�i;



An approximate inertial proximal method 5and therefore 1Xk=1[�k+1]� 11� � ([�1]+ + 1Xk=1 �k);which is �nite thanks to (3) and (2.10). Consider the sequence de�ned bytk := 'k �Pki=1[�i]+. Since 'k � 0 and Pki=1[�i]+ < +1, it follows that tk isbounded from below. Buttk+1 = 'k+1 � [�k+1]+ � kXi=1[�i]+ � 'k+1 � 'k+1 + 'k � kXi=1[�i]+ = tk;so that ftkg is nonincreasing. We thus deduce that ftkg is convergent and so isf'kg. On the other hand, from (2.11) we obtain the estimate12 jvk+1j2 � 'k � 'k+1 + �[�k]+ + �k:Passing to the limit in the latter inequality and taking into account that f'kgconverges, [�k]+ and �k go to zero as k tends to +1, we obtainlimk!+1 vk+1 = 0:Now let �x be a weak cluster point of fxkg. There exists a subsequence fx�gwhich converges weakly to �x and satis�es v�+1+��T "� (x�+1) 3 0. By de�nition(1.6), we have h�v�+1�� � z; x�+1 � yi � �"� 8z 2 T (y):Passing to the limit, as � ! +1, we obtainh�z; �x� yi � 0;this being true for any z 2 T (y), from maximal monotonicity of T , it followsthat 0 2 T (�x), that is �x 2 S. We end the proof by applying the well-knownOpial's lemma [12].Remark 2.1 1. Although condition (2.10) involves the iterates that are apriori unknown. In practice, as it was stressed by Alvarez & Attouch,it is easy to enforce it by applying an appropriate on-line rule. Further-more, condition (2.10) is automatically satis�ed in some special cases (seeproposition 2.1, [2]).2. Under assumptions of theorem 2.1 and in view of its proof, it is clear thatfxkg is bounded if, and only if, there exists at least one solution to (1.1).



6 A. Mouda� and E. Elisabeth2.2 Strong convergence resultsFirst, we give a result showing that the criterion (1.9) ensures the strong con-vergence of the sequence generated by:xk+1 � yk + �kT "k(xk+1) 3 0; (2.12)where yk = xk + �k(xk � xk�1), "k and �k are positive reals.Theorem 2.2 Let fxkg be any sequence generated by (1.7) using criterion (1.9)with f�kg nondecreasing (�k " �1 � +1). Assume that fxkg is bounded,9� 2 [0; 1[ such that 8k 2 IN�; 0 � �k � �, and T�1 is Lipschitz continuousaround zero, i.e., problem (1.1) has the unique solution, say �x, and there existsome constants a > 0 and � > 0 such thatjvj � �; v 2 T (y) ) jy � �xj � ajvj:Then, there is a real � 2]0; 1[ and a range K 2 IN� such thatjxk+1 � �xj � �jxk � �xj+ (2�k + a�k )�kjxk � xk�1j 8k � K:Furthermore, if we assume that limk!+1 �k�k jxk�xk�1j = 0; then, the sequencefxkg strongly converges to �x.Proof. The �rst part of the proof follows that given in [15] and is presented herefor completeness. The sequence fxkg being bounded, also satis�es condition 3)of theorem 2.1 for "k = �kjxk+1 � ykj, so the conclusions of theorem 2.1 are inforce. Now, let ~xk+1 be the exact solution of the k-th inertial proximal method,that is �kT ~xk+1 + ~xk+1 � yk 3 0: (2.13)De�nition of T "k combined with relations (2.12) and (2.13) leads tohyk � xk+1 � (yk � ~xk+1); xk+1 � ~xk+1i � ��k"k;which implies that j~xk+1 � xk+1j2 � �k"k. The latter together with (1.9) yieldj~xk+1 � xk+1j � �kjxk+1� ykj: (2.14)Thereforej~xk+1� ykj � j~xk+1 � xk+1j + jxk+1 � ykj � (1 + �k)jxk+1 � ykj;which, using the convergence of vk+1 := xk+1 � yk ! 0 (theorem 2.1), impliesthat j~xk+1 � ykj ! 0. Because f�kg is bounded away from zero, we further



An approximate inertial proximal method 7conclude that wk = 1�k (yk � ~xk+1) ! 0. Using the Lipschitz continuity of T�1around 0, we have, for indices k su�ciently large, that:j~xk+1 � �xj � ajwkj = a�k j~xk+1 � ykj: (2.15)We further obtainjyk � �xj2 = jyk � ~xk+1j2 + j~xk+1 � �xj2 + 2hyk � ~xk+1; ~xk+1 � �xi= jyk � ~xk+1j2 + j~xk+1 � �xj2 + 2�khwk; ~xk+1 � �xi� jyk � ~xk+1j2 + j~xk+1 � �xj2� (1 + (�ka )2)j~xk+1 � �xj2: (2.16)Hence, by setting �k := apa2+�2k , we obtain j~xk+1 � �xj � �kjyk � �xj:Using the latter relation and (2.14), we further obtainjxk+1 � �xj � jxk+1 � ~xk+1j+ j~xk+1 � �xj� �kjxk+1 � ykj+ �kjyk � �xj: (2.17)Similarly, jxk+1 � ykj � jxk+1 � ~xk+1j+ j~xk+1 � ykj� �kjxk+1 � ykj+ jyk � �xj;where also (2.16) was used in the last inequality.Therefore jxk+1 � ykj � 11� �k jyk � �xj:Now, combining the latter relation with (2.17) and using the triangular inequal-ity, we obtainjxk+1 � �xj � �kjyk � �xj � �kjxk � �xj+ �k�kjxk � xk�1j;where �k := �k1��k + �k, from which we deduce easily, by taking into accountconditions on �k and �k, the existence of a range K such thatjxk+1 � �xj � �jxk � �xj+ �k;where � 2]0; 1[ and �k := (2�k + a�k )�kjxk � xk�1j.Hence, jxk � �xj � �kjx0 � �xj+ kXj=1 �j�k�j:The result follows from Ortega and Rheinboldt [14; p:338], since by hypothesislimk!+1 �k = 0:



8 A. Mouda� and E. ElisabethRemark 2.2 1. When �k = 0, we obtain the linear convergence estimateobtained by Solodov & Svaiter [15] which is strictly better than the one forthe classical proximal algorithm, namely, ~�k = �k+�k1��k ([14], theorem 2).2. The condition of Lipschitz continuity above holds true if T�1 is globallyLipschitz continuous which is satis�ed, for instance, when T is stronglymonotone.3. The condition of local Lipschitz continuity above is also satis�ed if T�1 isdi�erentiable at 0, that is, T�1(0) = f�xg and 9A : H ! H a continuouslinear transformation such that, for � > 0T�1(0)� �x+Aw � o(jwj)B if jwj � �;where B stands for the closed unit ball.We close this section with a special result showing that the Inertial ProximalMethod can converge in �nitely many iterations:Theorem 2.3 Let fxkg be any sequence generated by (1.8) under the criterion(1.9) with �k bounded away from zero. Suppose that fxkg is bounded and that9�x 2 H such that 0 2 intT �x: (2.18)Then, for all k su�ciently large, it holds thatJT�k(xk + �k(xk � xk�1)) = �x:Moreover, the sequence fxkg strongly converges to �x.Proof. Let ~xk+1 be the exact solution of the k-th inertial proximal method,that is �kT ~xk+1 + ~xk+1 � yk 3 0:Hypothesis (2.18) and ([14], theorem 3) imply the existence of a positive real "such that jxj � ") T�1x = f�xg:But the hypothesis of the present theorem recovers those of theorem 2.1. there-fore, we know that 1�k (yk � ~xk+1) ! 0. Since ~xk+1 2 T�1( 1�k (yk � ~xk+1)),assumption (2.18) implies that, for k su�ciently large, ~xk+1 = �x. Thus theinertial proximal method in its exact form converges to �x in a �nite number ofiterations from any starting points x0 and x1. From which we deduce, for all ksu�cientely large, thatjxk+1 � �xj2 = jxk+1 � ~xk+1j2 � �k"k:The strong convergence of the sequence fxkg to �x follows by passing to the limitin the last inequality, since condition (1.8) implies that limk!+1 �k"k = 0.



An approximate inertial proximal method 93 Convex Minimization3.1 Approximate methodsAn interesting case is obtained by taking T = @f , @f stands for the subdi�er-ential of a proper convex lower-semicontinuous function f : X ! IR [ f+1g.Indeed, @f is well-known to be a maximalmonotone operator and problem (1.1)reduces to the one of �nding a minimizer of the function f .In [1], Alvarez proposed the following approximate inertial proximal method:�k@"kf(xk+1) + xk+1 � xk � �k(xk � xk�1) 3 0; (3.19)where @"kf is the approximate subdi�erential of f . Since in the case T = @f theenlargement given in (1.6) is larger than the the approxiamte subdi�erential, i.e.@"f � (@f)", we can write @"kf(xk+1) � (@f)"k (xk+1); which leads to�k(@f)"k (xk+1) + xk+1 � xk � �k(xk � xk�1) 3 0; (3.20)which is a particular case of the method proposed in this paper with T = @f .As a consequence of theorem 2.1 and theorem 2.2, we obtain the followingconvergence result which recover and completes a result by Alvarez [1].Corollary 3.1 Let fxkg � H be a sequence such that0 2 xk+1 � xk � �k(xk � xk�1) + �k@"kf(xk+1); k = 1; 2; � � � (3.21)where f is a proper closed convex function with Argmin f 6= ;, and the param-eters �k; �k and "k satisfy:1. 9� > 0 such that 8k 2 IN; �k � �.2. 9� 2 [0; 1[ such that 8k 2 IN; 0 � �k � �.3. P+1k=1 �k"k < +1.If the following condition holds+1Xk=1�kjxk � xk�1j2 < +1; (3.22)then fxkg weakly converges to a minimizer of f and limk!+1 f(xk) = infx2H f(x).Moreover, if we replace condition 3) of theorem 2.1 by criterion (1.9) and weassume in addition that @f� is Lipschitz continuous around zero, the convergeneis strong. The function f� stands for the Fenchel conjuguate of f , namely,f(x�) = supx2H(hx�; xi � f(x)).Remark 3.1 The formula limk!+1 f(xk) = infx2H f(x) is obtained from relation(3.19), de�nition of the approximate subdi�erential, lower semicontinuity of thefunction f and the fact that limk!+1 vk+1 = 0 (see the proof of theorem 2.1).



10 A. Mouda� and E. Elisabeth3.2 A perturbed Inertial Proximal MethodWhen f is nonsmooth, subproblems (3.19) may be very hard to solve and severalauthors proposed to approximate f by a sequence fk of more tractable convexfunctions (see for example [6], [7] and [11]).In this section we consider fk; k = 2; 3 � ��, a monotone decreasing sequenceof proper closed convex function on H, f be such that f = cl(infk fk). Now,x0; x1 be given in H, let us consider a sequence fxkg generated by the followingperturbed method:0 2 xk � xk�1 � �k(xk�1 � xk�2) + �k@"kfk(xk); k = 2; 3; � � � (3.23)where the parameters �k, "k and �k are nonnegative real numbers.Theorem 3.1 Suppose that the sequence fxkg is bounded and that the followingcondition holds truelimk!+1 "k = 0and limk!+1 �kp�k jxk�1 � xk�2j = 0; (3.24)then limk!+1 fk(xk) = inf f and every weak cluster point of fxkg is a mini-mizer of f .Proof. For all x 2 H, by de�nition of the approximate subdi�erential, we havefk(x) � fk(xk)� 1�k hxk � xk�1 � �k(xk�1 � xk�2); x� xki � "k: (3.25)Setting x = xk�1 and taking into account the following inequalities�hxk � xk�1 � �k(xk�1 � xk�2); xk�1� xki � 12 jxk � xk�1j2� �khxk�1 � xk�2; xk � xk�1i= ��2k2 jxk�1� xk�2j2+ 12 jxk � xk�1 � �k(xk�1 � xk�2)j2;we infer thatfk(xk) + 12�k jvkj2 � fk(xk�1) + �2k2�k jxk�1 � xk�2j2 + �k;where vk := 12 jxk � xk�1 � �k(xk�1 � xk�2)j.This combined with the fact that fk decreases yieldsfk(xk) + 12�k jvkj2 � fk�1(xk�1) + �2k2�k jxk�1 � xk�2j2 + �k: (3.26)Now let I = fk 2 IN; fk(xk) > fk�1(xk�1)g.



An approximate inertial proximal method 11� If I is not �nitePassing to the limit in the inequality (2.26) and in the light of (3.24), weget limk2I 1�k jvkj = 0. On the other hand, since fk # f = cl(infkfk), wehave that ffkg converges to f in the Mosco epi-convergence sense (see [3],theorem 3.20). Namely, for any z 2 H, the following statements hold true1. 9zk satisfying z = s� limk!+1 zk and lim supk!+1 fk(zk) � f(z).2. 8zk with z = w � limk!+1 zk one has lim infk!+1 fk(zk) � f(z).By setting x = zk with limk!+1 zk = z and lim supk!+1 fk(zk) � f(z),and by passing to the limit in (3.25), we obtainlim supk2I fk(xk) � inf f: (3.27)� If I has an empty or �nite complement, we get trivialylim supk!+1 fk(xk) � inf f: (3.28)� Otherwise, for every k 2 IN , we de�ne i(k) 2 I byi(k) = � k if k 2 Imaxfl; l < k; l 2 Sg if k =2 I:We have limk!+1 i(k) = +1 and fk(xk) � fi(k)(xi(k)), which com-bined with (2.27) gives relation (2.28).� If I is empty or �niteFor every k large enough, we have fk(xk) � fk�1(xk�1). So the sequenceffk(xk)g converges in IR. If limk!+1 fk(xk) = �1, then, thanks tothe fact that ffkg decreases, we have limk!+1 fk(xk) = inf f = �1.Otherwise, from (3.26), we infer that limk!+1 1�k jvkj = 0, and as in theprevious case, we get directly (3.28).In all cases we have proved relation (2.28). From which we deducelimk!+1 fk(xk) = inf f;because the sequence ffkg decreases.To conclude, we use an Mosco epi-convergence argument. Let �x be anyweak cluster point of fxkg and fx�g a subsequence which weakly convergesto �x. According to de�nition of the Mosco epi-convergence we can writef(�x) � lim inf�!+1 f�(x�) = inf f:That is �x is a minimizer of f .



12 A. Mouda� and E. ElisabethProposition 3.1 If, in addition to the hypothesis of Corollary 3.1, we assumefor every solution x 2 S, that+1Xk=2�kmaxf(fk(x)� fk(xk)); 0g < +1: (3.29)Then the whole sequence fxkg generated by (3.23) converges weakly to a mini-mizer of f .Proof. From the proof of theorem 2.1, relation (2.25) can be rewritten as�k(fk(x)�fk(xk)) � 'k�'k�1��k('k�1�'k�2)+12 jvkj2��kjxk�1�xk�2j2��k"k:Taking any x 2 S and according to relation (3.29), we obtain'k � 'k�1 � �k('k�1 � 'k�2) � �12 jvkj2 + �k;with �k = �kmaxf(fk(x) � fk(xk)); 0g + �kjxk�1 � xk�2j2 + �k"k which isnothing but relation (2.11). So, from the proof of theorem 2.1, we deduce that'k(x) = limk!+1 12 jxk�xj2 = 0, for all x 2 S. This together with theorem 3.1gives the convergence of the whole sequence fxkg by applying Opial's lemma.Remark 3.2 It is worth mentioning that (3.29) is satis�ed when fk = f , forall k. Indeed, in this case f(x) � f(xk) � 0. Furthermore, for the sequence ofbarrier functions, see the example below (resp. Tikhonov regularization, namelyfk(�) = f(�)+�k j�j2), this assumption amounts to imposing a rate of convergenceon the barrier (resp. Thikonov) parameters. More precisely, it can be provedeasily that, if P+1k=2 �k�k < +1, then the functions fk satisfy (3.29). This is,for instance, the case when f�kg is bounded and �k = 1k� ; 8k with � > 1.To conclude this section, let us now give some examples of such perturbation.Example 1 Constrained convex minimization.In the classical constrained minimization problem, we are given a convex func-tion h from H to IR, and a nonempty closed convex set C, and we wish to �nda solution of minx2H(h(x) + �C(x)): (3.30)An example of such an approximation of f := h + �C is obtained by taking aninterior approximation of the feasible set C, namely fk := h+ �Ck , where fCkgis a sequence of nonempty closed convex sets chosen in such a way thatC = [Ck and Ck � Ck+1 � C for k = 1; 2; � � � (3.31)
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