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Abstract: An approximate procedure for solving the problem of finding a zero of a
maximal monotone operator is proposed and its convergence is established under var-
ious conditions. More precisely, it is shown that this method weakly converges under
natural assumptions and strongly converges provided that either the inverse of the
involved operator is Lipschitz continuous around zero or the interior of the solution
set is nonempty. A particular attention is given to the convex minimization case.
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1 Introduction and preliminaries

In this paper we will focus our attention on the classical problem of finding a
zero of a maximal monotone operator 7" on a real Hilbert space #:

find z &H suchthat Tz30. (1.1)

This is a well-known problem which includes, as special cases, optimization and
min-max problems, complementarity problems, and variational inequalities.
One of the fondamental approaches to solving (1.1) is the proximal method,
which generates the next iterates x;41 by solving the subproblem

0€ AT (2) + (2 — xp), (1.2)

where zj is the current iterate and Ay is a regularization parameter. The liter-
ature on this subject is vast (see [8] for a survey).



2 A. Moudafi and E. Elisabeth

Recently, an inertial proximal algorithm was proposed by Alvarez in [1] in the
context of convex minimization. Afterwards, Attouch and Alvarez considered
its extension to maximal monotone operators in [2]. Tt works as follows. Given
zip_1,x; € H and two parameters ag € [0, 1] and Mg > 0, find 2511 € H such
that

/\kT(l‘k_H) + Xpgp1 — X — Ozk(l‘k — l’k—l) 3 0. (13)

It 1s well known that the proximal iteration may be interpreted as an implicit
one-step discretisation method for the evolution differential inclusion

d

d—f(t) +T(x(t) 30 ae t>0, (1.4)
where the parameter Ay is a (variable) stepsize. While the inspiration for (1.3)
comes from the implicit discretization of the differential system of the second-
order in time, namely

%(t)+72_f(t)+T($(t))90 ae. t20, (15)

where v > 0 is a damping or a friction parameter.

Under appropriate conditions on «ay and A Attouch & Alvarez proved that if
the solution set S = T=1(0) is nonempty, then for every sequence {x;} gener-
ated by (1.3), there exists an € S such that {x;} converges to z weakly in A
as k — oo.

For developing implementable computational techniques, it is of particular im-
portance to treat the case when (1.3) is solved approximately. Before introduc-
ing our approximate method, let us recall the following concepts which are of
common use 1n the context of convex and nonlinear analysis. Troughout, H is
a real Hilbert space, (-,-) denotes the associated scalar product and | -| stands
for the corresponding norm. An operator is said to be monotone if

(u—wv,2—y) >0 whenever ueT(x),veT(y).

It is said to be maximal monotone if, in addition, the graph, {(z,y) € HxH :y €
T(z)}, is not properly contained in the graph of any other monotone operator.
It is well-known that for each # € H and A > 0 there is a unique z € H such
that @ € (I + AT)z. The single-valued operator J{ := (I + AT)~?! is called the
resolvent of T" of parameter A. It is a nonexpansive mapping which is everywhere
defined and satisfies: z = J{ z, if and only if, 0 € T'2. Let us also recall a notion
which is clearly inspired by the approximate subdifferential. In [16], Tusem,
Burachik and Svaiter defined 7% (x), an c-enlargement of a monotone operator
T, as

T () ={veH;,{u—vy—a)y>— VYyuecT(y)}, (1.6)

where ¢ > 0. Since 7' is assumed to be maximal monotone, T°(z) = T'(x), for
any x. Furthermore, directly from the definition it follows that

0<e; €y = Tal(l‘) C T€2(l‘).
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Thus 7° is an enlargement of 7. The use of elements in 7 instead of T' allows
an extra degree of freedom, which 1s very useful in various applications. On
the other hand, setting ¢ = 0 one retrieves the original operator 7', so that
the classical method can be also treated. For all these reasons, we consider the
following scheme: find zy41 € H such that

/\kTak(l‘k_H) + Tpg1 —Yr D 0. (17)

where yj, := &k + o (g — ¥x—1), Ak, Ok, € are nonnegative real numbers.
We will impose the following tolerance criteria on the term &5 which are standard
in the literature:

+o0
> Ak < +00, (1.8)
k=1
and
+o0
Ve < illeesr —usll with Y8 < +oo. (1.9)

k=1

The first condition is typically needed to establish global convergence, while the
second 1s required for local linear rate of convergence result under additional
natural assumptions.

The remainder of the paper is organized as follows: In section 2, we present
a weak convergence result for the sequence generated by (1.7) under criterion
(1.8). We also consider various conditions for which the convergence is strong.
In section 3, we present an application to convex minimization and study the
convergence of a perturbed version of (1.7) as well as conditions ensuring the
convergence for both the values and the iterates.

2 The main results

2.1 A weak convergence result
Theorem 2.1 Let {ay} C H be a sequence such that
0€ apyr —op —an(zp — 2p_1) + ML (2p41), k=1,2, -

where T : H — P(H) is a mazimal monotone operator with S := T~1(0) # 0,
and the parameters ay, Ay and ey satisfy:

1. AN > 0 such that Vk € IN* A > A
2. Ja € [0, 1] such that Vk € IN*,0 < ag < a.

3.3 Aeer < 40



4 A. Moudafi and E. Elisabeth

If the following condition holds

+oo
Zaﬂxk — l‘k_1|2 < +o00, (210)
k=1

then, there exists & € S such that {xy} weakly converges to & as k — +o0.

Proof. Fixz € S = T71(0), since 0 € w1 —ap —ag (s —2p_1) + ATk (2p41),
from definition (1.6) it follows that

(Trg1 — xp — apl(@r — Tp—1), Trg1 — ) < Ak

Define the auxiliary real sequence ¢y 1= %|xk — z|%. Tt is direct to check that

(Tpg1 — @p — p(Tp — Tpo1), Thgt — B) = Crg1 — Pk + 3lopg — 2|
—o T — Tp_1, Tpgp1 — T,

and since

(xp — Ch—1,Cpp1 — &) = (@p — o1, 2p — )+ (Tp — Th_1, Trt1 — k)
= sok—sok—ri-%|l‘k—l‘k—1|2+<l‘k—$k—1,$k+1—l‘k>,

1t follows that

g1 — ok — ak(or —er—1) < —glengr — el + arer — wpo1, Teyr — 2k)
+ 8 [ — 2p_1]? 4 Meer

= —lenpr — ok — ap(s — zpo1))?
—I-O”C;—O(’Qﬂl‘k — 21?4 Aieg.
Hence
k1 — 9k — g (pr — pr-1) < —%|Uk+1|2 +agleg — ep_1 |+ Mg (2.11)
Setting 0y := ¢ — pr_1 and 6 := ag|rr — xx_1|? + ke, we obtain
Opt1 < aply + 0 < aplfp]s + O,
where [t]; := max(t,0), and consequently
[Or+1]+ < affe]+ +

with « € [0, 1] given by (2).
The rest of the proof follows that given in [2] and is presented here for com-
pleteness and to convey the idea in [2]. The latter inequality yields
k=1
[k 41]s < oF[01]1 + Y a'diy,

i=0
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and therefore

> k1)< ] i —([0u]+ + > 6k),
k=1

k=1
which is finite thanks to (3) and (2.10). Consider the sequence defined by
te = o — Ef:1[9i]+~ Since ¢ > 0 and Z?:1[9i]+ < 400, it follows that ¢ is
bounded from below. But

k k

terr = Prpt = [Oker)e — Y1004 < prpr — rpr +ox — D _[0i]4 = 1,
i=1 i=1

so that {3} is nonincreasing. We thus deduce that {t;} is convergent and so is
{¢r}. On the other hand, from (2.11) we obtain the estimate

1
§|Uk+1|2 < ¢k — Prt1 + affk]y + O

Passing to the limit in the latter inequality and taking into account that {yg}
converges, [f;]+ and &g go to zero as k tends to +00, we obtain

lim vg41 = 0.
—+o00

Now let & be a weak cluster point of {z;}. There exists a subsequence {z,}
which converges weakly to # and satisfies v, 41+ A, T (2,41) 3 0. By definition
(1.6), we have

<_vl’_+1

N T Ot —y) > —e, VzeT(y).

Passing to the limit, as ¥ — 400, we obtain
<_Za x— y> Z Oa

this being true for any z € T'(y), from maximal monotonicity of T', it follows
that 0 € T(Z), that is 2 € S. We end the proof by applying the well-known
Opial’s lemma [12]. &

Remark 2.1 1. Although condition (2.10) involves the iterates that are a
priori unknown. In practice, as it was stressed by Alvarez & Attouch,
it 1s easy to enforce it by applying an appropriate on-line rule. Further-
more, condition (2.10) is automatically satisfied in some special cases (see

proposition 2.1, [2]).

2. Under assumptions of theorem 2.1 and wn view of its proof, it is clear that
{z1} is bounded if, and only if, there exists at least one solution to (1.1).
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2.2  Strong convergence results

First, we give a result showing that the criterion (1.9) ensures the strong con-
vergence of the sequence generated by:

Tp1 — Ys + AT F (241) 30, (2.12)
where y, = 2 + ag(2r — 25-1), €5 and «y are positive reals.

Theorem 2.2 Let {1} be any sequence generated by (1.7) using criterion (1.9)
with {\z} nondecreasing (A T Ao < +00). Assume that {xp} is bounded,
Ja € [0,1] such that Yk € IN*,0 < ay < «, and T~ is Lipschitz continuous
around zero, i.e., problem (1.1} has the unique solution, say &, and there exist
some constants a > 0 and T > 0 such that

v| < v eT(y) = ly—z| < alvl|.
Then, there is a real n €]0,1[ and a range K € IN* such that

_ _ a .
|2k+1 — 2] < nleg — 7| + (20k + E)aﬂxk —zp_1| Vk> K.

Furthermore, if we assume that limg_ 4o i‘—:|xk —ag—1| = 0, then, the sequence
{@} strongly converges lo .

Proof. The first part of the proof follows that given in [15] and is presented here
for completeness. The sequence {xy} being bounded, also satisfies condition 3)
of theorem 2.1 for ¢, = dg|vk4+1 — Y|, so the conclusions of theorem 2.1 are in
force. Now, let ;11 be the exact solution of the k-th inertial proximal method,
that is

AT Fps1 + Erpr — g 3 0. (2.13)
Definition of T¢* combined with relations (2.12) and (2.13) leads to
(Y — g1 — (U — Zr1), Thpl — Thp1) = —AsEk,
which implies that |#541 — 2x41]? < Ageg. The latter together with (1.9) yield
|Th41 — hg1] < Ok |oryr — unl. (2.14)
Therefore
|Th41 — e < |Trg1 — 2pgr| +|2pgr — ye] < (140 )[rgr — wrl,

which, using the convergence of vi11 := 2541 — ¥y — 0 (theorem 2.1), implies
that |Zx4+1 — yx| — 0. Because {Ar} is bounded away from zero, we further
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conclude that wy = ;—k(yk — #r41) — 0. Using the Lipschitz continuity of 71
around 0, we have, for indices k sufficiently large, that:
~ _ a .
|Frt1 = 2] < alwg] = T [Tr41 = Y- (2.15)
k

We further obtain

lye =217 = gk = T [P + | Zpgr — 2+ 2y — Fngr, Tngr — 7)
= yk — Trg1|? + |Zeqr — 27 + 20 (Wi, Tpp1 — )
> yp — Tpgr|® + [Ty — 2 (2.16)
> (14 (222 e — 2P
Hence, by setting pg := 2(1+>\2 , we obtain |Zg41 — 2| < pglys — 2.
a k
Using the latter relation and (2.14), we further obtain
lerr — 2] < [wegr = Trga| + [ Trgr — 7 (2.17)
< Oklmpgr =yl + plye — 7). '
Similarly,
lentr —ukl < fzegr — Tppr |+ |Trpr — vkl
< Oklwhgr =yl + lys — 2],

where also (2.16) was used in the last inequality.
Therefore

|te1 — yr| < lye — Z|.

1
1 —0p
Now, combining the latter relation with (2.17) and using the triangular inequal-
ity, we obtain

|ehp1 — 2] < Oplyp — 2] < O |er — 2| + Opap|rr — 2r—1],

where 6 = 1i—k6k + pg, from which we deduce easily, by taking into account

conditions on d; and Ay, the existence of a range K such that
|2kt1 — 2] < plek — 2|+ B,

where 7 €]0, 1] and 8y, := (20, + %)aﬂxk — k1]

Hence,
k

low — 2 < 0w — 2]+ >0 Bey
j=1
The result follows from Ortega and Rheinboldt [14, p.338], since by hypothesis

limg 400 B = 0.
||
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Remark 2.2 1. When ai = 0, we obtain the linear convergence estimate
obtained by Solodov & Svaiter [15] which is strictly better than the one for
the classical proximal algorithm, namely, 0 = % (114], theorem 2).

2. The condition of Lipschitz continuity above holds true if T~ is globally
Lipschitz continuous which is satisfied, for instance, when T is strongly
monotone.

3. The condition of local Lipschitz continuity above is also satisfied if T—1 is
differentiable at 0, that is, T=1(0) = {z} and JA : H — H a conlinuous

linear transformation such that, for § > 0
T7H0) — & + Aw C o(|w|)B if |w| <,
where B stands for the closed unit ball.

We close this section with a special result showing that the Inertial Proximal
Method can converge in finitely many iterations:

Theorem 2.3 Let {x} be any sequence generated by (1.8} under the criterion
(1.9) with A, bounded away from zero. Suppose that {xy} is bounded and that

dx eH such that 0¢& mtTx. (2.18)
Then, for all k sufficiently large, it holds that

Jfk(xk +ap(zy —xp-1)) = 2.
Moreover, the sequence {ag} strongly converges to z.

Proof. Let Z;41 be the exact solution of the k-th inertial proximal method,
that is
AT Zpp1 + Zpq1 —yx 2 0.

Hypothesis (2.18) and ([14], theorem 3) imply the existence of a positive real ¢
such that
|| <e=T 'e={z}

But the hypothesis of the present theorem recovers those of theorem 2.1. there-
fore, we know that ;—k(yk — Zp41) — 0. Since 41 € T_l(Al—k(yk — Zpt1)),
assumption (2.18) implies that, for k sufficiently large, #1411 = #. Thus the
inertial proximal method in its exact form converges to & in a finite number of
iterations from any starting points zg and ;. From which we deduce, for all &
sufficientely large, that

leks1 — 2|7 = |zpp1r — Fogr]? < e

The strong convergence of the sequence {z} to z follows by passing to the limit
in the last inequality, since condition (1.8) implies that limg_, oo A = 0. W
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3 Convex Minimization

3.1 Approximate methods

An interesting case is obtained by taking T'= df, 0f stands for the subdiffer-

ential of a proper convex lower-semicontinuous function f : X — R U {+o0}.

Indeed, df is well-known to be a maximal monotone operator and problem (1.1)

reduces to the one of finding a minimizer of the function f.

In [1], Alvarez proposed the following approximate inertial proximal method:
Akaakf($k+1) + X1 — X — Ozk(l‘k — l’k—l) 30, (319)

where 0;, f is the approximate subdifferential of f. Since in the case T' = Jf the
enlargement given in (1.6) is larger than the the approxiamte subdifferential, i.e.
9. f C (0f), we can write J;, f(xgp41) C (Of)°* (xg+1), which leads to

A (af)ak ($k+1) + X1 — g — Ozk(l‘k — l’k—l) 50, (320)

which is a particular case of the method proposed in this paper with 7' = 0f.
As a consequence of theorem 2.1 and theorem 2.2, we obtain the following
convergence result which recover and completes a result by Alvarez [1].

Corollary 3.1 Let {ap} CH be a sequence such that
0e Tl — Tk — Ozk(l‘k — l‘k_l) + /\kﬁgkf(l‘k+1), k= 1,2,--- (321)

where [ is a proper closed conver function with Argmin f # 0, and the param-
eters ag, A\, and ey satisfy:

1. 3N > 0 such that Vk € IN, A\, > A.
2. Ja € [0, 1] such that Vk € IN,0 < ay, < a.
3. S Mer < 40,
If the following condition holds
+o0
Zaﬂxk —xp_1]? < +oo, (3.22)
k=1
then {x} weakly converges to a minimizer of f and kEToo flag) = xlél,f;:[ fx).
Moreover, if we replace condition 3) of theorem 2.1 by criterion (1.9) and we

assume in addition that Of* is Lipschitz continuous around zero, the convergene
1s strong. The function f* stands for the Fenchel conjuguate of f, namely,

f(@®) = supeen (2™, x) — f(2)).
Remark 3.1 The formula khT flag) = 12% f(z) is obtained from relation
— 400 xr

(3.19), definition of the approzimate subdifferential, lower semicontinuity of the
function f and the fact that klim vi+1 = 0 (see the proof of theorem 2.1).
— 00
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3.2 A perturbed Inertial Proximal Method

When f is nonsmooth, subproblems (3.19) may be very hard to solve and several
authors proposed to approximate f by a sequence fi of more tractable convex
functions (see for example [6], [7] and [11]).

In this section we consider fi, &k = 2,3 - .-, a monotone decreasing sequence
of proper closed convex function on H, f be such that f = el(infy f). Now,
xo, 21 be given in H, let us consider a sequence {a} generated by the following
perturbed method:

e w, —xp_q1— Ozk(l‘k_l — l‘k_z) + Akaakfk($k), k=2,3,--- (323)
where the parameters Ay, €, and oy are nonnegative real numbers.

Theorem 3.1 Suppose that the sequence {xy} is bounded and that the following
condition holds true

g

lim &, = 0and lim |2g—1 — xk_2| =0, (3.24)

k—+co k—+co Ak

then limg 4 oo fi(xg) = inf f and every weak cluster point of {xy} is a mini-
mazer of f.

Proof. For all x € H, by definition of the approximate subdifferential, we have

1

Te(x) > frler) — E(m —2p_1 — ap(Tho1 — Tr_2), T — 2E) — k. (3.25)

Setting x = x,_1 and taking into account the following inequalities

(& —2po1 — ap(Tp_1 — Tr_2), Th—1 — k) > %|l‘k — x|
—  ap(Tp_1 — Tp—2, Tk — Th_1)

2
= —O;—k|l‘k—1 - l‘k—z|2

+ %|l‘k —2p_1 — ap(Tr_1 — Tr_2)|

we Infer that

2
Ok

1
Jeler) + ﬁmlz < fi(wr-1)+ ﬁu’k—l — xp_a]® + e,

where vy, = %|xk — i1 — ap(Tr_1 — K_2)|.
This combined with the fact that f; decreases yields
2

1 o
Fi(zr) + =—ve|* < feci(Tro1) + 2| 2h—1 — Thoo]® + €. (3.26)

Now let Z = {k € IN, fis () > fr—1(x5-1)}.

2

bl
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e If 7 is not finite
Passing to the limit in the inequality (2.26) and in the light of (3.24), we
get limger i|vk| = 0. On the other hand, since fi | f = cl(infy fx), we
have that {f;} converges to f in the Mosco epi-convergence sense (see [3],
theorem 3.20). Namely, for any z € H, the following statements hold true

f(z).

) <
2. Yz, with z = w — limg 1o 2 one has liminfi_, 1o fi(26) > f(2).
<

f2),

1. Jzi satisfying 2 = s —limg 400 2 and limsup,_, T (zn

By setting & = 2z, with limg_, 4o 2z = z and limsup,_, ;. fr(2x)
and by passing to the limit in (3.25), we obtain

limsup fi (25) < inf f. (3.27)
keT

— If 7 has an empty or finite complement, we get trivialy

limsup fi (2y) < inf f. (3.28)

k—+o0

— Otherwise, for every k € IN, we define i(k) € T by
Wl if kez
we = max{l;l < k,1 €S} if k¢Z.

We have limg 4 i(k) = 400 and fx (@) < fir)(®i(x)), which com-
bined with (2.27) gives relation (2.28).

e If 7 is empty or finite
For every k large enough, we have fi(z;) < fi—1(25-1). So the sequence
{fr(xr)} converges in R. If limy 400 fu(xg) = —oo, then, thanks to
the fact that {fi} decreases, we have limy_ oo fi(2x) = inf f = —o0.
Otherwise, from (3.26), we infer that limg_ 4o i|vk| = 0, and as in the
previous case, we get directly (3.28).
In all cases we have proved relation (2.28). From which we deduce

lim  fi(z) = inf f,

kE—+oo

because the sequence {fx} decreases.

To conclude, we use an Mosco epi-convergence argument. Let & be any
weak cluster point of {zg} and {z,} a subsequence which weakly converges
to . According to definition of the Mosco epi-convergence we can write

f(z) <liminf f,(z,) = inf f.

— v—=4oo

That is # is a minimizer of f.
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Proposition 3.1 If, in addition to the hypothesis of Corollary 3.1, we assume
for every solution z € S, that

+oo
> e max{(fi(z) — fi(x)), 0} < +00. (3.29)

k=2

Then the whole sequence {xy,} generated by (3.23) converges weakly to a mini-
mazer of f.

Proof. From the proof of theorem 2.1, relation (2.25) can be rewritten as

1
A (fe(®)—fr(2R)) > Sﬁk—sﬁk—1—ak(30k—1—30k_z)+§|vk|2—Oék|l‘k—1—l‘k—2|2—/\k6k~

Taking any # € S and according to relation (3.29), we obtain

1
Ok — -1 — p(Ph—1 — Pr—2) < _§|Uk|2 + Ok,

with 8 = A max{(fx(x) — fu(zx)),0} + ag|rr—1 — Tx_2|* + Agex which is
nothing but relation (2.11). So, from the proof of theorem 2.1, we deduce that
or(x) = limg 5 4 oo %|xk —z|? =0, for all x € S. This together with theorem 3.1
gives the convergence of the whole sequence {zy} by applying Opial’s lemma.
|

Remark 3.2 It is worth mentioning that (3.29) is satisfied when fi = f, for
all k. Indeed, in this case f(x) — f(xr) < 0. Furthermore, for the sequence of
barrier functions, see the example below (resp. Tikhonov regularization, namely
T () = F()+wi|-|%), this assumption amounts to imposing a rate of convergence
on the barrier (resp. Thikonov) parameters. More precisely, it can be proved
easily that, if Z:ﬁ% AV < 400, then the functions fi, satisfy (3.29). This is,
for instance, the case when {\g} is bounded and vy = kiﬂ,Vk’ with > 1.

To conclude this section, let us now give some examples of such perturbation.

Example 1 CONSTRAINED CONVEX MINIMIZATION,

In the classical constrained minimization problem, we are given a convex func-
tion h from H to IR, and a nonempty closed convex set C', and we wish to find
a solution of

min(h(z) + dc (x)). (3.30)

An example of such an approrimation of f := h + d¢c is obtained by taking an
interior approximation of the feasible set C, namely fi == h + ¢, , where {Cy}
15 a sequence of nonempty closed conver sets chosen in such a way that

C=UC;, and C) C Ck+1 cC for k=1,2,--- (331)
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Where C' is described by finitely many conver inequalities: g;(x) < 0,i=1,---,
an other example of such an approrimation uses the sequence of the inverse
barrier functions associated with the closed conver set C', namely

fe i=h+¢r with ér(x) = —vg Z m, r €t C, (3.32)
i=1 ¢

and 400 otherwise, where the sequence {v} of positive barrier paramelers is
strictly decreasing to 0.
Indeed, it is easy to check, in the both cases, that fi | f.
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