A proximal method for maximal monotone operators via discretization of a first order dissipative dynamical system

Abstract : We present an iterative method for finding zeroes of maximal monotone operators in a real Hilbert space. The underlying idea relies upon the discretization of a first order dissipative dynamical system which allows us to preserve the local feature, as well as to obtain convergence results. The main theorems do not only recover known convergence results of standard and inertial proximal methods, but also provide a theoretical basis for the application of new iterative methods.
Type de document :
Article dans une revue
Journal of Convex Analysis, Heldermann, 2007, 14 (4), pp.869-878
Liste complète des métadonnées

https://hal.univ-antilles.fr/hal-00780210
Contributeur : Pamphile Isch <>
Soumis le : mercredi 23 janvier 2013 - 15:05:37
Dernière modification le : jeudi 21 décembre 2017 - 13:28:02

Identifiants

  • HAL Id : hal-00780210, version 1

Collections

Citation

Paul-Emile Maingé, Abdellatif Moudafi. A proximal method for maximal monotone operators via discretization of a first order dissipative dynamical system. Journal of Convex Analysis, Heldermann, 2007, 14 (4), pp.869-878. 〈hal-00780210〉

Partager

Métriques

Consultations de la notice

191