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We introduce methods which seem to be a new and promising tool in hierarchical fixed-
point problems. The goal of this note is to analyze the convergence properties of these new
types of approximating methods for fixed-point problems. The limit attained by these
curves is the solution of the general variational inequality, 0 ∈ (I −Q)x∞ + NFixP(x∞),
where NFixP denotes the normal cone to the set of fixed point of the original nonexpan-
sive mapping P and Q a suitable nonexpansive mapping criterion. The link with other
approximation schemes in this field is also made.

Copyright © 2006 A. Moudafi and P.-E. Maingé. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In nonlinear analysis, a common approach to solving a problem with multiple solutions
is to replace it by a family of perturbed problems admitting a unique solution, and to
obtain a particular solution as the limit of these perturbed solutions when the perturba-
tion vanishes. Here, we will introduce a more general approach which consists in finding
a particular part of the solution set of a given fixed-point problem, that is, fixed points
which solve a variational inequality “criterion.” More precisely, the main purpose of this
note consists in building methods which hierarchically lead to fixed points of a nonex-
pansive mapping P with the aid of a nonexpansive mapping Q, in the following sense:

find x̃ ∈ Fix(P) such that
〈
x̃−Q(x̃),x− x̃

〉≥ 0 ∀x ∈ Fix(P), (1.1)

where Fix(P)= {x ∈ C; x = P(x)} is the set of fixed points of P and C is a closed convex
subset of a real Hilbert space �.

It is not hard to check that solving (1.1) is equivalent to the fixed-point problem

find x̃ ∈ C such that x̃ = projFix(P)◦Q(x̃), (1.2)
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2 Hierarchical fixed-point problems

where projFix(P) stands for the metric projection on the convex set Fix(P), and by using
the definition of the normal cone to Fix(P), that is,

NFixP : x �−→
⎧⎨⎩
{
u∈�; (∀y ∈ FixP) 〈y− x,u〉 ≤ 0

}
, if x ∈ FixP,

∅, otherwise,
(1.3)

we easily obtain that (1.1) is equivalent to the variational inequality

0∈ (I −Q)x̃+NFixP(x̃). (1.4)

It is worth mentioning that when the solution set, S, of (1.1) is a singleton (which is
the case, e.g., when Q is a contraction) the problem reduces to the viscosity fixed-point
solution introduced in [6] and further developed in [3, 8].

Throughout, � is a real Hilbert space, 〈·,·〉 denotes the associated scalar product,
and ‖ · ‖ stands for the corresponding norm. To begin with, let us recall the following
concepts are of common use in the context of convex and nonlinear analysis, see, for
example, Rockafellar-Wets [7]. An operator is said to be monotone if

〈u− v,x− y〉 ≥ 0 whenever u∈A(x), v ∈ A(y). (1.5)

It is said to be maximal monotone if, in addition, the graph, gphA := {(x, y)∈�×� :
y ∈ A(x)}, is not properly contained in the graph of any other monotone operator. It is
well known that the single-valued operator JAλ := (I + λA)−1, called the resolvent of A of
parameter λ, is a nonexpansive mapping which is everywhere defined. Recall also that a
mapping P is nonexpansive if for all x, y, one has∥∥P(x)−P(y)

∥∥≤ ‖x− y‖, (1.6)

and finally that, a sequence An is said to be graph convergent to A, if

limsup
n→+∞

gphAn ⊂ gphA⊂ liminf
n→+∞ gphAn, (1.7)

where the lower limit of the sequence {gphAn} is the subset defined by

liminf
n→+∞ gphAn =

{
(x, y)∈�×�/∃(xn, yn

)−→ (x, y),
(
xn, yn

)∈ gphAn n∈N∗
}

(1.8)

and the upper limit of the sequence {gphAn} is the closed subset defined by

limsup
n→+∞

gphAn =
{

(x, y)/∃(nν
)

ν∈N,∃(xν, yν
)−→ (x, y),

(
xν, yν

)∈ gphAnν ν∈N∗}.
(1.9)

2. Convergence of approximating curves

2.1. A hierarchical fixed-point method. Let P,Q : C → C be two nonexpansive map-
pings on a closed convex set C and assume that Fix(P) and the solution set S of (1.1) are
nonempty.
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Given a real number t ∈ (0,1), we define a mapping

PQ
t : C −→ C by PQ

t (x)= tQ(x) + (1− t)P(x). (2.1)

For simplicity we will write Pt for PQ
t . It is clear that Pt is nonexpansive on C. Throughout

the paper we will also assume that

Fix
(
Pt
) �= ∅ and bounded, (2.2)

this is the case for instance if Q is a contraction or under a compactness condition on C.
Now, let us state two preliminary results which will be needed in the sequel.

Lemma 2.1. Let A be a maximal monotone operator, then (t−1A) graph converges to NA−1(0)

as t→ 0 provided that A−1(0) �= ∅.

Proof. It is well known, see [4, Proposition 2], that if A−1(0) �= ∅, then for any x ∈
�, JAt−1 (x) pointwise converges to projA−1(0) x. Since JAt−1 (x) = J t

−1A
1 (x) and projA−1(0) x =

J
NA−1(0)

1 (x), thanks to the fact that the pointwise convergence of the resolvents is equiv-
alent to the graph convergence of the corresponding operators (see, e.g., [7, Theorem
12.32]), we easily deduce that t−1A graph converges to NA−1(0) as t→ 0. �

The following lemma contains stability and closure results of the class of maximal
monotone operators under graph convergence, see, for example, [1] or [2].

Lemma 2.2. Let (At) be a sequence of maximal monotone operators. If B is a Lipschitz
maximal monotone operator, then At +B is maximal monotone. Furthermore, if (At) graph
converges to A, then A is maximal monotone and (At +B) graph converges to A+B.

Now, we are in position to study the convergence of an arbitrary curve {xt} in Fix(Pt)
as t→ 0.

Proposition 2.3. Every weak-cluster point x∞ of {xt} is solution of (1.1), or equivalently a
fixed point of (1.2) or equivalently a solution of the variational inequality

find x∞ ∈ C; 0∈ (I −Q)x∞ +NS
(
x∞
)
, (2.3)

NS being the normal cone to the closed convex set S.

Proof. {xt} is assumed to be bounded, so are {P(xt)} and {Q(xt)}. As a result,

lim
t→0

∥∥xt −P
(
xt
)∥∥= lim

t→0
t
∥∥P(xt)−Q

(
xt
)∥∥= 0. (2.4)

Let x∞ be a weak cluster point of {xt}, say {xtν} weakly converges to x∞, we will show that
x∞ is a solution of the variational inequality (1.1).

xtν ∈ FixPtν can be rewritten as

(
I −Q+

1− tν
tν

(I −P)
)(

xtν
)= 0. (2.5)
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Now, in the light of Lemma 2.2 the family (I −Q+ ((1− tν)/tν)(I −P)) graph converges
to (I −Q) + NFixP , because ((1− tν)/tν)(I − P) graph converges to the normal cone of
(I − P)−1(0) = FixP according to Lemma 2.1 and the operator I −Q is a Lipschitz con-
tinuous maximal monotone operator.

By passing to the limit in the equality (2.5) as tν → 0, and by taking into account the
fact that the graph of (I −Q) +NFixP is weakly-strongly closed, we obtain 0∈ (I −Q)x∞ +
NFixP(x∞). By using the definition of the normal cone, this amounts to writing 〈x∞ −
Q(x∞),x∞ − x〉 ≤ 0∀x ∈ FixP, that is, x∞ solves the variational inequality (1.1). �

Now, we would like to mention some interesting particular cases.

Example 2.4 (monotone inclusions). By setting Q = I − γ�, where � is κ-Lipschitzian
and η-strongly monotone with γ ∈ (0,2κ/η2), (1.1) reduces to

find x̃ ∈ FixP such that
〈
x− x̃,�(x̃)

〉≥ 0 ∀ x ∈ FixP, (2.6)

a variational inequality studied in Yamada [9].
On the other hand, if we set C =�, P = JAλ , and Q = JBλ with A, B two maximal mono-

tone operators and JAλ , JBλ the corresponding resolvent mappings, the variational inequal-
ity (1.1) reduces to

find x̃ ∈�; 0∈ (I − JBλ
)
(x̃) +NA−1(0)(x̃), (2.7)

where NA−1(0) denotes the normal cone to, A−1(0) = Fix JAλ , the set of zeroes of A. The
inclusion (2.7) can be rewritten as find x̃; 0∈ Bλ(x̃) +NA−1(0)(x̃), Bλ := (λI +B−1)−1 being
the Yosida approximate of B.

Example 2.5 (convex programming). By setting

P = proxλϕ := argmin
{
ϕ(y) +

1
2λ
‖ ·−y‖2

}
, (2.8)

ϕ a lower semicontinuous convex function and Q = I − γ∇ψ, ψ a convex function such
that ∇ψ is κ-strongly monotone and η-Lipschitzian (which is equivalent to the fact that
∇ψ is η−1 cocoercive) with γ ∈ (0,2/η), and thanks to the fact that Fix(proxλϕ) =
(∂ϕ)−1(0)= argminϕ, (1.1) reduces to the hierarchical minimization problem:

min
x∈argminϕ

ψ(x). (2.9)

On the other hand, if we set in (2.7), A = ∂ϕ and B = ∂ψ, subdifferential operators of
lower semicontinuous convex functions ϕ and ψ, the inclusion (1.1) reduces to the fol-
lowing hierarchical minimization problem: minx∈argminϕψλ(x), whereψλ(x)= inf y{ψ(y)+
(1/2λ)‖x− y‖2}, is the Moreau-Yosida approximate of ψ.

Example 2.6 (minimization on a fixed-point set). By setting Q = I − γ∇ϕ, ϕ a convex
function; ∇ϕ is κ-strongly monotone and η-Lipschitzian (thus η−1 cocoercive) with γ ∈
(0,2/η], (1.1) reduces to minx∈FixP ϕ(x), a problem studied in Yamada [9]. On the other
hand, when P is a nonexpansive mapping andQ=I−γ̃(A− γ f ),A being a linear bounded
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γ-strongly monotone operator, f a given α-contraction, and γ > 0 with γ̃ ∈ (0, /‖A‖+ γ),
(1.1) reduces to the problem of minimizing a quadratic function over the set of fixed
points of a nonexpansive mapping studied in Marino and Xu [5], namely,〈

(A− γ f )x,x− x
〉≥ 0, ∀x ∈ FixP, (2.10)

which is the optimality condition for the minimization problem

min
x∈FixP

1
2
〈Ax,x〉−h(x), (2.11)

where h is a potential function for γ f , that is, h′(x)= γ f (x), for x ∈�.

For t ∈ (0,1) let {xt} be a fixed point of Pt. Our interest now is to show that any net
{xt} obtained in this way is an approximate fixed-point net for P.

Proposition 2.7. Assume that FixQ �= ∅. Then, for any t ∈ (0,1),∥∥Qxt −Pxt
∥∥≤ 2 inf

(p,q)∈Fix(P)×Fix(Q)
‖p− q‖. (2.12)

Moreover, the net {xt} is an approximate fixed-point net for the mapping P, that is,

lim
t→0

∥∥xt −Pxt
∥∥= 0. (2.13)

Proof. Consider any p ∈ Fix(P) and q ∈ Fix(Q) and let pt := ProjΔt
(p) and qt :=

ProjΔt
(q) be the metric projections of p and q onto Δt, respectively, where the closed

convex set Δt is defined by Δt := {λ(Pxt −Qxt) + xt; λ∈R}.
Now, suppose that condition Pxt �=Qxt is satisfied. It is then immediate that xt �= Pxt

and xt �=Qxt provided that t ∈ (0,1). Set at := (1/2)(xt +Pxt) and bt := (1/2)(xt +Qxt), it
is then easily checked that

〈
Qxt − bt,q− bt

〉= 1
4

(∥∥xt − q
∥∥2−∥∥Qxt − q

∥∥2
)

,

〈
Pxt − at, p− at

〉= 1
4

(∥∥xt − p
∥∥2−∥∥Pxt − p

∥∥2
)
.

(2.14)

Thanks to the nonexpansiveness of Q and P, we deduce that〈
Qxt − bt,q− bt

〉≥ 0,
〈
Pxt − at, p− at

〉≥ 0. (2.15)

Furthermore, it is obvious that there exist two real numbers λt and μt such that qt = bt +
λt(Qxt − bt) and pt = at + μt(Pxt − at). In the light of the metric projection properties,
we can write

0= 〈qt − q,Qxt − bt
〉= 〈bt − q,Qxt − bt

〉
+ λt

∥∥Qxt − bt
∥∥2

, (2.16)

hence

λt =
〈
q− bt,Qxt − bt

〉∥∥Qxt − bt
∥∥2 ≥ 0. (2.17)
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In a similar way, we get

0= 〈pt − p,Pxt − at
〉= 〈at − p,Pxt − at

〉
+μt

∥∥Pxt − at
∥∥2

, (2.18)

and we obtain

μt =
〈
p− at,Pxt − at

〉∥∥Pxt − at
∥∥2 ≥ 0. (2.19)

Note also that bt − at = (1/2)(Qxt −Pxt) and, according to the fact that xt ∈ FixPt, that
xt − Pxt = t(Qxt − Pxt) and xt − Qxt = (1 − t)(Pxt − Qxt). Hence, we get xt − Pxt =
2t(bt − at) and xt −Qxt =−2(1− t)(bt − at). Moreover, we immediately have Qxt − bt =
(1/2)(Qxt − xt) and Pxt − at = (1/2)(Pxt − xt), so that

qt − bt = λt
(
Qxt − bt

)= λt(1− t)
(
bt − at

)
,

at − pt =−μ
(
Pxt − at

)= μt
(
bt − at

)
.

(2.20)

Consequently, we obtain

qt − pt =
(
qt − bt

)
+
(
bt − at

)
+
(
at − pt

)
= (λt(1− t) + 1 + tμt

)(
bt − at

)
= 1

2

(
λt(1− t) + 1 + tμt

)(
Qxt −Pxt

)
.

(2.21)

Thus ∥∥qt − pt
∥∥= 1

2

(
λt(1− t) + 1 + tμt

)∥∥Qxt −Pxt
∥∥. (2.22)

Finally, by nonexpansiveness of the projection mapping, we have∥∥qt − pt
∥∥= ∥∥ProjΔt

(p)−ProjΔt
(q)
∥∥≤ ‖p− q‖, (2.23)

which by (0.1) leads to

∥∥p− q
∥∥≥ 1

2

(
λt(1− t) + 1 + tμt

)∥∥Qxt −Pxt
∥∥≥ 1

2

∥∥Qxt −Pxt
∥∥. (2.24)

By taking the infimum over p in FixP and q in FixQ, we obtain the desired formula. The
latter combined with the fact that xt −Pxt = t(Qxt −Pxt) leads to the fact that {xt} is an
approximate fixed-point net for P. �

2.2. Coupling the hierarchical fixed-point method with viscosity approximation. To
begin with, we will assume that

S⊂ s− liminf
t→0

FixPt, s standing for the strong topology, (2.25)

which is satisfied, for example, when Q is a contraction.
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Now, given a real number s∈ (0,1) and a contraction f : C→ C. Define another map-
ping

P
f
t,s(x)= s f (x) + (1− s)Pt(x), (2.26)

for simplicity we will write Pt,s for P
f
t,s.

It is not hard to see that Pt,s is a contraction on C. Indeed, for x, y ∈ C, we have∥∥Pt,s(x)−Pt,s(y)
∥∥= ∥∥s( f (x)− f (y)

)
+ (1− s)

(
Pt(x)−Pt(y)

)∥∥
≤ αs‖x− y‖+ (1− s)‖x− y‖
= (1− s(1−α)

)‖x− y‖.
(2.27)

Let xt,s be the unique solution of the fixed point of Pt,s, that is, xt,s is the unique solution
of the fixed-point equation

xt,s = s f
(
xt,s
)

+ (1− s)Pt
(
xt,s
)
. (2.28)

The purpose of this section is to study the convergence of {xt,s} as t,s→ 0.
Let us first recall the following diagonal lemma (see, e.g., [1]).

Lemma 2.8. Let (X ,d) be a metric space and (an,m) a “double” sequence in X satisfying

∀n∈N lim
m→+∞an,m = an, lim

n→+∞an = a. (2.29)

Then, there exists a nondecreasing mapping k :N→N which to m associates k(m) and such
that limm→+∞ ak(m),m = a.

Now, we are able to give our main result.

Theorem 2.9. The net {xt,s} strongly converges, as s → 0, to xt, where xt satisfies xt =
projFixPt ◦ f (xt) or equivalently xt is the unique solution of the quasivariational inequality

0∈ (I − f )xt +NFixPt

(
xt
)
. (2.30)

Moreover, the net {xt} in turn weakly converges, as t→ 0, to the unique solution x∞ of the
fixed-point equation x∞ = projS◦ f (x∞) or equivalently x∞ ∈ S is the unique solution of the
variational inequality

0∈ (I − f )x∞ +NS
(
x∞
)
. (2.31)

Furthermore, if dim� <∞, then there exists a subnet {xsν,sn} of {xtn,sn} which converges
to x∞.

Proof. We first show that {xt,s} is bounded. Indeed take x̃t ∈ FixPt to derive∥∥xt,s− x̃t
∥∥≤ s

∥∥ f (xt,s)− x̃t
∥∥+ (1− s)

∥∥Pt(xt,s)−Pt(x̃t)
∥∥. (2.32)
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It follows ∥∥xt,s− x̃t
∥∥≤ ∥∥ f (xt,s)− x̃t

∥∥≤ ∥∥ f (xt,s)− f
(
x̃t
)∥∥+

∥∥ f (x̃t)− x̃t
∥∥

≤ αs
∥∥xt,s− x̃t

∥∥+
∥∥ f (x̃t)− x̃t

∥∥. (2.33)

Hence ∥∥xt,s∥∥≤ ∥∥x̃t∥∥+
1
α

∥∥ f (x̃t)− x̃t
∥∥. (2.34)

This ensures that {xt,s} is bounded, since {x̃t} and { f (x̃t)} are bounded. Now, we will
show that {xt,sn} contains a subnet converging to xt, where xt ∈ FixPt is the unique solu-
tion of the quasivariational inequality

0∈ (I − f )xt +NFixPt

(
xt
)
. (2.35)

Since {xt,sn} is bounded, it admits a weak cluster point xt, that is, there exists a subnet
{xt,sν} of {xt,sn} which weakly converges to xt. On the other hand,

(I − f ) +
1− s

s

(
I −Pt

)
graph converges to (I − f ) +NFixPt as s−→ 0. (2.36)

By passing to the limit in the following equality:(
(I − f ) +

(
1− sν

)
sν

Pt

)(
xt,sν

)= 0, (2.37)

we obtain that xt is the unique solution of the quasivariational inequality

0∈ ((I − f ) +NFixPt

)(
xt
)
, (2.38)

or equivalently xt satisfies xt = projFixPt ◦ f (xt). It should be noticed that in contrast with
the first section {xt} is unique (a select approximating curve in FixPt). Hence the whole
net {xt,sn} weakly converges to xt. In fact the convergence is strong. Indeed, since

xt,s− xt = s
(
f
(
xt,s
)− xt

)
+ (1− s)

(
Pt
(
xt,s
)− xt

)
, (2.39)

we successively have∥∥xt,s− xt
∥∥2 = (1− s)

〈
Pt
(
xt,s
)− xt,xt,s− xt

〉
+ s
〈
f
(
xt,s
)− xt,xt,s− xt

〉
≤ (1− s)

∥∥xt,s− xt
∥∥2

+ s
〈
f
(
xt,s
)− xt,xt,s− xt

〉
.

(2.40)

Hence ∥∥xt,s− xt
∥∥2 ≤ 〈 f (xt,s)− xt,xt,s− xt

〉
= 〈 f (xt,s)− f

(
xt
)
,xt,s− xt

〉
+
〈
f
(
xt
)− xt,xt,s− xt

〉
≤ α

∥∥xt,s− x̃t
∥∥2

+
〈
f
(
xt
)− xt,xt,s− xt

〉
.

(2.41)
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This implies that

∥∥xt,sn − xt
∥∥2 ≤ 1

1−α

〈
f
(
xt
)− xt,xt,sn − xt

〉
. (2.42)

But {xt,sn} weakly converges to xt, by passing to the limit in (2.31), it follows that {xt,sn}
strongly converges to xt.

According to the first section, {xt} is bounded and w − limsupt→0 FixPt ⊂ S which
together with (2.25) is nothing but (FixPt) converges to S in the sense of Mosco, which
in turn amounts to saying, thanks to [7, Proposition 7.4(f)], that the indicator function
(δFixPt ) Mosco converges to δS. In the light of Attouch’s theorem (see [7, Theorem 12.35]),
this implies the graph convergence of (NFixPt ) to NS. Now, by taking a subnet {xtν} which
weakly converges to some x∞ and by passing to the limit in

0∈ ((I − f ) +NFixPtν

)(
xtν
)
, (2.43)

we obtain

0∈ ((I − f ) +NS
)(
x∞
)
, (2.44)

because I − f is a Lipschitz continuous maximal monotone operator which ensures, by
virtue of Lemma 2.2, the fact that the graph convergence of (NFixPt ) to NS implies that
of ((I − f ) + NFixPt ) to (I − f ) + NS and also that the graph of the operator (I − f ) +
NS is weakly-strongly closed. The weak cluster point x∞ being unique, we infer that the
whole net {xt} weakly converges to x∞ which solves (2.28). We conclude by applying the
diagonal Lemma 2.8. �

Conclusion. The convergence properties of new types of approximating curves for fixed
point problems are investigated relying on the graph convergence. The limits attained by
these curves are solutions of variational or quasivariational inequalities involving fixed-
point sets. Approximating curves are also relevant to numerical methods since under-
standing their properties is central in the analysis of parent continuous and discrete dy-
namical systems, so we envisage to study the related iterative schemes in a forthcoming
paper.
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97200 Schelcher, Martinique, France
E-mail address: paul-emile.mainge@martinique.univ-ag.fr


