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Abstract

The hybrid proximal point algorithm introduced by Solodov and Svaiter allowing
significant relaxation of the tolerance requirements imposed on the solution of
proximal subproblems will be combined with the inertial method introduced by
Alvarez and Attouch which incorporates second order information to achieve
faster convergence. The weak convergence of the resulting method will be
investigated for finding zeroes of a maximal monotone operator in a Hilbert
space.
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1. Introduction and Preliminaries
The theory of maximal monotone operators has emerged as an effective and
powerful tool for studying a wide class of unrelated problems arising in various
branches of social, physical, engineering, pure and applied sciences in unified
and general framework. In recent years, much attention has been given to de-
velop efficient and implementable numerical methods including the projection
method and its variant forms, auxiliary problem principle, proximal-point al-
gorithm and descent framework for solving variational inequalities and related
optimization problems. It is well known that the projection method and its vari-
ant forms cannot be used to suggest and analyze iterative methods for solving
variational inequalities due to the presence of the nonlinear term. This fact
motivated the development of another technique which involves the use of the
resolvent operator associated with maximal monotone operators, the origin of
which can be traced back to Martinet [4] in the context of convex minimization
and Rockafellar [8] in the general setting of maximal monotone operators. The
resulting method, namely the proximal point algorithm has been extended and
generalized in different directions by using novel and innovative techniques and
ideas, both for their own sake and for their applications relying on the Bregman
distance or based on the variable metric approach.
To begin with let us recall the following concepts which are of common

use in the context of convex and nonlinear analysis, see for example Brézis
[3]. Throughout, H is a real Hilbert space, 〈·, ·〉 denotes the associated scalar
product and ‖ · ‖ stands for the corresponding norm. An operator is said to be
monotone if

〈u − v, x − y〉 ≥ 0 whenever u ∈ A(x), v ∈ A(y).
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It is said to be maximal monotone if, in addition, the graph, {(x, y) ∈ H ×
H : y ∈ A(x)}, is not properly contained in the graph of any other monotone
operator. It is well-known that for each x ∈ H and λ > 0 there is a unique
z ∈ H such that x ∈ (I + λA)z. The single-valued operator JA

λ := (I + λA)−1

is called the resolvent of A of parameter λ. It is a nonexpansive mapping which
is everywhere defined and satisfies: z = JA

λ z, if and only if, 0 ∈ Az.
In this paper we will focus our attention on the classical problem of finding

a zero a maximal monotone operators A on a real Hilbert spaceH
(1.1) find x ∈ H such that A(x) � 0.

One of the fondamental approaches to solving (1.1) is the proximal method
proposed by Rockafellar [8]. Specifically, having xn ∈ H a current approxima-
tion to the solution of (1.1), the proximal method generated the next iterate by
solving the proximal subproblem

(1.2) 0 ∈ A(x) + μn(x − xn),

where μn > 0 is a regularization parameter.
Because solving (1.2) exactly can be as difficult as solving the original prob-

lem itself, it is of practical relevance to solve the subproblems approximately,
that is find xn+1 ∈ H such that

(1.3) 0 = vn+1 + μn(xn+1 − xn) + εn, vn+1 ∈ A(xn+1),

where εn ∈ H is an error associated with inexact solution of subproblem (1.2).
In many applications proximal point methods in the classical form are not

very efficient. Developments aimed at speeding up the convergence of proximal
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methods focus, among other approaches, on the ways of incorporating second
order information to achieve faster convergence. To this end, Alvarez and At-
touch proposed an inertial method obtained by discretization of a second-order
(in time) dissipative dynamical system. Also, it is worth developing new al-
gorithms which admit less stringent requirements on solving the proximal sub-
problems. Solodov and Zvaiter followed suit and showed that the tolerance
requirements for solving the subproblems can be significantly relaxed if the
solving of each subproblem is followed by a projection onto a certain hyper-
plane which separates the current iterate from the solution set of the problem.
To take advantage of the two approaches, we propose a method obtained by

coupling the two previous algorithms.
Specifically, we introduce the following method.

Algorithm 1.1. Choose any x0, x1 ∈ H and σ ∈ [0, 1[. Having xn, choose
μn > 0 and

(1.4) find yn ∈ H such that 0 = vn + μn(yn − zn) + εn, vn ∈ A(yn),

where

(1.5) zn := xn +αn(xn −xn−1) and ‖εn‖ ≤ σ max{‖vn‖, μn‖yn − zn‖}.
Stop if vn = 0 or yn = zn. Otherwise, let

(1.6) xn+1 = zn − 〈vn, zn − yn〉
‖vn‖2

vn.

Note that the last equation amounts to

xn+1 = projHn(zn),
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where

(1.7) Hn := {z ∈ H, 〈vn, z − yn〉 = 0}.

Throughout we assume that the solution set of the problem (1.1) is nonempty.
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2. Convergence Analysis
To begin with, let us state the following lemma which will be needed in the
proof of the main convergence result.

Lemma 2.1. ([9, Lemma 2.1]). Let x, y, v, x̄ be any elements ofH such that

〈v, x − y〉 > 0 and 〈v, x̄ − y〉 ≤ 0.

Let z = projH(x), where

H := {s ∈ H, 〈v, s − y〉 = 0}.
Then

‖x − x̄‖2 ≤ ‖x − x̄‖2 −
(〈v, x − y〉

‖v‖
)2

.

We are now ready to prove our main convergence result.

Theorem 2.2. Let {xn} be any sequence generated by our algorithm, where
A : H → P(H) is a maximal monotone operator, and the parameters αn, μn

satisfy

1. ∃μ̄ < +∞ such that μn ≤ μ̄.

2. ∃α ∈ [0, 1[ such that ∀k ∈ N
∗ 0 ≤ αk ≤ α.

If the following condition holds

(2.1)
∞∑

n=1

αn‖xn−1 − xn‖2 < +∞,
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then, there exists x̄ ∈ S := A−1(0) such that the sequence {vn} strongly con-
verges to zero and the sequence {xn} weakly converges to x̄.

Proof. Suppose that the algorithm terminates at some iteration n. It is easy
to check that vn = 0 in other words yn ∈ S. From now on, we assume that
an infinite sequence of iterates is generated. It is also easy to see, using the
monotonicity of A and the Cauchy-Schwarz inequality, that the hyperplaneHn,
given by (1.7), strictly seperates xn from any solution x̄ ∈ S. We are now in a
position to apply Lemma 2.1, which gives

(2.2) ‖xn+1 − x̄‖2 ≤ ‖zn − x̄‖2 − 〈vn, zn − yn〉2
‖vn‖2

.

Setting ϕn = 1
2
‖xn − x̄‖2 and taking in account the fact that

1

2
‖zn − x̄‖2 =

1

2
‖xn − x̄‖2 + αn〈xn − x̄, xn − xn−1〉 +

α2
n

2
‖xn − xn−1‖2,

and that

〈xn − x̄, xn − xn−1〉 = ϕn − ϕn−1 +
1

2
‖xn − xn−1‖2,

we derive

ϕn+1 − ϕn ≤ αn(ϕn − ϕn−1) +
αn + α2

n

2
‖xn − xn−1‖2 − 1

2

〈vn, zn − yn〉2
‖vn‖2

.

On the other hand, using the same arguments as in the proof of Theorem 2.2
([9]), we obtain that

(2.3)
〈vn, zn − yn〉

‖vn‖ ≥ (1 − σ)2

(1 + σ)4μ2
n

‖vn‖2.



J. Ineq. Pure and Appl. Math. 5(3) Art. 63, 2004
http://jipam.vu.edu.au

Hence, from (2.2) it follows that

ϕn+1 −ϕn ≤ αn(ϕn −ϕn−1) +
αn + α2

n

2
‖xn − xn−1‖2 − 1

2
· (1 − σ)2

(1 + σ)4μ2
n

‖vn‖2,

from which we infer that

(2.4) ϕn+1 −ϕn ≤ αn(ϕn −ϕn−1)+αn‖xn −xn−1‖2 − 1

2
· (1 − σ)2

(1 + σ)4μ̄2
‖vn‖2.

Setting θn := ϕn − ϕn−1, δn := αn‖xn − xn−1‖2 and [t]+ := max(t, 0), we
obtain

θn+1 ≤ αnθn + δn ≤ αn[θn]+ + δn,

where α ∈ [0, 1[.
The rest of the proof follows that given in [1] and is presented here for com-

pleteness and to convey the idea in [1]. The latter inequality yields

[θn+1]+ ≤ αn[θ1]+ +
n−1∑
i=0

αiδn−i,

and therefore
∞∑

n=1

[θn+1] ≤ 1

1 − α

(
[θ1]+ +

+∞∑
n=1

δn

)
,

which is finite thanks to the hypothesis of the theorem. Consider the sequence
defined by tn := ϕn −∑n

i=1[θi]+. Since ϕn ≥ 0 and
∑n

i=1[θi]+ < +∞, it
follows that {tn} is bounded from below. But

tn+1 = ϕn+1 − [θn+1]+ −
n∑

i=1

[θi]+ ≤ ϕn+1 − ϕn+1 + ϕn −
n∑

i=1

[θi]+ = tn,
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so that {tn} is nonincreasing. We thus deduce that {tn} is convergent and so is
{ϕn}. On the other hand, from (2.4), we obtain the following estimate

1

2

(1 − σ)2

(1 + σ)4μ̄2
‖vn‖2 ≤ ϕn − ϕn+1 + α[θn]+ + δn.

Passing to the limit in the last inequality and taking into account that {ϕn}
converges, [θn]+ and δn go to zero as n tends to+∞, we obtain that the sequence
{vn} strongly converges to 0. Since, by (1.4),

μ̄−1‖vn‖ ≥ ‖zn − yn‖,
we also have that the sequence {zn − yn} strongly converges to 0.
Now let x∗ be a weak cluster point of {xn}. There exists a subsequence

{xν}, which weakly converges to x∗. According to the fact that

lim
ν→+∞

‖zν − yν‖ = 0 with zν = xν + αν(xν − xν−1)

and in the light of assumption (2.1), it is clear that the sequences {zν} and {yν}
also weakly converge to the weak cluster point x∗. By the monotonicity of A,
we can write

∀z ∈ H ∀w ∈ A(z) 〈z − yν , w − vν〉 ≥ 0,

Passing to the limit, as ν → +∞, we obtain
〈z − x∗, w〉 ≥ 0,

this being true for any w ∈ A(z). From the maximal monotonicity of A, it
follows that 0 ∈ A(x∗), that is x∗ ∈ S. The desired result follows by applying
the well-known Opial Lemma [7].
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3. Conclusion
In this paper we propose a new proximal algorithm obtained by coupling the
hybrid proximal method with the inertial proximal scheme. The principal ad-
vantage of this algorithm is that it allows a more constructive error tolerance
criterion in solving the inertial proximal subproblems. Furthermore, its second-
order nature may be exploited in order to accelerate the convergence. It is worth
mentioning that if σ = 0, the proposed algorithm reduces to the classical ex-
act inertial proximal point method introduced in [2]. Indeed, σ = 0 implies
that εn = 0, and consequently xn+1 = yn. In this case, the presented analysis
provides an alternative proof of the convergence of the exact inertial proximal
method that permits an interesting geometric interpretation.
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