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Convergence of Iterative Schemes for MultivaluedQuasi-Variational InclusionsAbdellatif Mouda�� and Muhammad Aslam Noor ��Abstract : Relying on the resolvent operator method and using Nadler's theorem, we suggest and analyzea class of iterative schemes for solving multivalued quasi-variational inclusions. In fact, by consideringproblems involving composition of mutivalued operators and by replacing the usual compactness conditionby a weaker one, our result can be considered as an improvement and a signi�cant extension of previouslyknown results in this �eld.2000 AMS Subject Classi�cation: 49J40, 90C33.Keywords: Variational inclusions, convergence, monotone operators, pseudo-Lipschitz conditions.1. IntroductionQuasi-variational inclusions are being used as mathematical programming models tostudy a large number of equilibrium problems arising in �nance, economics, transportation,optimization , operations research and engineering sciences, see, for example [3, 6, 7] and thereferences therein. They have been extended and generalized in di�erent directions by usingnovel and innovative techniques and ideas, both for their own sake and for their applications.In recent years, much attention has been given to develop e�cient and implementable numer-ical methods including the projection method and its variant forms, Wiener-Hopf (normal)equations, linear approximation, auxiliary principle, proximal-point algorithm and descentframework for solving variational inequalities and related optimization problems. It is wellknown that the projection methods and its variant forms; and Wiener-Hopf equation tech-niques cannot be used to suggest and analyze iterative methods for solving quasi-variationalinequalities due to the presence of the nonlinear term. This fact motivated to develop an-other technique, which involves the use of the resolvent operator associated with maximalmonotone operator. Using this technique, one shows that the variational inclusions are equiv-alent to a �xed point problem. This alternative formulation was used to develop numericalmethods for solving various classes of variational inclusions and related problems, see [17,18]. The origin of this technique can be traced back to Martinet [12] and Rockafellar [22].The major di�culty with these methods is that the operator I + �A may be hard to invert.One alternative of the previous di�culty is to decompose the given operator into the sum oftwo maximal monotone operators, whose resolvent are easier to evaluate than the resolvent1



of the original operator. Such a method is known as the operator splitting method. Thiscan lead to the development of very e�cient methods, since one can treat each part of theoriginal operator independently. The operator splitting methods and related techniques havebeen analyzed and studied by many authors including Passty [19], Glowinski and le Tallec[10], and Tseng [24]. For an excellent account of the alternating direction implicit (split-ting) methods, see Ames [1]. It is worth mentioning that if the nonlinear term involving thevariational inequalities is the indicator function of a closed convex set in a Hilbert space,then the resolvent operator is equal to the projection operator. Consequently the resolventequations are equivalent to the Wiener-Hopf (normal) equations, which were introduced byShi [23] and Robinson [21] in relation with the classical variational inequalities.The aim of this paper is twofold. First, is to suggest and analyze a new class of iterativeschemes for solving the composite quasi-variational inclusions using the resolvent equationtechnique. The second is to prove a convergence result without the usual compactness con-dition. Our result includes the Ishikawa, Mann and Noor iterations for solving variationalinclusions (inequalities) as special cases. We also study the convergence criteria of these newmethods. Our result extends and generalizes the previously known results.2. PreliminariesLet H be a real Hilbert space whose inner product and norm are denoted by h�; �i andj � j respectively. Let CB(H) be a familly of all nonempty bounded closed subsets of H. LetT; V : H ! CB(H), N(:; :) ! 2H be multivalued operators, g : H ! H be a single-valuedoperator and A(:; :) : H�H !H be a nonlinear one.We consider the problem of �nding u 2 H; w 2 T (u); y 2 V (u) such that0 2 N(w; y) +A(g(u); u): (2.1)Inclusion of type (2.1) is called multivalued quasi-variational inclusion, which has manyimportant and useful applications in pure and applied sciences. Indeed, a number of problemsarising in structural analysis, mechanics , composite problems, and economics can be studiedin the framework of multivalued quasi-variational inclusions, see, for example [6; 7]. Forspecial choices of the operators, one can recover a large number of complementarity andquasi-complementarity problems. We would like to mention that the problem for �nding azero of the sum of two maximal monotone operators, location problem, �nding a minimizerof the sum of two convex functions, various classes of variational inequalities are specialcases of problem (2.1). We will give a special attention to the interesting case when Au isthe normal cone of a nonempty closed convex set K(u) (or equivalently Au is the partialdi�erential operator of the indicator function of K(u)). In this case (2:1) reduces to thefollowing problemFind u 2 H; w 2 T (u); y 2 V (u); g(u) 2 K(u) such thathN(w; y); v � g(u)i � 0; for all v 2 K(u);2



which in turn reduces to the following multivalued implicit complementarity problemg(u) 2 K(u); N(w; y) 2 K�(u); and hN(w; y); g(u)i = 0;where K�(u) = fu 2 H; hu; vi � 0; 8v 2 K(u)g stands for the polar cone to K(u) andN(w; y) denotes, throughout this paper, an element of the set N(w; y).Now, let us recall that if T is a maximal monotone operator, then the resolvent operator,JT� , associated with T is de�ned byJT� (u) = (I + �T )�1(u); for all u 2 H;where � > 0 is a constant and I is the identity operator. The resolvent is a single-valuedoperator which is nonexpansive. Namely, jJT� (x)� JT� (y)j � jx� yj 8x; y 2 H.We also recall that for all x 2 dom T := fx 2 H; T (x) 6= ;g, the set T (x) is closed andconvex. Finally, we recall that the range of T is given by R(T ) = fy 2 H; 9x 2 dom T ; y 2T (x)g, that the composition of multi-valued operators is de�ned as AB(x) := fz 2 H;9y 2B(x) with z 2 Ayg and that the Hausdor� distance between C and D is de�ned byHaus(C;D) = maxfe(C;D); e(D;C)g;where the excess of the set C 2 CB(H) on a set D 2 CB(H) is de�ned ase(C;D) = supx2C infy2D jx� yj:Since the operator A(:; :) is a maximal monotone, it is maximal monotone with respect tothe �rst argument, so we set Ay(�) := A(�; y).De�nition. For all u1; u2 2 H, the operator N is said to be(a) strongly monotone with respect to the �rst argument and with respect to T , if thereexists a constant � such thathNy(w1);�Ny(w1); ; u1 � u2i � �ju1 � u2j2; 8y 2 H; wi 2 Tui; i = 1; 2:(b) Lipschitz continuous with respect to the �rst argument, if there exists a constant � > 0such that Haus(Ny(w1); Ny(w2)) � �jw1 � w2j; 8y 2 H; wi 2 R(T ); i = 1; 2;which is well de�ned because R(T ) is bounded.(c) Lipschitz continuous with respect to the second argument, if there exists a constant 
 > 0such that jN(w; y1)�N(w; y2))j � 
jy1 � y2j; 8w 2 H; yi 2 H; i = 1; 2:Now let us state a condition on the resolvent operator and a result by Nadler which willbe needed in the sequel.We assume that, for all u; v; w 2 H, the resolvent operator JAu� (�) satis�es the conditionjJAu� (w)� JAv� (w)j � �ju� vj; (2.2)3



where � > 0 is a constant.This condition is satis�ed when the operator A is monotone jointly with respect to the twoarguments. Since it is better to have a condition on the operator (i.e. the data) than onits resolvent, we will establish here that (2.2) is also veri�ed under a Lipschtiz condition onrestrictions of the graph of the operator Ay on closed balls centred at the origin.Lemma: (Nadler [16]). Let E be a complete metric space, T : E ! CB(E) be a multi-valued operator. Then for any " > 0 and for any given x; y 2 E, u 2 T (x), there existsv 2 T (y) such that dist(u; v) � (1 + ")Haus(Tx; Ty);where Haus(�; �) is the Hausdor� metric on CB(E).3.The main resultTo begin with, let us give an alternative �xed point formulation of the problem (2:1) whichis very useful from both theoretical and numerical analysis points of view. We will use itto propose some iterative schemes for solving the considered problem. Indeed, let u be asolution of (2:1), then for any � > 0, we can write0 2 �N(w; y) + �A(g(u); u):In other words g(u)� �N(w; y) 2 (I + �Au)(g(u));thus g(u) = JAu� (g(u)� �N(w; y)):The latter relation can be rewritten asu = u� g(u) + JAu� (g(u)� �N(w; y)); (2.3)where N(w; y) stands for an element of the set N(w; y).Frow (2.3) and Nadler's lemma, we derive the following uni�ed iterative scheme.Algorithm. For a given u0 2 H, compute the sequences fung; fzng by the iterative rules:8<: zn = (1 � �n)un + �n �un � g(un) + JAun� (g(un)� �N(wn; yn)�un+1 = (1 � �n)un + �n �zn � g(zn) + JAzn� (g(zn)� �N( ~wn; ~yn)� (2.4)where the sequences fwng; fyng; f ~wng; f~yng are given by8>>>>><>>>>>: jwn+1 � wnj � (1 + 1n+1 )Haus(T (un+1); T (un)) with wn 2 T (un)jyn+1 � ynj � (1 + 1n+1 )Haus(V (un+1); V (un) with yn 2 V (un)j ~wn+1 � ~wnj � (1 + 1n+1 )Haus(T (zn+1); T (zn)) with ~wn 2 T (zn)j~yn+1 � ~ynj � (1 + 1n+1 )Haus(V (zn+1); V (zn)) with ~yn 2 V (zn)4



and the sequence of real numbers f�n; �ng satis�es0 � �n; �n � 1 for all n � 0 and +1Xn=0�n = +1: (2.5)This iterative scheme is similar to the Ishikawa algorithm for solving quasi-variational inclu-sions and for suitable and appropriate choices of the involved operators, one can recover anumber of algorithms for solving varaiational inclusions and related problems.Theorem: Let the operator N be strongly monotone with respect to T with constant � > 0and Lipschitz continuous with constants � > 0 and � > 0 with respect to the �rst andthe second arguments respectively. Let g be strongly monotone with constant � > 0 andLipschitz continuous with constant � > 0. Assume that T and V are Lipschitz continuouswith constants � > 0 and � > 0 respectively. If the assumption (2.2) holds true and if wechoose any " > 0 such thatj�� �� (1 � k)��(1 + ")(�2�2 � �2�2)(1 + ")2 j < q(�� (1� k)��(1 + "))2 � k(1 + ")2(�2�2 � �2�2)(2 � k)(�2�2 � �2�2)(1 + ")2 (2.6)� > ((1 � k)�� + (1 + ")qk(�2�2 � �2�2)(2� k)) (2.7)���(1 + ") < 1� k and k = � + 2p1 � 2� + �2; (2.8)then, there exist u 2 H; w 2 T (u); y 2 V (u) satisfying the multivalued variational inclusion(2:1). Moreover, the sequences fung; fwng; fyng; fzng; f ~wng; f~yng generated by the algorithm(2.4) converge strongly to u;w; y; u; ~w; ~y respectively.Proof: Let F : u! (1� t)u+ t(u� g(u)+JAu� (g(u)��N(w; y)), where w 2 T (u); y 2 V (u)and 0 � t � 1. If the assumption (2.2) and hypothesis of the theorem are satis�ed, then thesame proof as the one we will give for proving the convergence of the algorithm shows thatF is a contraction. So, by Banach principle, it follows that F has a unique �xed point, fromwhich we deduce easily the existence of a solution u with w 2 T (u) and y 2 V (u) verifying(2.1).Now, let u 2 H be a solution of (2:1). Then, we can writeu = (1 � �n)u+ �n(u� g(u) + JAu� (g(u)� �N(w; y)); (2.9)and u = (1� �n)u+ �n(u� g(u) + JAu� (g(u)� �N(w; y)): (2.10)From (2.4), (2.9) and the convexity of the norm, we havejun+1 � uj � (1 � �n)jun � uj+ �njzn � u� (g(zn)� g(u))j+ �njJAzn� (g(zn)� �N( ~wn; ~yn))� JAu� (g(u)� �N(w; y))j� (1 � �n)jun � uj+ �njzn � u� (g(zn)� g(u))j5



+ �njJAzn� (g(zn)� �N( ~wn; ~yn))� JAzn� (g(u)� �N(w; y))j+ �njJAzn� (g(u)� �N(w; y))� JAu� (g(u)� �N(w; y))j� (1 � �n)jun � uj+ 2�njzn � u� (g(zn)� g(u))j+ �njzn � u� �(N( ~wn; ~yn)�N(w; y))j+ �n�j(N(w; ~yn))�N(w; y))j+ �n�jzn � uj:On the other hand, a simple calculation involving the fact that g is strongly monotone andLipschitz continuous yieldsjzn � u� (g(zn)� g(u))j � p1� 2� + �2jzn � uj: (2.11)Similarly, as N is strongly monotone and Lipschitz continuous with respect to the �rstvariable and thanks to Nadler's lemma, we obtainjzn � u� �(N~yn ( ~wn)�N~yn(w))j2 = jzn � uj2 � 2�hN ~yn ( ~wn)�N ~yn(w); zn � ui+ �2(1 + ")2Haus2(N~yn( ~wn); N~yn(w))� (1� 2�� + (1 + ")2�2�2�2)kzn � uk2: (2.12)From which we inferjzn � u� �(N~yn( ~wn)�N~yn(w)j � q1� 2�� + (1 + ")2�2�2�2jzn � uj: (2.13)Now, the Lipschitz continuity of N with respect to the second argument together withthe Lipschitz continuity of V givesjN(w; ~yn)�N(w; y)j � �(1 + ")j~yn � yj� �(1 + ")Haus(V (zn); V (u))� ��(1 + ")jzn � uj:Combining the latter inequality with (2.11) and (2.13), we obtainjun+1 � uj � (1� �n)jun � uj+ �n(k + ���(1 + ") + t(�))jzn � uj� (1� �n)jun � uj+ �n�jzn � uj;where k = �+2p1 � 2� + �2, � = k+���(1+")+t(�) and t(�) = q1 � 2�� + �2(1 + ")2�2�2.In similar way, in the light of (2.4) and (2.10), we inferjzn � uj � (1 � �n)jun � uj+ 2�njun � u� (g(un) � g(u))j+ �njun � u� �(N(wn; yn))�N(w; y))j� (1 � �n)jun � uj+ �n�jun � uj� jun � uj because 0 � � < 1: (2.14)6



Taking into account the latter inequality, we �nally obtainjun+1 � uj � ((1 � �n(1 � �))jun � uj� �ni=0((1 � �i(1 � �))ju0 � uj:From conditions on the parameters, it follows that � < 1 and since P1n=0 �n diverges and1 > � � 0, we have P1i=0f1 � (1 � �)�ig = 0. Hence the sequence fung converges stronglyto u. Also from (2.14), we see that the sequence fzng converges also to u. One can easilyshow that the sequences fwng, fyng, f ~wng, f ~yng are Cauchy sequences and thus convergestrongly to some w; y; ~w; ~y respectively. Indeed, for fwng, we can writejwn+1 � wnj � (1 + 1n+1 )Haus(T (un+1); T (un))� (1 + 1n+1 )�jun+1 � unj:In a similar way, one shows that fyng; f ~wng; f~yng are also Cauchy sequences.We will now show that w 2 T (u); y 2 V (u); ~w 2 T (x); ~y 2 V (x). In fact, for fwng, we havedist(w;T (u)) � jw � wnj+ dist(wn; T (u))� jw � wnj+Haus(T (un); T (u))� jw � wnj+ �jun � uj ! 0 as n! +1;where dist(w;T (u)) = inffjw � zj : z 2 T (u)g. From which, we deduce dist(w;T (u)) = 0.This implies that w 2 T (u), because T (u) is closed. In a similar way, one shows thaty 2 V (u); ~w 2 T (u); ~y 2 V (u).Finally, by noting that the relationjJAun� (w)� JAu� (w)j � �jun � uj; (2.15)implies that limn!+1 jJAun� w � JAu� wj = 0, by taking into account the Lipschitz continuityof the involved operators and by passing to the limit in the �rst relation of (2.4), we obtaing(u) = JAu� (g(u)� �N(w; y));which amounts to saying that u is a solution of (2.1). This completes the proof.In the next proposition, we will identify operators with their graphs and consider the boundedHausdor� distance between Au and Av which is de�ned by:Haus�(Au; Av) := maxfe(Au \ �BH�H; Av); e(Av \ �BH�H; Au)g;where �BH�H stands for the closed ball of H�H with radius � and centred at the origin.Proposition: If the following condition holds trueHaus�(Au; Av) � � ju� vj; 8u; v 2 H 8� � 0; (2.16)7



then jJAu� (w)� JAv� (w)j � �ju� vj;with � = (2 + �)� .Proof: According to ([2], proposition 1.2), we can writejJAu� (w)� JAv� (w)j � (2 + �)Haus�(Au; Av);with � = maxfjwj+ jJAu� (0)j; 1�(jwj+ jJAu� (0)j):This combined with the hypothesis gives the desired result.Furthermore, in the case when Au is the partial di�erential of the indicator function of aclosed convex set K(u), we can replace condition (2.16) by a condition in terms of fK(u)g,namely Haus 12� (K(u);K(v)) � � ju� vj; 8u; v 2 H 8� � 0: (2.17)Indeed, ([2], remark 2.5) ensures the existence of two constants K� and �0 which depend on� such that Haus�(@�K(u); @�K(v)) � K�Haus 12�0 (K(u);K(v)):Remark:(i) It is worth mentioning that the condition (2.2) implies the convergence of the resolvents(JAun� ) which is equivalent to the graph convergence of the operators (Aun). While condition(2.16) implies the convergence of (Aun) with respect to the bounded Hausdor� distance whichis equivalent to the convergence of the resolvents on bounded sets and which is stronger thanthe graph convergence of the operators (Aun) (see, for example, [2]).(ii) For clarity's sake we worked in a Hilbert space setting, but our results are still valid inre�exive Banach space. References1. W. F. Ames, Numerical Methods for Partial Di�erential Equations, Third Edition,Academic Press, New York, 1992.2. H. Attouch, H. Riahi and A. Mouda� Quantitative stability analysis for maximalmonotone operators and semi-groups of contractions, J. Nonlinear Anal., Theo. Meth.& Appli., 21, (1993), 697-723.3. C. Baiocchi and A. Capelo, Variational and Quasi-Variational Inequalities, J. Wileyand Sons, New York, London, 1984.4. H. Brézis, Opérateurs Maximaux Monotone et Semigroups de Contractions dans lesEspaces de Hilbert, North-Holland, Amsterdam, 1973.8
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