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Convergence of a splitting inertialproximal method for monotone operators �A. Moudafi and M. OlinyUniveristé Antilles Guyane, DSI-GRIMAAG97200 Schoelcher, Martinique, France.abdellatif.mouda�@martinique.univ-ag.frAbstract. A forward-backward inertial procedure for solving the problem of �ndinga zero of the sum of two maximal monotone operators is proposed and its convergenceis established under a cocoercivity condition with respect to the solution set.Key words. monotone operators, elargements, proximal point algorithm, cocoerciv-ity, splitting algorithm, projection, convergence.1 Introduction and preliminariesThe theory of maximal monotone operators has emerged as an e�ective andpowerful tool for studying a wide class of unrelated problems arising in variousbranches of social, physical, engineering, pure and applied sciences in uni�edand general framework. In recent years, much attention has been given to de-velop e�cient and implementable numerical methods including the projectionmethod and its variant forms, auxiliary problem principle, proximal-point al-gorithm and descent framework for solving variational inequalities and relatedoptimization problems. It is well known that the projection method and itsvariant forms cannot be used to suggest and analyze iterative methods for solv-ing variational inequalities due to the presence of the nonlinear term. This factmotivated to develop another technique, which involves the use of the resol-vent operator associated with maximal monotone operators, the origin of whichcan be traced back to Martinet [13] in the context of convex minimization andRockafellar [20] in the general setting of maximal monotone operators. Theresulting method, namely the proximal point algorithm has been extended andgeneralized in di�erent directions by using novel and innovative techniques andideas, both for their own sake and for their applications relying, for example, onBregman distance. Since, in general, it is di�cult to evaluate the resolvent op-erator. One alternative is to decompose the given operator into the sum of two�Accepted for publication in the Journal of Computation and Applied Mathematics1



2 A. Mouda� and M. Oliny(or more) maximal monotone operators whose resolvent are easier to evaluatethan the resolvent of the original one. Such a method is known as the operatorsplitting method. This can lead to the development of very e�cient methods,since one can treat each part of the original operator independently. The oper-ator splitting methods and related techniques have been analyzed and studiedby many authors including Eckstein and Bertsekas [8], Chen and Rockafellar[6], Zhu and Marcotte [27], P. Tseng [25] and Mouda� and Théra [15]. For anexcellent account of the splitting methods, see [7]. Here, we use the resolventoperator technique to suggest a forward-backward splitting method for solvingthe problem of �nding a zero of the sum of two maximalmonotone operators. Itis worth mentioning that if the nonlinear term involving the variational inequal-ities is the indicator function of a closed convex set in a Hilbert space, then theresolvent operator is equal to the projection operator and we recover a methodproposed by A.S. Antipin [3]. Our result extends and generalizes the previouslyknown results.In this paper we will focus our attention on the classical problem of �nding azero of the sum of two maximal monotone operators A and B on a real Hilbertspace H: �nd x 2 H such that (A+ B)(x) 3 0: (1.1)This is a well-known problem which includes, as special cases, optimization andmin-max problems, complementarity problems, and variational inequalities.One of the fondamental approaches to solving (1.1), where B is univoque, is theforward-backward method, which generates the next iterates xk+1 by solvingthe subproblem 0 2 �kA(x) + (x� xk + �kB(xk)); (1.2)where xk is the current iterate and �k is a regularization parameter. The lit-erature on this subject is vast (see [7] and references therein). Actually, thismethod was proposed by Lions and Mercier [12], by Passty [18] and, in a dualform for convex programming, by Han and Lou [10]. In the case where A is thenormal cone of a nonempty closed convex set, this method reduces to a projec-tion method proposed by Sibony [23] for monotone variational inequalities and,in the further case where B is the gradient of a di�erentiable convex function,it amounts to a gradient projection method of Goldstein and of Levintin andPolyak [5]. This method was largely analyzed by Mercier [14] and Gabay [9].They namely showed that if B is cocoercive with modulus  > 0, then the iter-ates xk converge weakly to a solution on condition that �k is constant and lessthan 2. The case where �k is noconstant was dealt with among others in [6,8, 15, 25]Recently, an inertial proximal algorithm was proposed by Alvarez in the con-text of convex minimization in [1]. Afterwards, Attouch and Alvarez consideredits extension to maximal monotone operators [2]. Relying on this method, wepropose a splitting procedure which works as follows. Given xk�1; xk 2 H and



Forward-backward inertial proximal method 3two parameters �k 2 [0; 1[ and �k > 0, �nd xk+1 2 H such that�kA(xk+1) + xk+1 � xk � �k(xk � xk�1) + �kB(xk) 3 0: (1.3)When B = 0, the inspiration for (1.3) comes from the implicit discretization ofthe di�erential system of the second-order in time, namelyd2xdt2 (t) +  dxdt (t) +A(x(t)) 3 0 a.e. t � 0; (1.4)where  > 0 is a damping or a friction parameter.When H = IR2, A is the gradient of a di�erentiable function, (1:4) is a sim-pli�ed version of the di�erential system which describes the motion of a heavyball rolling over the graph of f and which keeps rolling under its own inertiauntil stopped by friction at a critical point of f (see [4]). This nonlinear os-cillator with damping has been considered by several authors proving di�erentresults and = or identifying situations in which the rate of convergence of (1:4)or its discrete versions is better than those of the �rst-order steepest descentmethod see ([1; 11; 19]). Roughtly speaking the second-order nature of (1:3) (re-spectively (1:4)) may be exploited in some situations in order to accelerate theconvergence of the sequence of (1:3) (respectively the trajectories of (1:4)), see[11] where numerical simulations comparing the behavior of the standard proxi-mal algorithm, the gradient method and the inertial proximal one are presented( for the continuous version see for example [4]).For developing implementable computational techniques, it is of particular im-portance to treat the case when (1.3) is solved approximately. Before introduc-ing our approximate method, let us recall the following concepts which are ofcommon use in the context of convex and nonlinear analysis. Troughout, H isa real Hilbert space, h�; �i denotes the associated scalar product and j � j standsfor the corresponding norm. An operator is said to be monotone ifhu� v; x� yi � 0 whenever u 2 T (x); v 2 T (y):It is said to be maximalmonotone if, in addition, the graph, f(x; y) 2 H�H : y 2T (x)g, is not properly contained in the graph of any other monotone operator.It is well-known that for each x 2 H and � > 0 there is a unique z 2 H suchthat x 2 (I + �T )z. The single-valued operator JT� := (I + �T )�1 is called theresolvent of T of parameter �. It is a nonexpansive mapping which is everywherede�ned and satis�es: z = JT� z, if and only if, 0 2 Tz. Let us also recall a notionwhich is clearly inspired by the approximate subdi�erential. In [21, 22], Iusem,Burachik and Svaiter de�ned T "(x), an "-enlargement of a monotone operatorT , as T "(x) := fv 2 H; hu� v; y � xi � �" 8y; u 2 T (y)g; (1.5)where " � 0. Since T is assumed to be maximal monotone, T 0(x) = T (x), forany x. Furthermore, directly from the de�nition it follows that0 � "1 � "2 ) T "1(x) � T "2(x):



4 A. Mouda� and M. OlinyThus T " is an enlargement of T . The use of elements in T " instead of T allowsan extra degree of freedom, which is very useful in various applications. Onthe other hand, setting " = 0 one retrieves the original operator T , so thatthe classical method can be also treated. For all these reasons, we consider thefollowing scheme: �nd xk+1 2 H such that�kA"k(xk+1) + xk+1 � yk + �kB(xk) 3 0: (1.6)where yk := xk + �k(xk � xk�1); �k; �k; "k are nonnegative real numbers.If A is the subdi�erential of the indicator function of a closed convex set C,then (1.1) reduces to the classical variational inequalityhB(x); y � xi � 0 8y 2 C; (1.7)and the resolvent operator is nothing but the projection operator. Moreover, inthe case where "k = 0 8k and B is the gradient of a function f , (1.7) reducesin turn to the constrained minimization problem Minx2Cf(x) and we recover amethod proposed by Antipin in [3], namelyxk+1 = projC(xk � �rf(xk) + �(xk � xk�1)):Anathor interesting case is obtained by taking B = 0 and A = @f , @f stands forthe subdi�erential of a proper convex lower-semicontinuous function f : H !IR [ f+1g. Indeed, @f is well-known to be a maximal monotone operator andproblem (1.1) reduces to the one of �nding a minimizer of the function f .In [1], Alvarez proposed the following approximate inertial proximal method:�k@"kf(xk+1) + xk+1 � xk � �k(xk � xk�1) 3 0; (1.8)where @"kf is the approximate subdi�erential of f . Since in the case A = @fthe enlargement given in (1.5) is larger than the the approxiamte subdi�erential,i.e. @"f � (@f)" (see [21, 22]), we can write @"kf(xk+1) � (@f)"k (xk+1); whichleads to �k(@f)"k (xk+1) + xk+1 � xk � �k(xk � xk�1) 3 0; (1.9)which is a particular case of the method proposed in this paper with A = @fand B = 0.In the sequel, we will need a cocoercivity condition with respect to the solutionset, S := (A +B)�1(0), namelyhB(x) �B(y); x � yi � jB(x) �B(y)j2 8x 2 H 8y 2 S; being a positive real number. This condition is standard in the literature andis typically needed to establish weak convergence (see for example [8], [9], [15],[27]).



Forward-backward inertial proximal method 52 The main resultsTo begin with let us recall, for the convenience of the reader, a well-known resulton weak convergence.Lemma 2.1 Opial Let H be a Hilbert space and fxkg a sequence such thatthere exists a nonempty set S � H verifying:� For every �x 2 S, limk!+1 jxk � �xj exists.� If x� weakly converges to x 2 H for a subsequence � ! +1, then x 2 S.Then, there exists ~x 2 S such that fxkg weakly converges to ~x in H.We are now able to give our main result.Theorem 2.1 Let fxkg � H be a sequence generated by (1.6), where A;Bare two maximal monotone operators with B -cocoercive and suppose that theparameters �k; �k and "k satisfy:1. 9" 9� > 0 such that 8k 2 IN�; � � �k � 2 � ".2. 9� 2 [0; 1[ such that 8k 2 IN�; 0 � �k � �.3. P+1k=1 "k < +1.If the following condition holds+1Xk=1�kjxk � xk�1j2 < +1; (2.10)then, there exists �x 2 S such that fxkg weakly converges to �x as k! +1.Proof. Fix x 2 S = T�1(0) and set 'k = 12 jx� xkj2. We have'k � 'k+1 = 12 jxk+1 � xkj2 + hxk+1 � yk; x� xk+1i+ �khxk � xk�1; x� xk+1i; (2.11)where yk := xk + �k(xk � xk�1). Since �xk+1 + yk � �kB(xk) 2 �kA"k(xk+1)and ��kB(x) 2 �kA(x), from de�nition (1.5) it follows thathxk+1 � yk + �k(B(xk)�B(x)); x � xk+1i � ��k"k: (2.12)Combining (2.11) and (2.12), we obtain'k � 'k+1 � 12 jxk+1 � xkj2 + �khB(xk)� B(x); xk+1 � xi� �khxk � xk�1; xk+1 � xi � �k"k:



6 A. Mouda� and M. OlinyBy invoking the equalityhxk � xk�1; xk+1 � xi = hxk � xk�1; xk � xi+ hxk � xk�1; xk+1� xki= 'k � 'k�1 + 12 jxk � xk�1j2 + hxk � xk�1; xk+1� xki;it follows that'k+1 � 'k � �k('k � 'k�1) � �12 jxk+1� xkj2 + �khxk � xk�1; xk+1 � xki+ �k2 jxk � xk�1j2 � �khB(xk)� B(x); xk+1 � xi+ �k"k:On the other hand, since B is cocoercive, we get�khB(xk)� B(x); xk+1 � xi = �k(hB(xk)�B(x); xk � xi+ hB(xk)� B(x); xk+1 � xi)� �k(jB(xk)� B(x)j2 + hB(xk)� B(x); xk+1 � xki)� ��k4 jxk+1 � xkj2:From which infer, by setting �k := 1� �k2 , the estimate (2.13) below'k+1 � 'k � �k('k � 'k�1) � �12�kjxk+1 � xkj2 + �khxk � xk�1; xk+1� xki+ �k2 jxk � xk�1j2 + �k"k� �12�kjxk+1 � �k�k ykj2 + �2k2�k jxk � xk�1j2+ �k2 jxk � xk�1j2 + �k"k� �12�kjxk+1 � xk � �k�k (xk � xk�1)j2+ �k�k jxk � xk�1j2 + �k"k:By taking into account the fact that from the hypotheses �k is bounded and bysetting �k := 'k � 'k�1 and �k := 2�k" jxk � xk�1j2 + �k"k, we obtain�k+1 � �k�k + �k � �k[�k]+ + �k;where [t]+ := max(t; 0), and consequently[�k+1]+ � �[�k]+ + �k;with � 2 [0; 1[ given by hypothesis 2.The latter inequality yields[�k+1]+ � �k[�1]+ + k�1Xi=0 �i�k�i;and therefore 1Xk=1[�k+1]� 11� � ([�1]+ + 1Xk=1 �k);



Forward-backward inertial proximal method 7which is �nite thanks to hypothesis 3 and (2.10). Consider the sequence de�nedby tk := 'k �Pki=1[�i]+. Since 'k � 0 andPki=1[�i]+ < +1, it follows that tkis bounded from below. Buttk+1 = 'k+1 � [�k+1]+ � kXi=1[�i]+ � 'k+1 � 'k+1 + 'k � kXi=1[�i]+ = tk;so that ftkg is nonincreasing. We thus deduce that ftkg is convergent and so isf'kg. This show that the �rst condition of Opial's lemma is satis�ed.On the other hand, from (2:13) we can write12�kjxk+1 � xk � �k�k (xk � xk�1)j2 � ��k+1 + ��k + �k:By passing to the limit in the above estimate and by taking into account theconditions on the parameters and the fact that by hypothesis jxk � xk�1j ! 0,we obtain limk!+1 jxk+1� xk � �k(xk � xk�1)j = 0:Now let �x be a weak cluster point of fxkg. There exists a subsequence fx�gwhich converges weakly to �x and satis�es, thanks to (1.6),� 1�� (x�+1�y� )+(B(x�+1)�B(x� )) 2 A"�+1 (x�+1)+B(x�+1) � (A+B)"�+1 (x�+1):Passing to the limit, as � ! +1, using the fact that B is Lipschitz continuousand thanks to the properties of the enlargements ([22], proposition 3.4), weobtain that 0 2 (A+B)(�x), that is �x 2 S. Thus, the second condition of Opial'slemma is also satis�ed, which completes the proof.Condition (2:13) involves the iterates that are a priori unknown, in practice it iseasy to enforce it by applying an appropriate on-line rule (for example, choosing�k 2 [0; �k] with �k := minf�; 1(kjxk�xk�1 j)2 g. Furthermore, it is worth men-tioning that (2:13) is automatically satis�ed in some special cases. For instancewhere assumption 2) of theorem 2.1 is replaced by 9� 2 [0; 13 [; 8k 2 IN; 0 ��k � � and the sequence f�kg is nondecreasing (see [2], proposition 2.1).Remark 2.1 An open problem is to develop a general theory to guide the choicesof the parameters �k and �k.Our result extends classical convergence results concerning the standard forward-backward method as well as theorem 6 of Antipin [3].AcknowledgementsThe authors are grateful to the two anonymous referees and to Professor P. B.Monk for their valuable comments and remarks.
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