Abdellatif Moudafi 
  
Michel Th Éra 
  
ERGODIC CONVERGENCE TO A ZERO OF THE EXTENDED SUM

Keywords: 1991 Mathematics Subject Classification. 49J52, 90C30 maximal monotone operators, Yosida regularization, enlargements, variational sum, extended sum, splitting methods. 1

 as well as the barycentric-proximal method of Lehdili & Lemaire [4] can be used to approximate a zero of the extended sum of maximal monotone operators. When the extended sum is maximal monotone, we extend the convergence result obtained by Lehdili & Lemaire for convex functions to the case of maximal monotone operators. Moreover, we recover the main convergence results by Passty and Lehdili & Lemaire when the pointwise sum of the involved operators is maximal monotone.

Introduction and preliminaries

A wide range of problems in physics, economics and operation research can be formulated as a generalized equation 0 ∈ T (x) for a given set-valued mapping T on a Hilbert space X. Therefore, the problem of finding a zero of T , i.e., a point x ∈ X such that 0 ∈ T (x) is a fundamental problem in many areas of applied mathematics.

When T is a maximal monotone operator, a classical method for solving the problem 0 ∈ T (x)i st h eProximal Point Algorithm, proposed by Rockafellar [START_REF] Rockafellar | Monotone operators and the proximal point algorithm[END_REF] which extends an earlier algorithm established by Martinet [START_REF] Martinet | Algorithmes pour la résolution de problèmes d'optimisation et minimax[END_REF] for T = ∂f, i.e., when T is the subdifferential of a convex lower semicontinuous proper function. In this case, finding a zero of T is equivalent to the problem of finding a minimizer of f.

T h ec a s ew h e r eT is the pointwise sum of two operators A and B is called a splitting of T . It is of fundamental interest in large-scale optimization since the objective function splits into the sum of two simpler functions and we can take advantage of this separable structure. For an overview of splitting methods of all kinds we refer to Eckstein [START_REF] Eckstein | Splitting Methods for Monotone Operators with Applications to Parallel Optimization[END_REF]. Using the conjugate duality, splitting methods may apply in certain circumstances to the dual objective function.

Recall that the general framework of the conjugate duality is the following [START_REF] Rockafellar | Conjugate duality and optimization[END_REF]: Consider f a convex lower semicontinuous function on the product H × U of let us say two Hilbert spaces H and U . Define

L(x, v):= inf u {f(x, u) -u, v } and g(p, v):= inf x {L(x, v) -x, p }.
Setting f 0 (x):= f(x, 0) and g 0 (v):= g(0,v), a well-known method to solve inf f 0 is the method of multipliers which consists in solving the dual problem max g 0 using the Proximal Point Algorithm [START_REF] Rockafellar | Augmented Lagrangians and applications of the proximal point algorithm in convex programming[END_REF]. It has been observed that in certain situations the study of a problem, with monotone operators involved, leads to an operator that turns out to be larger than the pointwise sum. Consequently, there have been several attempts for generalizing the usual pointwise sum of two monotone operators such as for instance the wellknown extension was based on the Trotter-Lie formula. More recently, in 1994, the notion of variational sum of two maximal monotone operators was introduced in [START_REF] Attouch | Variational sum of monotone operators[END_REF] by Attouch, Baillon and Théra using the Yosida regularization of operators. Recently, another notion of extended sum was proposed by Revalski and Théra [START_REF] Revalski | Enlargements and sums of monotone operators[END_REF] relying on the so-called enlargements of operators.

Our focus in this paper is on finding a zero of the extended sum of two monotone operators when this extended sum is a maximal monotone operator. Since, when the pointwise sum is maximal monotone, the extended sum and the pointwise sum coincides, the proposed algorithm will subsume the classical Passty scheme and the barycentric-proximal method of Lehdili and Lemaire which are related with weak ergodic type convergence.

Throughout we will assume that X is a real Hilbert space. The inner product and the associated norm will be designated respectively by •, • and • .G i v e na (multivalued) operator A : X -→ -→ X,asusualthegraph of A is denoted by Gr(A):= {(x, x * ) ∈ X × X : x * ∈ Ax}, its domain by Dom (A): ={x ∈ X : Ax = ∅} and its inverse operator is A -1 : X -→ -→ X, A -1 x * := {x ∈ X : x * ∈ Ax},x * ∈ X.T h e operator A is called monotone if yx, y *x * ≥ 0, whenever (x, x * ) ∈ Gr A and (y, y * ) ∈ Gr A.W ed e n o t eb y Ā the operator Āx := Ax, x ∈ X, where the overbar means the norm-closure of a given set. The monotone operator A is said to be maximal if its graph is not contained properly in the graph of any other monotone operator from X to X. The graph Gr (A) is a closed subset with respect to the product of the norm topologies in X × X.

Finally, given a maximal monotone operator A : X -→ -→ X and a positive λ, recall that the Yosida regularization of A of order λ is the operator A λ := (A -1 + λI) -1 , and that the resolvent of A of order λ is the operator J A λ := (I + λA) -1 ,w h e r e I is the identity mapping. For any λ>0, the Yosida regularization A λ and the resolvent J A λ are everywhere defined single-valued maximal monotone operators. Let f : X → 1R ∪{+∞} be an extended real-valued lower semicontinuous convex function in X which is proper (i.e. the domain dom f := {x ∈ X : f(x) < +∞} of f is non-empty). Given ε ≥ 0, the well-known ε-subdifferential of f is defined at x ∈ dom f by:

∂ ε f(x):= x * ∈ X * : f(y) -f(x) ≥ y -x, x * -ε for every y ∈ X , and ∂ ε f(x): =∅,i fx/ ∈ dom f.W h e n ε =0 ,∂ 0 f is the subdifferential ∂f of f, which, as it is well-known, is a maximal monotone operator.
The concept of approximate subdifferential leads to similar enlargements for monotone operators. The next one has been investigated intensively in the last years: for the monotone operator A : X -→ -→ X and ε ≥ 0, the ε-enlargement of A is A ε : X -→ -→ X, defined by A ε x := {x * ∈ X : yx, y *x * ≥ε for any (y, y * ) ∈ Gr (A)}. A ε has closed convex images for any ε ≥ 0 and due to the monotonicity of A, one has Ax ⊂ A ε x for every x ∈ X and every ε ≥ 0. In the case A = ∂f one has ∂ ε f ⊂ (∂f) ε and the inclusion can be strict.

Generalized Sums and Splitting Methods

We start by recalling different types of sums of monotone operators and we present two splitting methods for finding a zero of the extended sum.

Let A, B : X -→ -→ X be two monotone operators. As usual A + B : X -→ -→ X denotes the pointwise sum of A and B:( A + B)x = Ax + Bx, x ∈ X. A + B is a monotone operator with Dom (A + B)=D o mA ∩ Dom B.E v e ni fA and B are maximal monotone operators, their sum A + B may fail to be maximal monotone.

The above lack of maximality of the pointwise sum inspired the study of possible generalized sums of monotone operators. Recently, the variational sum was proposed in [START_REF] Attouch | Variational sum of monotone operators[END_REF] using the Yosida approximation. More precisely, let A, B : X -→ -→ X be maximal monotone operators and

I := {(λ, µ) ∈ 1R 2 : λ, µ ≥ 0,λ + µ =0 }.
The idea of the variational sum, A + v B,istotak easasumofA and B the graphconvergence limit (i.e. the Painlevé-Kuratowski limit of the graphs) of

A λ + B µ , (λ, µ) ∈I,w h e n( λ, µ) → 0. Namely, A + v B is equal to lim inf F (A λ + B µ )= (x, x * ):∀{(λ n ,µ n )}⊂I,λ n ,µ n → 0, ∃(x n ,x * n ) ∈ A λ + B µ ;(x n ,x * n ) → (x, x * ) .
By contrast to the pointwise sum, this definition takes into account the behaviour of the operators also at nearby points of the initial one. We have that Dom Another notion of generalized sum was proposed by Revalski and Théra [START_REF] Revalski | Enlargements and sums of monotone operators[END_REF] relying on the enlargements: the extended sum of two monotone operators A, B : X -→ -→ X is defined in [START_REF] Revalski | Enlargements and sums of monotone operators[END_REF] for each x ∈ X by

A + e B(x)= ε>0 A ε x + B ε x,
where the closure on the right hand side is taken with respect to the weak topology. Actually, replacing the problem (P) find x ∈ X such that 0 ∈ (A + B)x by (P λ ) find x ∈ X such that 0 ∈ (A + B λ )x leads to the following equivalent fixed-point formulation

find x ∈ X such that x = J A λ • J B λ x. (1) Indeed, 0 ∈ (A + B λ )x ⇐⇒ 0 ∈ Ax + x -J B λ x λ ⇐⇒ J B λ x ∈ (I + λA)x ⇐⇒ x = J A λ • J B λ x.
Iterating the above relation with variable λ n tending to zero gives the scheme of Passty:

x n = J A λn • J B λn x n-1 ∀n ∈ 1N * . (2)
Another approach called the barycentric-proximal method, based on a complete regularization of the two operators under consideration was proposed by Lehdili and Lemaire [START_REF] Lehdili | The b arycentric proximal method[END_REF]. It consists in replacing problem (P)b yp r o b l e m( P λ,µ ):

(P λ,µ ) find x ∈ Xs u c h t h a t 0 ∈ (A λ + B µ )x.
Problem (P λ,µ ) is equivalent to the fixed-point problem

find x ∈ X such that x = µ λ + µ J A λ x + λ λ + µ J B µ x. (3) Indeed, 0=(A λ + B µ )x ⇐⇒ 0= x -J A λ x λ + x -J B µ x µ ⇐⇒ ( 1 λ + 1 µ )x = 1 λ J A λ x + 1 µ J B µ x ⇐⇒ x = µ λ + µ J A λ x + µ λ + µ J B µ x.
The barycentric-proximal method is nothing but the iteration method for (3) with variable parameters. More precisely, the iteration is given by:

xn = µ n λ n + µ n J A λn xn-1 + λ n λ n + µ n J B µn xn-1 ∀n ∈ 1N * . (4)
For sake of simplicity we suppose that λ n = µ n for all n ∈ 1N * .

The Main Result

In what follows, we show that these methods allow to approximate a solution of the following problem (Q) find x ∈ Xs u c h t h a t 0 ∈ (A + e B)x.

I nt h ec a s ew h e r eA + B is maximal monotone we recover the results by Lehdili and Lemaire for (4) and Passty for (2). Moreover, in the case of convex minimization our result generalizes a theorem of Lehdili and Lemaire. Indeed in this setting, the extended and the variational sums coincide. To prove our main result we need the following variant of Opial's lemma [START_REF]Weak convergence of the sequence of successive approximations for nonexpansive mapping[END_REF]: Lemma 1. Let {λ n } be a sequence of positive reals such that +∞ n=0 λ n =+∞ and {x n } be a sequence with weighted average {z n } given by z n := n k=1 λkxk n k=1 λk .L e tu s assume that there exists a nonempty closed convex subset S of X such that

• any weak limit of a subsequence of {z n } is in S;

• lim n→+∞ x nu exists for all u ∈ S. Then {z n } weakly converges to an element of S. λ n =+∞.

Then any weak limit point of a subsequence of {z n } (resp. {z n })i saz e r oo ft h e extended sum. Moreover, if A ǫ is local ly bounded1 on S, then the whole sequence weakly converges to some zero of the extended sum.

Proof: Let us show that all the assumptions of Lemma 1 are satisfied for S = (A + e B) -1 (0). First let us remark that thanks to the maximal monotonicity of A + e B,t h es e tS is closed and convex and nonempty (by assumption). Take (x, y) ∈ A + e B. By definition of the extended sum, it amounts to saying that for each ǫ>0, y ∈ A ǫ (x)+B ǫ (x). Equivalently, for all ǫ>0, there exists a sequence {y p,ǫ } weakly converging to y,w i t h

y p,ǫ = y 1,p,ǫ + y 2,p,ǫ ,y 1,p,ǫ ∈ A ǫ (x)a n dy 2,p,ǫ ∈ B ǫ (x).
Define inductively x n and v n by x n = J A λn v n and v n = J B λn x n-1 .E q u i v a l e n t l yw e have,

v n -x n λ n ∈ A(x n )a n d x n-1 -v n λ n ∈ B(v n ). (5) 
Definition of ǫ-enlargments combined to relations (5) yields

v n -x n λ n -y 1,p,ǫ ,x n -x ≥-ǫ and x n-1 -v n λ n -y 2,p,ǫ ,v n -x ≥-ǫ.
In other words

v n -x n ,x n -x ≥λ n y 1,p,ǫ ,x n -x -λ n ǫ (6) and x n-1 -v n ,v n -x ≥λ n y 2,p,ǫ ,v n -x -λ n ǫ. (7) 
From ( 6) and ( 7), using the general equality

2 <a-b, b -c>= a -c 2 -a -b 2 -b -c 2 we obtain x n-1 -x 2 -v n -x 2 ≥ x n-1 -v n 2 +2λ n y 2,p,ǫ ,v n -x -2λ n ǫ and v n -x 2 -x n -x 2 ≥ v n -x n 2 +2λ n y 1,p,ǫ ,x n -x -2λ n ǫ.
By adding the two last inequalities, we infer

x n-1 -x 2 -x n -x 2 ≥ x n-1 -v n 2 + v n -x n 2 +2λ n y 2,p,ǫ ,v n -x +2λ n y 1,p,ǫ ,x n -x -4λ n ǫ ≥ v n -x n 2 +2λ n y 2,p,ǫ ,v n -x +2λ n y 1,p,ǫ ,x n -x -4λ n ǫ = v n -x n 2 +2λ n y 2,p,ǫ ,v n -x -2λ n y 2,p,ǫ ,x n -x +2λ n y p,ǫ ,x n -x -4λ n ǫ = v n -x n 2 +2λ n y 2,p,ǫ ,v n -x n +2λ n y p,ǫ ,x n -x -4λ n ǫ.
Therefore,

x n-1x 2x nx 2 ≥-λ 2 n y 2,p,ǫ 2 +2λ n y p,ǫ ,x nx -4λ n ǫ. Passing to the limit as n → +∞ for a subsequence, gives y p,ǫ , zx ≤2ǫ.

Then passing to the limit as p → +∞ and as ǫ goes to zero yields y, xz ≥0.

Thus, thanks to the maximality of A + e B,w ed e r i v et h a t0∈ (A + e B)z,t h a ti s every weak limit point of a subsequence of {z n } is a solution of (Q). Therefore the first assumption of Lemma 1 is satisfied. Now taking x ∈ (A + e B) -1 (0) in [START_REF] Revalski | Enlargements and sums of monotone operators[END_REF], we obtain

x n -x 2 ≤ x n-1 -x 2 + λ 2 n y 2,p,ǫ 2 -2λ n y p,ǫ ,x n -x +4λ n ǫ ∀ǫ>0. ( 10 
)
Local boundedness of A ǫ and relation y 2,p,ǫ ∈ A ǫ (x) show that {y 2,p,ǫ } is bounded when p → +∞ and when ǫ → 0. This combined to the fact that {y p,ǫ }→0a s p → +∞ gives

x n -x 2 ≤ x n-1 -x 2 + Cλ 2 n . (11) 
So, as +∞ n=1 λ 2 n < +∞, it is well-known that lim n→+∞ x nx 2 exists, that is, the second assumption of Lemma 1 is also verified. Let us now establish that {z n } weakly converges to some z ∈ (A + e B) -1 (0). Set u n = J A λn xn-1 ,v n = J B λn xn-1 and take again (x, y) ∈ A + e B. By definition of the extended sum, for all ǫ>0, there exists a sequence {y p,ǫ } weakly converging to y,w i t hy p,ǫ = y 1,p,ǫ + y 2,p,ǫ ,y 1,p,ǫ ∈ A ǫ (x)a n dy 2,p,ǫ ∈ B ǫ (x). Definition of ǫ-enlargements combined to relation ( 12)

xn-1 -u n λ n ∈ A(u n )a n d xn-1 -v n λ n ∈ B(v n ) (12) yields xn-1 -u n λ n -y 1,p,ǫ ,u n -x ≥-ǫ and xn-1 -v n λ n -y 2,p,ǫ ,v n -x ≥-ǫ. Equivalently, xn-1 -u n ,u n -x ≥λ n y 1,p,ǫ ,u n -x -λ n ǫ (13) and xn-1 -v n ,v n -x ≥λ n y 2,p,ǫ ,v n -x -λ n ǫ. (14) 
From ( 13) and ( 14), we obtain:

xn-1 -x 2 -u n -x 2 ≥ xn-1 -u n 2 +2λ n y 1,p,ǫ ,u n -x -2λ n ǫ and xn-1 -x 2 -v n -x 2 ≥ xn-1 -v n 2 +2λ n y 2,p,ǫ ,v n -x -2λ n ǫ Therefore, xn-1 -x 2 -u n -x 2 ≥-λ 2 n y 1,p,ǫ 2 +2λ n y 1,p,ǫ , xn-1 -x -2λ n ǫ (15) and xn-1 -x 2 -v n -x 2 ≥-λ 2 n y 2,p,ǫ 2 +2λ n y 2,p,ǫ , xn-1 -x -2λ n ǫ (16) 
As xn = 1 2 (u n + v n ), using convexity of the norm, we obtain We finish the proof by proceeding similarly to the first part.

-xn -x 2 ≥- 1 2 u n -x 2 - 1 2 v n -x 2 . ( 17 

Corollary 3.

• If A + B is maximal monotone, we recover results by Passty (resp. Lehdili and Lemaire), that is {z n } (resp. {z n }) converges weakly to some z ∈ (A + B) -1 (0).

• If A + v B and A + e B are both maximal monotone, we generalize the convergence result of Lehdili and Lemaire to maximal monotone operators, that is, {z n } converges weakly to some z ∈ (A + v B) -1 (0). Indeed, in this case, our proof works without assuming that A ǫ is local ly bounded. • In the case A = ∂f, B = ∂g, {z n } (resp. {z n }) converges weakly to a solution of (OP ) find x ∈ X such that 0 ∈ ∂(f + g)(x) or equivalently find x ∈ X such that 0 ∈ argmin x∈X (f + g)(x), and we recover the convergence result of Lehdili and Lemaire for (4).

  (A) ∩ Dom (B) ⊂ Dom (A + v B)andA + v B is a monotone operator. It was shown in [1] that if A + B is a maximal monotone operator then, A + B = A + v B.M o r e o v e r , the subdifferential of the sum of two proper convex lower semicontinuous functions is equal to the variational sum of their subdifferentials.

  Evidently, A + B ⊂ A + e B and hence, Dom (A) ∩ Dom (B) ⊂ Dom (A + e B). As it was shown in [8] (Corollary 3.2), if A + B is a maximal monotone operator then, A + B = A + e B. Furthermore, the subdifferential of the sum of two convex proper lower semicontinuous functions is equal to the extended sum of their subdifferentials ([8], Theorem 3.3.) Let us now recall two splitting methods for the problem of finding a zero of the sum of two maximal monotone operators with maximal monotone sum. The first one have been proposed by Passty relying on a regularization of one of the operator.

Theorem 2 .

 2 Let us assume that Dom A ∩ Dom B = ∅ and that A + e B is a maximal monotone operator. Further we suppose that problem (Q) has a solution. Let {x n } (resp. {x n }) be a sequence generated by (2) (resp. by (4)) and {z n } (resp. {z n }) be the corresponding weighted average. Let us assume that +∞ n=1 λ 2 n < +∞ and +∞ n=1

( 8 ) 2 n

 82 After summation and division byn k=1 λ k ,w eg e t 2 y p,ǫ ,z nx ≤ x 0x

- 1 2 λ 2 n ( y 1 ,p,ǫ 2 +-x 2 n

 2122 )Mutiplying (15) and (16) by1 2 , summing up and adding (17) gives:xn-1x 2xnx 2 ≥y 2,p,ǫ 2 )+2λ n y p , xn-1x -2λ n ǫ.Summing the last inequality from k =1ton and dividing by n k=1 λ k ,g i v e s 2 y p,ǫ , znx ≤ x 0

Recall that A : X -→ -→ X is local ly bounded if for each point x from the norm-closure of Dom (A) there is a neighborhood U of x such that A(U ) is a norm-bounded subset in X