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ERGODIC CONVERGENCE TO A ZERO OF THE EXTENDED

SUM

ABDELLATIF MOUDAFI AND MICHEL THÉRA

Abstract. In this note we show that the splitting scheme of Passty [7] as

well as the barycentric-proximal method of Lehdili & Lemaire [4] can be used
to approximate a zero of the extended sum of maximal monotone operators.

When the extended sum is maximal monotone, we extend the convergence
result obtained by Lehdili & Lemaire for convex functions to the case of max-

imal monotone operators. Moreover, we recover the main convergence results
by Passty and Lehdili & Lemaire when the pointwise sum of the involved

operators is maximal monotone.

1. Introduction and preliminaries

A wide range of problems in physics, economics and operation research can be
formulated as a generalized equation 0 ∈ T (x) for a given set-valued mapping T
on a Hilbert space X. Therefore, the problem of finding a zero of T , i.e., a point
x̄ ∈ X such that 0 ∈ T (x) is a fundamental problem in many areas of applied
mathematics.
When T is a maximal monotone operator, a classical method for solving the

problem 0 ∈ T (x) is the Proximal Point Algorithm, proposed by Rockafellar [12]
which extends an earlier algorithm established by Martinet [5] for T = ∂f , i.e.,
when T is the subdifferential of a convex lower semicontinuous proper function. In
this case, finding a zero of T is equivalent to the problem of finding a minimizer of
f .
The case where T is the pointwise sum of two operators A and B is called a

splitting of T . It is of fundamental interest in large-scale optimization since the
objective function splits into the sum of two simpler functions and we can take
advantage of this separable structure. For an overview of splitting methods of all
kinds we refer to Eckstein [3]. Using the conjugate duality, splitting methods may
apply in certain circumstances to the dual objective function.
Recall that the general framework of the conjugate duality is the following [11]:

Consider f a convex lower semicontinuous function on the product H ×U of let us
say two Hilbert spaces H and U . Define

L(x, v) := inf
u
{f(x, u)− 〈u, v〉}

and

g(p, v) := inf
x
{L(x, v)− 〈x, p〉}.
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Setting f0(x) := f(x, 0) and g0(v) := g(0, v), a well-known method to solve inf f0

is the method of multipliers which consists in solving the dual problem max g0 using
the Proximal Point Algorithm [13].
It has been observed that in certain situations the study of a problem, with

monotone operators involved, leads to an operator that turns out to be larger than
the pointwise sum. Consequently, there have been several attempts for generalizing
the usual pointwise sum of two monotone operators such as for instance the well-
known extension was based on the Trotter-Lie formula. More recently, in 1994,
the notion of variational sum of two maximal monotone operators was introduced
in [1] by Attouch, Baillon and Théra using the Yosida regularization of operators.
Recently, another notion of extended sum was proposed by Revalski and Théra [8]
relying on the so-called enlargements of operators.
Our focus in this paper is on finding a zero of the extended sum of two monotone

operators when this extended sum is a maximal monotone operator. Since, when
the pointwise sum is maximal monotone, the extended sum and the pointwise sum
coincides, the proposed algorithm will subsume the classical Passty scheme and the
barycentric-proximal method of Lehdili and Lemaire which are related with weak
ergodic type convergence.
Throughout we will assume that X is a real Hilbert space. The inner product

and the associated norm will be designated respectively by 〈·, ·〉 and ‖ · ‖. Given a
(multivalued) operator A : X −→−→ X, as usual the graph ofA is denoted by Gr(A) :=
{(x, x∗) ∈ X ×X : x∗ ∈ Ax}, its domain by Dom(A) := {x ∈ X : Ax �= ∅} and
its inverse operator is A−1 : X −→−→ X, A−1x∗ := {x ∈ X : x∗ ∈ Ax}, x∗ ∈ X. The
operator A is called monotone if 〈y−x, y∗ −x∗〉 ≥ 0, whenever (x, x∗) ∈ GrA and
(y, y∗) ∈ GrA. We denote by Ā the operator Āx := Ax, x ∈ X, where the overbar
means the norm-closure of a given set. The monotone operator A is said to be
maximal if its graph is not contained properly in the graph of any other monotone
operator from X to X. The graph Gr (A) is a closed subset with respect to the
product of the norm topologies in X ×X.
Finally, given a maximal monotone operator A : X −→−→ X and a positive λ, recall

that the Yosida regularization of A of order λ is the operator Aλ := (A
−1 + λI)−1,

and that the resolvent of A of order λ is the operator JA
λ := (I + λA)−1, where

I is the identity mapping. For any λ > 0, the Yosida regularization Aλ and the
resolvent JA

λ are everywhere defined single-valued maximal monotone operators.
Let f : X → 1R∪{+∞} be an extended real-valued lower semicontinuous convex

function in X which is proper (i.e. the domain dom f := {x ∈ X : f(x) < +∞} of
f is non-empty). Given ε ≥ 0, the well-known ε-subdifferential of f is defined at
x ∈ dom f by:

∂εf(x) :=
{

x∗ ∈ X∗ : f(y) − f(x) ≥ 〈y − x, x∗〉 − ε for every y ∈ X
}

,

and ∂εf(x) := ∅, if x /∈ dom f . When ε = 0, ∂0f is the subdifferential ∂f of f ,
which, as it is well-known, is a maximal monotone operator.
The concept of approximate subdifferential leads to similar enlargements for

monotone operators. The next one has been investigated intensively in the last
years: for the monotone operator A : X −→−→ X and ε ≥ 0, the ε-enlargement of
A is Aε : X −→−→ X, defined by Aεx := {x∗ ∈ X : 〈y − x, y∗ − x∗〉 ≥ −ε for any
(y, y∗) ∈ Gr (A)}. Aε has closed convex images for any ε ≥ 0 and due to the
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monotonicity of A, one has Ax ⊂ Aεx for every x ∈ X and every ε ≥ 0. In the case
A = ∂f one has ∂εf ⊂ (∂f)ε and the inclusion can be strict.

2. Generalized Sums and Splitting Methods

We start by recalling different types of sums of monotone operators and we
present two splitting methods for finding a zero of the extended sum.
Let A,B : X −→−→ X be two monotone operators. As usual A + B : X −→−→ X

denotes the pointwise sum of A and B: (A + B)x = Ax + Bx, x ∈ X. A + B is
a monotone operator with Dom(A + B) = DomA ∩DomB. Even if A and B are
maximal monotone operators, their sum A+B may fail to be maximal monotone.
The above lack of maximality of the pointwise sum inspired the study of possible

generalized sums of monotone operators. Recently, the variational sum was pro-
posed in [1] using the Yosida approximation. More precisely, let A,B : X −→−→ X
be maximal monotone operators and I := {(λ, µ) ∈ 1R2 : λ, µ ≥ 0, λ + µ �= 0}.
The idea of the variational sum, A +

v
B, is to take as a sum of A and B the graph-

convergence limit (i.e. the Painlevé-Kuratowski limit of the graphs) of Aλ + Bµ,
(λ, µ) ∈ I, when (λ, µ)→ 0. Namely, A +

v
B is equal to

lim inf
F

(Aλ +Bµ) =

{

(x, x∗) : ∀{(λn, µn)} ⊂ I, λn, µn → 0, ∃(xn, x
∗

n) ∈ Aλ +Bµ; (xn, x
∗

n)→ (x, x∗)
}

.

By contrast to the pointwise sum, this definition takes into account the behaviour
of the operators also at nearby points of the initial one. We have that Dom(A) ∩
Dom(B) ⊂ Dom(A +

v
B) and A +

v
B is a monotone operator. It was shown in [1]

that if A+ B is a maximal monotone operator then, A +B = A +
v

B. Moreover,

the subdifferential of the sum of two proper convex lower semicontinuous functions
is equal to the variational sum of their subdifferentials.
Another notion of generalized sum was proposed by Revalski and Théra [8] re-

lying on the enlargements: the extended sum of two monotone operators A,B :
X −→−→ X is defined in [8] for each x ∈ X by

A +
e

B(x) =
⋂

ε>0

Aεx+ Bεx,

where the closure on the right hand side is taken with respect to the weak topology.
Evidently, A+ B ⊂ A +

e
B and hence, Dom(A) ∩Dom(B) ⊂ Dom(A +

e
B). As

it was shown in [8] (Corollary 3.2), if A+B is a maximal monotone operator then,
A+ B = A +

e
B. Furthermore, the subdifferential of the sum of two convex proper

lower semicontinuous functions is equal to the extended sum of their subdifferentials
([8], Theorem 3.3.)
Let us now recall two splitting methods for the problem of finding a zero of the sum
of two maximal monotone operators with maximal monotone sum. The first one
have been proposed by Passty relying on a regularization of one of the operator.
Actually, replacing the problem

(P) find x ∈ X such that 0 ∈ (A+ B)x
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by

(Pλ) find x ∈ X such that 0 ∈ (A +Bλ)x

leads to the following equivalent fixed-point formulation

find x ∈ X such that x = JA
λ ◦ JB

λ x.(1)

Indeed,

0 ∈ (A+ Bλ)x

⇐⇒ 0 ∈ Ax +
x− JB

λ x

λ

⇐⇒ JB
λ x ∈ (I + λA)x

⇐⇒ x = JA
λ ◦ JB

λ x.

Iterating the above relation with variable λn tending to zero gives the scheme of
Passty:

xn = JA
λn

◦ JB
λn

xn−1 ∀n ∈ 1N∗.(2)

Another approach called the barycentric-proximal method, based on a complete
regularization of the two operators under consideration was proposed by Lehdili
and Lemaire [4]. It consists in replacing problem (P) by problem (Pλ,µ):

(Pλ,µ) find x ∈ X such that 0 ∈ (Aλ + Bµ)x.

Problem (Pλ,µ) is equivalent to the fixed-point problem

find x ∈ X such that x =
µ

λ+ µ
JA

λ x+
λ

λ+ µ
JB

µ x.(3)

Indeed,

0 = (Aλ + Bµ)x

⇐⇒ 0 =
x− JA

λ x

λ
+

x− JB
µ x

µ

⇐⇒ (
1

λ
+
1

µ
)x =

1

λ
JA

λ x+
1

µ
JB

µ x

⇐⇒ x =
µ

λ+ µ
JA

λ x+
µ

λ + µ
JB

µ x.

The barycentric-proximal method is nothing but the iteration method for (3)
with variable parameters. More precisely, the iteration is given by:

x̃n =
µn

λn + µn

JA
λn

x̃n−1 +
λn

λn + µn

JB
µn

x̃n−1 ∀n ∈ 1N∗.(4)

For sake of simplicity we suppose that λn = µn for all n ∈ 1N∗.
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3. The Main Result

In what follows, we show that these methods allow to approximate a solution of
the following problem

(Q) find x ∈ X such that 0 ∈ (A +
e

B)x.

In the case where A+B is maximal monotone we recover the results by Lehdili
and Lemaire for (4) and Passty for (2). Moreover, in the case of convex minimization
our result generalizes a theorem of Lehdili and Lemaire. Indeed in this setting, the
extended and the variational sums coincide.
To prove our main result we need the following variant of Opial’s lemma [6]:

Lemma 1. Let {λn} be a sequence of positive reals such that
∑+∞

n=0 λn = +∞ and

{xn} be a sequence with weighted average {zn} given by zn :=
∑

n

k=1
λkxk

∑

n

k=1
λk

. Let us

assume that there exists a nonempty closed convex subset S of X such that

• any weak limit of a subsequence of {zn} is in S;
• limn→+∞ ‖xn − u‖ exists for all u ∈ S.

Then {zn} weakly converges to an element of S.

Theorem 2. Let us assume that DomA ∩DomB �= ∅ and that A +
e

B is a max-

imal monotone operator. Further we suppose that problem (Q) has a solution. Let
{xn} (resp. {x̃n}) be a sequence generated by (2) (resp. by (4)) and {zn} (resp.
{z̃n}) be the corresponding weighted average. Let us assume that

+∞
∑

n=1

λ2
n < +∞ and

+∞
∑

n=1

λn = +∞.

Then any weak limit point of a subsequence of {zn} (resp. {z̃n}) is a zero of the
extended sum. Moreover, if Aǫ is locally bounded 1 on S, then the whole sequence
weakly converges to some zero of the extended sum.

Proof: Let us show that all the assumptions of Lemma 1 are satisfied for S =
(A +

e
B)−1(0). First let us remark that thanks to the maximal monotonicity of

A +
e

B, the set S is closed and convex and nonempty (by assumption).

Take (x, y) ∈ A +
e

B. By definition of the extended sum, it amounts to saying

that for each ǫ > 0, y ∈ Aǫ(x) + Bǫ(x). Equivalently, for all ǫ > 0, there exists a
sequence {yp,ǫ} weakly converging to y, with

yp,ǫ = y1,p,ǫ + y2,p,ǫ, y1,p,ǫ ∈ Aǫ(x) and y2,p,ǫ ∈ Bǫ(x).

Define inductively xn and vn by xn = JA
λn

vn and vn = JB
λn

xn−1. Equivalently we
have,

vn − xn

λn

∈ A(xn) and
xn−1 − vn

λn

∈ B(vn).(5)

Definition of ǫ-enlargments combined to relations (5) yields
〈

vn − xn

λn

− y1,p,ǫ, xn − x

〉

≥ −ǫ and

〈

xn−1 − vn

λn

− y2,p,ǫ, vn − x

〉

≥ −ǫ.

1Recall that A : X −→
−→ X is locally bounded if for each point x from the norm-closure of

Dom(A) there is a neighborhood U of x such that A(U ) is a norm-bounded subset in X
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In other words

〈vn − xn, xn − x〉 ≥ λn〈y1,p,ǫ, xn − x〉 − λnǫ(6)

and

〈xn−1 − vn, vn − x〉 ≥ λn〈y2,p,ǫ, vn − x〉 − λnǫ.(7)

From (6) and (7), using the general equality

2 < a− b, b− c >= ‖a− c‖2 − ‖a− b‖2 − ‖b− c‖2

we obtain

‖xn−1 − x‖2 − ‖vn − x‖2 ≥ ‖xn−1 − vn‖
2 + 2λn〈y2,p,ǫ, vn − x〉 − 2λnǫ

and

‖vn − x‖2 − ‖xn − x‖2 ≥ ‖vn − xn‖
2 + 2λn〈y1,p,ǫ, xn − x〉 − 2λnǫ.

By adding the two last inequalities, we infer

‖xn−1 − x‖2 − ‖xn − x‖2 ≥ ‖xn−1 − vn‖2 + ‖vn − xn‖2 + 2λn〈y2,p,ǫ, vn − x〉
+2λn〈y1,p,ǫ, xn − x〉 − 4λnǫ

≥ ‖vn − xn‖2 + 2λn〈y2,p,ǫ, vn − x〉

+2λn〈y1,p,ǫ, xn − x〉 − 4λnǫ

= ‖vn − xn‖2 + 2λn〈y2,p,ǫ, vn − x〉 − 2λn〈y2,p,ǫ, xn − x〉

+2λn〈yp,ǫ, xn − x〉 − 4λnǫ

= ‖vn − xn‖2 + 2λn〈y2,p,ǫ, vn − xn〉

+2λn〈yp,ǫ, xn − x〉 − 4λnǫ.

Therefore,

‖xn−1 − x‖2 − ‖xn − x‖2 ≥ −λ2
n‖y2,p,ǫ‖

2 + 2λn〈yp,ǫ, xn − x〉 − 4λnǫ.(8)

After summation and division by
∑n

k=1 λk, we get

2〈yp,ǫ, zn − x〉 ≤
‖x0 − x‖2

∑n
k=1 λk

+ ‖y2,p,ǫ‖
2

∑n

k=1
λ2

k
∑n

k=1 λk

+ 4ǫ.(9)

Passing to the limit as n → +∞ for a subsequence, gives

〈yp,ǫ, z̄ − x〉 ≤ 2ǫ.

Then passing to the limit as p → +∞ and as ǫ goes to zero yields

〈y, x− z̄〉 ≥ 0.

Thus, thanks to the maximality of A +
e

B, we derive that 0 ∈ (A +
e

B)z̄, that is

every weak limit point of a subsequence of {zn} is a solution of (Q). Therefore the
first assumption of Lemma 1 is satisfied.
Now taking x ∈ (A +

e
B)−1(0) in (8), we obtain

‖xn − x‖2 ≤ ‖xn−1 − x‖2 + λ2
n‖y2,p,ǫ‖

2 − 2λn〈yp,ǫ, xn − x〉+ 4λnǫ ∀ǫ > 0.(10)
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Local boundedness of Aǫ and relation y2,p,ǫ ∈ Aǫ(x) show that {y2,p,ǫ} is bounded
when p → +∞ and when ǫ → 0. This combined to the fact that {yp,ǫ} → 0 as
p → +∞ gives

‖xn − x‖2 ≤ ‖xn−1 − x‖2 + Cλ2
n.(11)

So, as
∑+∞

n=1
λ2

n < +∞, it is well-known that limn→+∞ ‖xn − x‖2 exists, that is,
the second assumption of Lemma 1 is also verified.
Let us now establish that {z̃n} weakly converges to some z̃ ∈ (A +

e
B)−1(0).

Set un = JA
λn

x̃n−1, vn = JB
λn

x̃n−1 and take again (x, y) ∈ A +
e

B. By definition of

the extended sum, for all ǫ > 0, there exists a sequence {yp,ǫ} weakly converging
to y, with yp,ǫ = y1,p,ǫ + y2,p,ǫ, y1,p,ǫ ∈ Aǫ(x) and y2,p,ǫ ∈ Bǫ(x). Definition of
ǫ-enlargements combined to relation (12)

x̃n−1 − un

λn

∈ A(un) and
x̃n−1 − vn

λn

∈ B(vn)(12)

yields
〈

x̃n−1 − un

λn

− y1,p,ǫ, un − x

〉

≥ −ǫ and

〈

x̃n−1 − vn

λn

− y2,p,ǫ, vn − x

〉

≥ −ǫ.

Equivalently,

〈x̃n−1 − un, un − x〉 ≥ λn〈y1,p,ǫ, un − x〉 − λnǫ(13)

and

〈x̃n−1 − vn, vn − x〉 ≥ λn〈y2,p,ǫ, vn − x〉 − λnǫ.(14)

From (13) and (14), we obtain:

‖x̃n−1 − x‖2 − ‖un − x‖2 ≥ ‖x̃n−1 − un‖
2 + 2λn〈y1,p,ǫ, un − x〉 − 2λnǫ

and

‖x̃n−1 − x‖2 − ‖vn − x‖2 ≥ ‖x̃n−1 − vn‖
2 + 2λn〈y2,p,ǫ, vn − x〉 − 2λnǫ

Therefore,

‖x̃n−1 − x‖2 − ‖un − x‖2 ≥ −λ2
n‖y1,p,ǫ‖

2 + 2λn〈y1,p,ǫ, x̃n−1 − x〉 − 2λnǫ(15)

and

‖x̃n−1 − x‖2 − ‖vn − x‖2 ≥ −λ2
n‖y2,p,ǫ‖

2 + 2λn〈y2,p,ǫ, x̃n−1 − x〉 − 2λnǫ(16)

As x̃n =
1
2
(un + vn), using convexity of the norm, we obtain

−‖x̃n − x‖2 ≥ −
1

2
‖un − x‖2 −

1

2
‖vn − x‖2.(17)

Mutiplying (15) and (16) by 1
2
, summing up and adding (17) gives:

‖x̃n−1 −x‖2 −‖x̃n −x‖2 ≥ −
1

2
λ2

n(‖y1,p,ǫ‖
2+ ‖y2,p,ǫ‖

2) +2λn〈yp, x̃n−1 −x〉 − 2λnǫ.

Summing the last inequality from k = 1 to n and dividing by
∑n

k=1
λk, gives

2〈yp,ǫ, z̃n − x〉 ≤
‖x0 − x‖2

∑n
k=1 λk

+
1

2
(‖y1,p,ǫ‖

2 + ‖y2,p,ǫ‖
2)

∑n

k=1
λ2

k
∑n

k=1 λk

+ 2ǫ.(18)

We finish the proof by proceeding similarly to the first part.
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Corollary 3. • If A + B is maximal monotone, we recover results by Passty
(resp. Lehdili and Lemaire), that is {zn} (resp. {z̃n}) converges weakly to
some z̄ ∈ (A+ B)−1(0).

• If A +
v

B and A +
e

B are both maximal monotone, we generalize the con-

vergence result of Lehdili and Lemaire to maximal monotone operators, that
is, {z̃n} converges weakly to some z̄ ∈ (A +

v
B)−1(0). Indeed, in this case,

our proof works without assuming that Aǫ is locally bounded.
• In the case A = ∂f, B = ∂g, {zn} (resp. {z̃n}) converges weakly to a solution

of
(OP ) find x ∈ X such that 0 ∈ ∂(f + g)(x)

or equivalently

find x ∈ X such that 0 ∈ argminx∈X(f + g)(x),

and we recover the convergence result of Lehdili and Lemaire for (4).

References
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