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Abstract

A decreased global autonomic nervous system (ANS) activity and increased sympathetic activation in patients with sickle
cell anemia (SCA) seem to worsen the clinical severity and could play a role in the pathophysiology of the disease, notably
by triggering vaso-occlusive crises. Because exercise challenges the ANS activity in the general population, we sought to
determine whether a short (,15 min) and progressive moderate exercise session conducted until the first ventilatory
threshold had an effect on the ANS activity of a group of SCA patients and a group of healthy individuals (CONT group).
Temporal and spectral analyses of the nocturnal heart rate variability were performed before and on the 3 nights following
the exercise session. Standard deviation of all normal RR intervals (SDNN), total power, low frequencies (LF) and high
frequencies powers (HF) were lower but LF/HF was higher in SCA patients than in the CONT group. Moderate exercise did
not modify ANS activity in both groups. In addition, no adverse clinical events occurred during the entire protocol. These
results imply that this kind of short and moderate exercise is not detrimental for SCA patients.
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Introduction

Sickle cell anemia (SCA) patients are marked by several

biological abnormalities such as decreased red blood cells (RBC)

deformability [1–5], increased RBC aggregates strength [2,3,6]

and inflammation [7], and a pro-oxidant state [8], which play a

role in several complications. However, they are also characterized

by an alteration of the autonomic nervous system (ANS) activity

(i.e., parasympathetic withdrawal and sympathetic predominance),

determined by the analysis of heart rate variability (HRV) in

resting condition [9,10], with the degree of alteration reflecting the

clinical severity [11–13]. Nebor et al [11] demonstrated that SCA

patients at high risk for developing painful vaso-occlusive crises

have a large parasympathetic activity withdrawal in comparison

with less severe SCA patients. This sympatho-vagal imbalance

may further exacerbate vaso-occlusive crises by increasing

peripheral vasoconstriction [10].

While regular physical activity has been proven to be a clinical

strategy able to decrease co-morbidity and provide health benefits

in several chronic diseases such as obesity, diabetes or asthma [14–

16] health care professionals have not yet considered a clinical

benefit of physical exercise for patients with SCA [17]. Depending

on its duration and intensity, exercise may promote lactic acidosis,

tissue hypoxia and/or dehydration, which are conditions known to

stimulate the polymerization of the abnormal hemoglobin (HbS)

and RBC sickling, hence triggering vaso-occlusive events [18].

Nevertheless, few studies demonstrated that exercises lasting less

than 30 min at intensity lower than 75% of predicted maximal

heart rate (HR) were well tolerated by SCA patients regarding

hemorheological, inflammatory, vascular and oxidative stress

parameters [19–21]. Moreover, we recently demonstrated that a

short (less than 15 min) exercise conducted until the first

ventilatory threshold (VT1; moderate intensity) did not cause

supplemental alterations in RBC deformability, blood viscosity or

coagulation markers in SCA patients [1]. In healthy individuals,

exercise is known to challenge the ANS activity with a wide

parasympathetic withdrawal during, but also several hours after

the effort [22]. Usually, a rebound of the parasympathetic activity

is observed two days after an exercise bout, which may confer

cardiovascular protection [22]. There is an increasing need to

define, in terms of intensity and duration, what kind of exercise
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SCA patients may perform without any risk for developing acute

complications. Thus, the aim of this study was to assess the effects

of a short (,15min) and moderate exercise (progressive session

conducted until the first ventilatory threshold) on the ANS activity

of a group of SCA patients and a group of healthy individuals.

Incremental exercise is widely used in several chronic diseases to

screen for cardiorespiratory and/or peripheral disorders, as well as

to define intensity for training programs, but has been rarely

utilized in SCA, and it is unknown whether this classical exercise is

safe or not for this population. The demonstration that an

incremental exercise conducted to the first ventilatory threshold

would be safe for SCA patients could, then, be used to propose

individualized exercise rehabilitation program in the near future.

Materials and Methods

Subjects
Seven patients with SCA (4 males and 3 females, age:

33.3610.8 yrs, weight: 63.0612.7 kg, height: 17367 cm, hemat-

ocrit: 22.764.3%, white blood cells: 9.3762.13 109/l, RBCs:

2.8060.53 1012/l, hemoglobin concentration: 1.3360.44 g/dl)

and a control group of 9 subjects with normal hemoglobin

(CONT; 5 males and 4 females, age: 34.868.4 yrs, weight:

75.8611.8 kg and height: 17268 cm) agreed to participate in the

present study. All the SCA patients recruited were regularly

followed by the Sickle Cell Unit of the Academic Hospital of

Pointe-à-Pitre (Guadeloupe) and were in steady-state condition at

the time of the study. Patients considered to be severe (i.e., either .

3 hospitalizations per year for vaso-occlusive crisis, .1 acute chest

syndrome or .1 transfusion per year during the last 5 years) were

excluded. Patients with other hemoglobinopathies than SCA,

cardiovascular disorders, positive history of stroke, pulmonary

hypertension, diabetes, body mass index (BMI) $30 kg/m2, under

hydroxyurea therapy, smokers and/or pregnant women were also

excluded. Before enrollment, all patients and control subjects had

clinical examination with anthropometric measurements and

underwent resting electrocardiography, echocardiography and

blood pressure measurements to check for the absence of severe

exercise contraindication. All participants received verbal and

written explanation of the objectives and procedures of the study

and subsequently provided written informed consent. The study

was approved by the Regional Ethics Committee (CPP Sud-Ouest

Outre-Mer III, Bordeaux, France; Registration number: SNAD -

2010-A00126-33). The experiments were performed in accor-

dance with the guidelines set by the Declaration of Helsinki.

Protocol
Each SCA patient and CONT subject performed an incremen-

tal exercise until VT1, as previously described [1]. HRV was

measured overnight, the night preceding the exercise session (D-1)

and during the 3 following nights after the effort (D0, D1 and D2).

Subjects were asked to refrain from alcohol and caffeine

consumption and, although not evaluated by specific physical

activity questionnaires, from physical exercise from the 3 days

before D-1 and until the end of the experiment.

Acute Exercise
The exercise protocol has been previously described in details

[1]. Briefly, the cycling exercise (Welch Allyn cycloergometer,

USA) test, conducted between 1:00 and 3:00 PM, consisted of

3 minutes warm-up at 10 W for SCA and 20 W for CONT, and

then, the load was increased every minute (i.e., SCA: 5–7 W;

CONT: 15–30 W) until VT1 was reached. The power increment

used for SCA patients was close to the one previously used by

Callahan et al. [23]. Blood pressure measurements, heart rate and

pulse oxymetry monitoring were strictly performed by an

experienced cardiologist in the line of the recommendations of

the French Society of Cardiology. Gas exchanges were measured

with a breath-by-breath automated exercise metabolic system

(Oxycon Mobile, Jaeger, Germany) to determine the appearance

of VT1 during exercise (see [1]). Pedaling speed remained constant

at 60–70 rotation per minute during the exercise test.

Autonomic Nervous System Activity
During the 4 nights of measurement, a holter electrocardio-

graph (Novacor system, Duosoft, France) was placed on the chest

of each patient after clinical examination and recording of the

inter-beat (RR) intervals was performed from 6:00 p.m. to

8:00 a.m. RR intervals were visually inspected, corrected if

presence of artifacts, then validated before analysis. Only the

night periods were analyzed (midnight to 7 a.m.) to avoid

variations arising from differences in the subject’s daily environ-

ment. HRV recordings during the nights avoid variations due to

daily activities, which may vary from one day to another, which

would decrease the signal (variations caused by the exercise) to

noise (variations due to the daily activities) ratio [24]. The large

period of recordings analyzed covers several full sleep cycles

including thus a similar repartition of sleep states between subjects.

This allows comparison between successive nights and subjects.

Artifacts were replaced by the mean of the two neighbors RR.

Resulting RR signals are then re-sampled at 2 Hz using a cubic

spline interpolation. A temporal analysis of HRV was performed

to calculate the standard deviation of all normal RR intervals

(SDNN) and the square root of the mean squared differences

between adjacent normal RR intervals (RMSSD). After fast

Fourier transform (FFT), the power spectrum indices were

calculated as recommended by the Task Force of the European

Society of Cardiology and the North American Society of Pacing

and Electrophysiology [25]. The FFT is based on the fact that data

present with a stationary organization and are a combination of

sinusoidal functions [26,27]. Thus algorithms of analysis are

searching for sinusoidal similarities in the signal. The search does

not indicate the localization of the particular frequency along the

observed signal, but, instead, provides a cumulate spectrum power

of a particular frequency, i.e., corresponding to the number of

occurrences of the given sinusoidal function. The low frequencies

(LF, 0.04–0.15 Hz) are known to reflect both sympathetic and

parasympathetic activities. The high frequencies (HF, 0.15–

0.40 Hz) reflect parasympathetic activity. The LF/HF ratio,

which was used as a broad index of ‘‘sympathovagal balance’’

[25], and the total frequency power (Ptot) were also calculated.

SDNN and Ptot reflected the global autonomic activity, the LF/

HF ratio has been proposed as a marker of ANS balance and the

RMSSD is strongly related to HF power [28,29].

Statistics
The results are presented as mean 6 standard deviation (SD).

The time courses of temporal and spectral indices of HRV were

compared between the two groups using a two-way analysis of

variance (ANOVA) with repeated measures after log transforma-

tion of the data. However, results are presented in absolute value.

Pair-wise contrasts were used when necessary to locate where

significant differences occurred. The significance level was defined

as p,0.05. Analyses were conducted using Statistica (v. 5.5,

Statsoft, Tulsa, OK, USA).

Sickle Cell, Exercise and Autonomic Response
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Results

Statistical analysis revealed that SDNN (group effect: p = 0.048),

RMSSD (group effect: p = 0.048), Ptot (group effect: p = 0.05021),

LF (group effect: p = 0.037) and HF (group effect: p = 0.05018)

levels were lower and LF/HF levels (group effect: p = 0.042)

higher in the SCA group than in the CONT group (Table 1;

Figure 1). Neither a time effect, nor a time x group interaction was

found for all indices (Table 1; Figure 1). Although oxygen uptake,

ventilation and power were lower in SCA patients than CONT

subjects at VT1 (data not shown, see [1]), HR (133621 vs

136619 bpm for CONT and SCA, respectively) and mean

arterial pressure (101.2613.2 vs 100.6615.6 mmHg for CONT

and SCA, respectively) were similar. Except one SCA individual

who exhibited a 11% decrease of hemoglobin oxygen saturation

compared to baseline, the other individuals (CONT and SCA) did

not exhibit significant (i.e., more than 4%; [1]) change. Using the

Borg scale [30] of perceived exertion, SCA patients and controls

reported that the feeling of effort, strain, discomfort and/or fatigue

was mild to moderate (score ranging from 11 to 13).

Discussion

The aim of the present study was to test the effect of a single

moderate (progressive session conducted until the first ventilatory

threshold) and short exercise (,15 min) on the ANS activity of

SCA patients. The physiological responses indicate that the

exercise represented the same relative physiological stress for

SCA patients and CONT subjects despite different aerobic

capacities. Although two patients of the SCA group exhibited

paroxystic and non-severe arrhythmia, the exercise was well

tolerated.

Baseline ANS activity has been reported to be altered in SCA

patients compared to healthy subjects [9–11], which is in

agreement with our findings since all HRV parameters were

lower in the SCA group than in the CONT group. Moreover LF/

HF levels were higher in the SCA group indicating that the

sympathetic activity was predominant due to a parasympathetic

withdrawal. The reasons of these differences are not yet fully

understood [5]. However, it has been suggested that chronic

anemia may lead to a persistent sustained decrease in autonomic

fluctuations [29]. Moreover, repeated hypoxemic episodes, as it

can be the case in SCA patients [31], may increase sympathetic

activity and decrease parasympathetic activity [32]. Very short

and transient hypoxic stress stimulus has been reported to induce

parasympathetic withdrawal in SCA patients but not in healthy

individuals [33]. The role of hypoxemia/hypoxia on ANS

dysfunction has been reinforced by studies in rats showing that

chronic hypoxia causes cell loss in the nucleus ambiguous, a

structure from which several vagal efferent axons innervate

ganglionated plexuses in the dorsal surface of cardiac atria, which

in turn may have different functional roles in cardiac regulation

Figure 1. Spectral indices of heart rate variability. D-1: the night before exercise, D0: the night just after exercise, D1 and D2: the nights 1 and 2
days after exercise. Ptot: Total Power, LF: low frequencies, HF: high frequencies.
doi:10.1371/journal.pone.0095563.g001
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[34]. SCA patients with the most severe form of the disease [10], at

risks for developing frequent vaso-occlusive crises [11] or acute

chest syndrome [12], or with leg ulcers and erectile dysfunction

[35], have a depressed ANS activity and a reduced parasympa-

thetic activity. These findings suggest a role of parasympathetic

withdrawal and sympathetic predominance in the pathophysiology

of several sickle cell complications. For example, altered

autonomic tone has been suspected to exacerbate pain episodes

in SCA patients by increasing peripheral vasoconstriction [10].

Whether moderate exercise increases the predominance of the

sympathetic activity over the parasympathetic activity is of great

concern for SCA patients. In healthy individuals, a single intense

exercise session usually alters ANS activity within the first night

following exercise [22,36]; HF being lower than before the effort.

Then, on the second night after the effort, some authors noted a

return to baseline of the ANS activity [36] or even a positive

rebound of the parasympathetic activity conferring greater cardiac

and vascular protection than before exercise [22]. Myllymäki et al.

[37] showed, in healthy individuals, that a 90-min exercise session

at moderate intensity (60% VO2max) decreased ANS activity on

the night following exercise while a 30-min session at high (75%

VO2max), moderate or low intensity (45% VO2max) or a 60-min

session at moderate intensity had no impact. Indeed, in healthy

subjects, exercise duration seems to be more important than

intensity to really challenge ANS on the night following exercise,

and the absence of ANS activity fluctuations after exercise in the

CONT group was probably related to the too short exercise

duration (,15 min) [37]. In SCA patients, prolonged and intense

exercise bouts are usually dangerous since they may trigger red

blood cell sickling and painful vaso-occlusive crises [17]. The lack

of change in the ANS activity of SCA patients, which are not

involved in any physical activity, after the exercise suggests that the

effort proposed 1) is safe and well tolerated by this population (no

adverse clinical event occurred during the entire protocol), with no

further alterations in ANS activity but, 2) is probably not intense

and/or prolonged enough to promote positive autonomic adap-

tations as it can be the case, sometimes, for healthy subjects [22].

In conclusion, this study shows that a short (,15 min duration)

single exercise session performed until the first ventilatory

threshold has no positive impact on ANS activity but most

importantly did not further alter the ANS activity of SCA patients

with a mild clinical expression of the disease. These results, with

those of Waltz et al. [1], strongly suggest that this kind of exercise

could be safely performed in SCA patients with. While we

analyzed the ANS activity several hours and days after the exercise

bout, we did not investigate the immediate effects of exercise on

ANS activity in SCA patients. Our methodological choice was

motivated by the findings of Furlan et al. [38] who demonstrated a

decrease of ANS activity the night following heavy exercise, with

this condition representing a vulnerability status [39]. However,

Jouven et al. [40] also demonstrated that the time for heart rate to

recover immediately after exercise was a predictor of sudden death

in the general population. Indeed, it might be of interest to

accurately analyze the heart rate kinetics during and immediately

after exercise in SCA patients. Based on the marked parasympa-

thetic withdrawal observed in SCA patients, one could expect a

slow heart rate recovery following exercise in this population.

Future studies should also investigate whether chronic light

exercise (i.e., exercise rehabilitation program) could have benefi-

cial effects on ANS activity in SCA patients with various degrees of

clinical severity. It could encourage health care professionals to

prescribe individualized and regular physical activity as a

treatment strategy in SCA, as it is already the case in other

chronic diseases like type 2 diabetes [14], asthma [15], chronic

obstructive pulmonary disease or cardiac heart failure [16].

Finally, further studies are needed to examine sex differences in

autonomic responses to exercise in SCA patients. The effect of

menstrual cycle and hormones variations on the ANS activity is

very controversial [41,42]. Nevertheless, one study reported an

association between estrogen level and several parameters

reflecting ANS activity, even if the level of parasympathetic and

sympathetic activities did not change between the different phases

of the menstrual cycle [42]. In another study, the sympathetic

activity, measured by muscle sympathetic nerve activity, changed

with the menstrual activity and the level of estrogen, but this

association was blunted during handgrip exercise [43]. Indeed,

although the data available in the literature regarding the role of

sex hormones and menstrual cycle on ANS activity in response to

exercise are sparse and conflicting, we believe there is a need to

address this issue in women with SCA.
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Table 1. Temporal indices of heart rate variability.

D-1 D0 D1 D2

HR (bpm) CONT 62.4610.9 62.269.8 61.369.7 65.0616.4

SCA 65.665.1 67.863.8 69.367.0 71.765.4

SDNN (ms) CONT 121639 106648 119633 114641

SCA* 96628 80619 87624 76618

RMSSD (ms) CONT 74630 70644 71631 69646

SCA* 46629 39618 41624 36620

Values are mean 6 SD. D-1: the night before exercise, D0: the following night after exercise, D1 and D2: the nights 1 and 2 days after exercise, HR: Heart rate, SDNN:
standard deviation of all normal RR intervals, RMSSD: square root of the mean squared differences between adjacent normal RR intervals. *Significant group effect (p,

0.05).
doi:10.1371/journal.pone.0095563.t001
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