A Dissimilarity Measure for On-Line Signature Verification Based on the Sigma-Lognormal Model

Abstract : The Sigma-Lognormal model of the Kinematic Theory of rapid human movements allows us to represent on-line signatures with an analytical neuromuscular model. It has been successfully used in the past to generate synthetic signatures in order to improve the performance of an automatic verification system. In this paper, we attempt for the first time to build a verification system based on the model parameters themselves. For describing individual lognormal strokes, we propose eighteen features which capture cognitive psychomotor characteristics of the signer. They are matched by means of dynamic time warping to derive a dissimilarity measure for signature verification. Promising initial results are reported for an experimental evaluation on the SUSIG visual sub-corpus, which contains some of the most skilled forgeries currently available for research.
Type de document :
Communication dans un congrès
Céline Rémi; Lionel Prévost; Eric Anquetil. 17th Biennial Conference of the International Graphonomics Society, Jun 2015, Pointe-à-Pitre, Guadeloupe. 2015, Drawing, Handwriting Processing Analysis: New Advances and Challenges
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.univ-antilles.fr/hal-01165871
Contributeur : Philippe Simon <>
Soumis le : samedi 20 juin 2015 - 15:29:50
Dernière modification le : lundi 19 mars 2018 - 22:38:02
Document(s) archivé(s) le : mardi 25 avril 2017 - 17:41:14

Fichier

IGS_2015_submission_11.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01165871, version 1

Collections

Citation

Andreas Fischer, Réjean Plamondon. A Dissimilarity Measure for On-Line Signature Verification Based on the Sigma-Lognormal Model. Céline Rémi; Lionel Prévost; Eric Anquetil. 17th Biennial Conference of the International Graphonomics Society, Jun 2015, Pointe-à-Pitre, Guadeloupe. 2015, Drawing, Handwriting Processing Analysis: New Advances and Challenges. 〈hal-01165871〉

Partager

Métriques

Consultations de la notice

157

Téléchargements de fichiers

279