R. Plamondon, A kinematic theory of rapid human movements, Biological Cybernetics, vol.18, issue.4, pp.297-307, 1995.
DOI : 10.1007/BF00202785

S. Grossberg and R. W. Paine, A neural model of cortico-cerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements, Neural Networks, vol.13, issue.8-9, pp.999-1046, 2000.
DOI : 10.1016/S0893-6080(00)00065-4

D. Stefano, C. Marcelli, A. Parziale, A. Senatore, and R. , Reading Cursive Handwriting, 2010 12th International Conference on Frontiers in Handwriting Recognition, pp.95-100, 2010.
DOI : 10.1109/ICFHR.2010.21

D. Stefano, C. Marcelli, A. Parziale, and A. , Segmenting Isolated Characters Within Cursive Words, Proc. of the 15th International Graphonomics Society Conference, pp.156-159, 2011.

D. Stefano, C. Fontanella, F. Marrocco, C. Scotto-di-freca, and A. , A GA-based feature selection approach with an application to handwritten character recognition, Pattern Recognition Letters, vol.35, pp.130-141
DOI : 10.1016/j.patrec.2013.01.026

H. Liu and R. Setiono, Chi2: Feature Selection and Discretization of Numeric Attributes, In: ICTAI, IEEE Computer Society, pp.88-91, 1995.

I. Kononenko, Estimating attributes: Analysis and extensions of RELIEF, European Conference on Machine Learning, pp.171-182, 1994.
DOI : 10.1007/3-540-57868-4_57

M. Hall, Correlation-based Feature Selection for Machine Learning, 1999.

E. Grosicki, Results of the RIMES Evaluation Campaign for Handwritten Mail Processing, 2009 10th International Conference on Document Analysis and Recognition, pp.1-6, 2008.
DOI : 10.1109/ICDAR.2009.224