Training-and Segmentation-Free Intuitive Writer Identification with Task-Adapted Interest Points

Abstract : Identifying the writer of a document establishes its authenticity or authorship and has several applications, notably in forensic and historical document analysis. Previous research has shown the potential of Interest Points (IP) for writer identification, but existing methods require segmentation or training. This paper evaluates the performance of intuitive features computed directly from IP properties rather than extracting descriptors at their locations; allowing for a training-free approach. Secondly, we show that adapting detectors to the specific task of writer identification is not only vital for performance but also allows for segmentation-free approaches. Experiments on widely-used datasets show the potential of the method applied self-contained and when combined with existing methods. Limitations of our method relate to the amount of data needed in order to obtain reliable models.
Type de document :
Communication dans un congrès
Céline Rémi; Lionel Prévost; Eric Anquetil. 17th Biennial Conference of the International Graphonomics Society, Jun 2015, Pointe-à-Pitre, Guadeloupe. 2015, Drawing, Handwriting Processing Analysis: New Advances and Challenges
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.univ-antilles.fr/hal-01165881
Contributeur : Philippe Simon <>
Soumis le : samedi 20 juin 2015 - 16:07:27
Dernière modification le : lundi 22 juin 2015 - 14:02:42
Document(s) archivé(s) le : mardi 25 avril 2017 - 18:20:12

Fichier

IGS_2015_submission_15.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01165881, version 1

Collections

Citation

Angelika Garz, Marcel Würsch, Rolf Ingold. Training-and Segmentation-Free Intuitive Writer Identification with Task-Adapted Interest Points. Céline Rémi; Lionel Prévost; Eric Anquetil. 17th Biennial Conference of the International Graphonomics Society, Jun 2015, Pointe-à-Pitre, Guadeloupe. 2015, Drawing, Handwriting Processing Analysis: New Advances and Challenges. 〈hal-01165881〉

Partager

Métriques

Consultations de la notice

175

Téléchargements de fichiers

166