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Abstract. We present a model of the spinal cord in controlling one degree-of-freedom arm movements. The 

model includes both neural and musculoskeletal functions in an integrated framework. The model has been 

implemented by an artificial neural network coupled with a computational model of muscle publicly 

available. The experimental results show that the model is able to regulate the position of the arm and to 
mediate reflex actions by integrating commands from CNS and signals from proprioceptors. 

 
1. Introduction  
How voluntary movements of the arm are controlled by the brain is still an open question despite many studies 

on human movements have been conducted to give an answer to it. In recent years, the scientific community has 

realized that combining knowledge from behavioural studies, neurophysiological investigations and neural 

modelling is the right track to understand which processes occur within the central nervous system (CNS) and 

which is the role of the local circuitries in the spinal cord during the execution of a voluntary movement 

(Alstermark B. et al., 2007). 

 The neural structures involved in the control of movement can be roughly separated in four 

interconnected subsystems: the spinal cord system, the cerebral cortex and brainstem system, the cerebellum and 

the basal ganglia. Computational models of those systems, as for example (Contreras-Vidal et al.,1997; 

Stefanovic et. al., 2014),  are important because they allow to overcome the technical difficulties in monitoring 

the activity and the interactions of those system during normal tasks, so that physiological studies in human 

subjects are performed in controlled conditions, i.e. with the subject executes a reduced set of movements. 

Moreover, they allow to investigate pathways whose activities cannot be explored by other means. 

In this study we present a neurocomputational model of the spinal cord and the way the CNS activates 

such a circuitry for controlling arm’s movements.   

 

2. The Spinal cord model 
The spinal cord subsystem includes the alpha motor neurons, which innervate the skeletal muscle fibers with 

their axons, and interneurons that are the main targets of the projections coming from the upper centers and the 

major source of the alpha motor neurons. Moreover, the spinal cord hosts the gamma motor neurons, which 

innervate intrafusal fibers for keeping the muscle spindle sensitive to stretch. 

 The spinal cord receives motor commands from the brain motor areas and sensory afferents from spindles 

and tendon organs. As in part described by (Shadmehr et al., 2005), we hypothesized that, for each muscle, there 

are five  supraspinal signals sent to the spinal cord: Driving Signal (DS), Length Control Signal (LCS), Force 

Control Signal (FCS), Gamma Static, Gamma Dynamic.  

 The DS is the motor command used by the central system for selecting the muscle to be activated and for 

modulating force and velocity of the system. 

 The LCS is a descending input carrying information about the desired value of length for a given muscle 

and it is compared with the output of the II afferent fibers related to the homonymous muscle. When the output 

of the II afferent fibers is greater than LCS an excitatory synaptic input is sent to the alpha motoneuron and the 

innervated muscle is shortened.  

 The FCS is a descending input that sets the maximum allowable force that can be generated by the muscle 

and it is compared with the output of the Ib afferent related to the homonymous muscle. When the signal coming 

from the Golgi Tendon Organs is greater than FCS an inhibitory synaptic input is sent to the alpha motoneuron 

and the activation of the innervated muscle is reduced.  

 Gamma Static is used by the supraspinal system for modulating the output of primary and secondary 

afferent fibers, while Gamma Dynamic is used for modulating the output of the primary afferent fibers. 

 The spinal networks of the prime-mover muscle and of its synergist and antagonist muscles are 

interconnected in order to locally regulate the operating point of the system. The interconnections have been 

partially derived from physiological and anatomical studies (Pierrot-Deseilligny and Burke, 2005) and are 

reported in Figure 1. In this study, a simple model has been adopted for each neuron, in particular the axonal 

output is equal to: 
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where xi is the i-th synaptic input, and wi is the related weight that could be positive or negative depending on 

whether the input was excitatory or inhibitory,  a is the gain and b is the bias. Given the network in Figure 1, we 

need to compute 64 parameters in order to define the transfer function of each neuron. To simplify the problem, 

we hypothesized that each parameter assumes the same value for all the neurons belonging to the same class (i.e. 

Ib neurons, Ia neurons, etc..), so that the number of unknown parameters dropped to 21. We used a Hill 

Climber/Steepest Descent algorithm for finding the set of parameters that satisfy the following requirements: 

 a relation between the Driving signal  and the axonal output of the alpha motoneuron as linear as possible; 

 if the signal from the Ib afferent fiber is smaller than the FCS the axonal output of the Ib inhibitory 

interneurons must be almost 0, otherwise it must increase with a slope equal to 1/(1-FCS). 

 
Figure 1. Spinal circuitry. Connections ending with a fill dot are inhibitory 

  
 

2.1 The musculoskeletal model 
The musculoskeletal model used in this study is a one degree-of-freedom arm whose motion is restricted to the 

extension/flexion of the elbow. In fact, the shoulder and the wrist joints are grounded while the elbow joint is 

modelled as a hinge-like joint. The skeleton is made up of four bones: humerus, ulna, radius and hand. The 

physical parameters used for the bones are reported in Table 1. 

 
Table 1 Bones physical parameters 

 Mass Length 

Humerus 350 g 28 cm 
Ulna 200 g 22 cm 

Radius 200 g 23 cm 
Hand 500 g - 

 

 The musculoskeletal model includes three muscles: Biceps Short, Brachialis and Triceps Long. We chose 

to use Virtual Muscle (Cheng et al., 2000; Song et al., 2008) as muscle model, which combines the advantages of 

phenomenological (Hill-type) and mechanistic (Huxley-type) models. In particular, Virtual Muscle groups a set 

of phenomenological models, each of which describes the processes involved in muscle contraction. It is needed 

to specify a set of parameters for each muscle model: the properties of individual fiber type are reported in 

(Cheng et al., 2000) whereas the morphometric parameters are reported in Table 2.  

 
Table 2 Muscles physical parameters. In the last column S means Slow and F means Fast 

 Opt. Fascicle Len. Opt. Tendon Len. Max. Musculotendon Len Mass Fibers Type 

Biceps 14.75 cm 7.4 cm 32 cm 350 g 40% S., 60% F. 

Brachialis 10 cm 3 cm 18 cm 300 g 60% S., 40% F. 

Triceps 19.9 cm 9.9 cm 36 cm 500 g 60% S., 40% F. 



 

 

Force and metabolic energy consumption are estimated by the model in response to neural excitation, muscle 

length and velocity (Tsianos et al., 2012). Virtual Muscle is equipped with realistic models of spindles 

(Mileusnic et al., 2006) and Golgi tendon organs (Mileusnic et al., 2006b) that respond, respectively, to muscle 

stretch and fusimotor control and to muscle tension. The spindle provides information about the rate of muscle 

length change and muscle length through Ia (primary) afferent fibers, and information about the muscle length 

through II (secondary) afferent fibers. Golgi tendon organs provide information about the force produced by the 

muscle during his contraction through Ib afferent. 

 Eventually, a cylindrical wrapping object is used to model the bony surfaces over which the triceps 

muscle wrap. It ensures the right calculation and application of the muscle forces produced by the muscle on the 

skeletal system. The arm model has been developed in the MSMS simulator (Khachani et al., 2008) and it is 

depicted in Figure 2.a, while Figure 2.b illustrates the connections between the supraspinal systems, the spinal 

cord, the muscles, the proprioceptors and the environment. 

 
Figure 2. : (a) The arm model. Muscles are represented in red, the wrapping object is in blue. (b) The 

spinal circuitry block diagram 
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3. Experimental results 
As validation, we arranged three experiments to verify if the arm movement was appropriate when an external 

force or a load was applied and if the spinal cord model was able to control the musculoskeletal model for 

reaching a desired position. 

The first experiment verified if, without variations of the motor commands sent by CNS, the spinal 

circuitry was able to keep the position of the arm when the impulsive external force depicted in Figure 3.a was 

applied. A similar experiment was carried out on deafferentiated monkeys  to evaluate the role of spinal cord in 

the execution of a movement (Shadmehr et al., 2005). As shown in Figure 3.b, at the beginning the elbow was 

moved from the initial position θ=5° to the desired position θD=100° and then, after some seconds, the impulsive 

force was applied. The elbow angle showed an overshoot of 17.2° and an undershoot of 7.8° but after a recovery 

time equal to 4.8 seconds the desired angle was reached again. The same experiment was performed for different 

desired positions and the spinal circuitry was always able to keep the position after a mean recovery time equal 

to 1.19 seconds, a mean overshoot of 4.2° and a mean undershoot of 3.7°.  By varying the values of Gamma 

Dynamic signals it was possible to regulate the response of the system (unpublished results). 

 The aim of the second experiment was to verify if the protective mechanism of the Golgi reflex was 

implemented by the presented spinal circuitry and if it could be modulated by varying FCS. The arm was placed 

at the position θ=100° and then the FCS value of each muscle and the external weight loaded on the hand were 

modified. In particular, each muscle received the same FCS that was varied from 0 to 1 with a step size of 0.1 

while the weight was varied from 0 Kg to 10 Kg with a step size of 0.5 Kg. Given a value for FCS and for the 

weight, we evaluated if the arm kept the initial position or not. In Figure 3.c a displacement map is reported and 

the displacement was set to 0 if the arm kept the initial position, it was set to 1 otherwise. It resulted that the 

bigger was the weight the bigger had to be FCS for keeping the position of the arm. It follows that FCS can be 

used to regulate the threshold of the Golgi reflex. 

 Eventually, the aim of the third experiment was to verify if it was possible to control the arm in order to 

reach a desired position in a suitable time. We chose to model each driving signal with a square burst for which 

three parameters had to be specified: the duration t, the amplitude A and the steady state value E. The last two 

parameters range between 0 and 1 and both modulate the firing frequency of a motor unit. For the sake of 

simplicity, we hypothesized that each burst had amplitude A equal to 1, the bursts sent to the agonist muscles had 

the same duration tAGONISTS, the steady state value was equal to EAGONISTS for biceps and brachialis and it was 

equal to 0 for the triceps because its effect can be taken into account, in first approximation, with the effect of the 



 

gravity. Therefore, the problem was reduced to find the parameters EAGONISTS, tAGONISTS, tANTAGONIST for each 

direction. For example, the desired position θD=140° was reached setting EAGONISTS=0.40, tAGONISTS=0.40 seconds, 

tANTAGONIST=0.10 seconds, as shown in Figure 3.d.  

 
Figure 3. (a) External force applied to the arm (b) Position of the arm before and after the external force 

(c) Effect of the Golgi Reflex when the arm lifts a load up (d) Response of the arm for reaching 140 deg. 

 
 

4. Conclusions 
We have presented a model of human spinal cord that was able to regulate the position of a 1-DOF arm by 

integrating commands from CNS and signals from proprioceptors. The experimental results confirmed that the 

presented spinal cord circuitry is able to mediate the same reflex actions showed by the human. Furthermore, the 

CNS is able to control the arm position by modulating the duration and the amplitude of the driving signals sent 

to spinal cord circuitry. Nevertheless, as shown in Figure 3.d, a desired arm position is reached in a time that is 

slower than the time spent by a human to perform the same movement. The slowness of the system is due to the 

simple scheme adopted to modulate the three driving signals, and therefore, in the future, we will investigate the 

behaviour of the system when a different time evolution for the five control signals is adopted. Eventually, the 

realism of the simulated system will be evaluated with other experiments, as for example by verifying that 

simulated movements show a velocity profile that fits the real one. 
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