The generation of synthetic handwritten data for improving on-line learning

Abstract : In this paper, we introduce a framework for on-line learning of handwritten symbols from scratch. As such, learning suffers from missing data at the beginning of the learning process, in this paper we propose the use of Sigma-lognormal model to generate synthetic data. Our framework deals with a real-time use of the system, where the recognition of a single symbol cannot be postponed by the generation of synthetic data. We evaluate the use of our framework and Sigma-lognormal model by comparison of the recognition rate to a block-learning and learning without any synthetic data. Experimental results show that both of these contributions represent an enhancement to the on-line handwriting recognition, especially when starting from scratch.
Type de document :
Communication dans un congrès
Céline Rémi; Lionel Prévost; Eric Anquetil. 17th Biennial Conference of the International Graphonomics Society, Jun 2015, Pointe-à-Pitre, Guadeloupe. 2015, Drawing, Handwriting Processing Analysis: New Advances and Challenges
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.univ-antilles.fr/hal-01165923
Contributeur : Philippe Simon <>
Soumis le : samedi 20 juin 2015 - 20:13:01
Dernière modification le : lundi 19 mars 2018 - 22:38:02
Document(s) archivé(s) le : mardi 25 avril 2017 - 17:37:16

Fichier

IGS_2015_submission_34.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01165923, version 1

Collections

Citation

Marta Režnáková, Lukas Tencer, Réjean Plamondon, Mohamed Cheriet. The generation of synthetic handwritten data for improving on-line learning. Céline Rémi; Lionel Prévost; Eric Anquetil. 17th Biennial Conference of the International Graphonomics Society, Jun 2015, Pointe-à-Pitre, Guadeloupe. 2015, Drawing, Handwriting Processing Analysis: New Advances and Challenges. 〈hal-01165923〉

Partager

Métriques

Consultations de la notice

143

Téléchargements de fichiers

228