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Fixed points in algebras of generalized functions and
applications

J.-A. Marti
Laboratoire CEREGMIA, Université des Antilles

Abstract
I propose a self contained research paper. I hope it adds some news ideas and results to

the �xed point theory in the framework of generalized functions algebras, with application
to the Cauchy-Lipschitz problem in a generalized formulation including strongly irregular
cases. This leads to the transport equation with distributions as coe¢ cients we wish to treat
later.

Mathematical Subject Classi�cation (2010): 54XX, 54A20, 54D05, 46FXX, 46F30, 46T30,
35XX, 35DXX, 35R05.

Keywords: Fixed Point Theory, Algebras of Generalized Functions, Cauchy-Lipschitz theorem.

1 Introduction

The paper is structured in three following sections (2, 3, 4).
Section 2 is devoted to the meaning of contraction in locally convex spaces or algebras.

Fixed points of some operators F with a contraction property in some spaces (or algebras) E
are involved to solve many problems in functional analysis. There are at least four journals on
Fixed Point Theory, many publications on the subject (between [12] to [2]) and many books
as the monograph [7]. However we are interested in the classical application to the Cauchy-
Lipschitz theorem locally or globally formulated. Then the de�nition of a contraction we need
is only a slight generalization (we suppose that E is locally convex) of the Frigon-Granas one
([6]) given when E is a Fréchet space. It leads to the expected result given in Theorem 1: Any
contraction F : E ! E has a �xed point. If E is Hausdor¤, this �xed point is unique.

But the irregular cases of the Cauchy-Lipschitz theorem suggests a generalized formulation
which is the subject of Section 3 and invites to de�ne some operator � in a factor algebra A
of generalized functions. A is constructed ([10]) from a basic locally convex algebra (E ; �). The
elements x 2 A are classes [x�] of some families (x�)�2� with "moderateness" linked to a factor
ring C of so-called generalized numbers. Under some hypotheses, � is well de�ned by

A 3 [x�] = x! � (x) = [�� (x�)] 2 A.

for some operator �� in E . We suppose in addition that each �� is a contraction in (E ; ��)
endowed with a locally convex toplology �� depending on �. Then �� has a �xed point z� in E
and unique if (E ; ��) is Haudor¤. This leads to de�ne � as a contraction in A (De�nition 4).
I don�t see any similar idea in the framework of generalized functions. I hope that it a good
enough (or not too bad) one! Moreover with some additional hypotheses, we can prove the
moderateness of (z� )� and �nd (Theorem 6) a �xed point z of � through

(1) A 3 [z�] = z = �(z) = [�� (z�)] 2 A

1



But the uniqueness of z� is not su¢ cient to prove that [z�] = z is the unique �xed point of
�. Nevertheless we can obtain this uniqueness when taking, as in Theorem 10

�� (x) (t) = x0 +
R t
0f�(s; x(s))ds

for x0 given in R, x 2 C0 (R+;R), t 2 R+ and f� 2 C0(R+ �R;R) from what it is clear that ��
is a map E ! E with E = C0 (R+;R).

In a Subsection (of Section 3) we extend the results to the case where � is an operator
in the product Am of algebras constructed on Em. The natural topology (denoted �m) on the
product Em is de�ned by the family

�
p
(m)
i

�
i2I
of seminorms such that p(m)i (x) = p

(m)
i (x1:::xm) =

k=mP
k=1

pi(xk). We denote by (Em; �m� ) the topological space Em endowed by the family
�
q
(m)
�;i

�
i2I

with q(m)�;i (x) =
k=mP
k=1

q�;i(xk) for a given family (q�;i)i2I of seminorm on E . The main result of

that section is Theorem 8: Any contraction � : Am ! Am has a �xed point in Am

The expected application is the Cauchy-Lipschitz generalized problem studied in Section
4. Thanks to an embedding

�
C1C (J;R)

�m ! �
C0C (J;R)

�m with Im �C1C (J;R)�m as image, it is to
solve

(2)
�
@x = f(:; x)
x(t0) = �

with x 2 Im
�
C1C (J;R)

�m �
�
C0C (J;R)

�m and f 2
�
C0�;C(J � Rm;R)

�m
globally Lipschitz, for

some ring of generalized numbers C = A=IA, with t0 2 J and � is a given element 2 gRm.
The "derivation" @ is a map from Im

�
C1C (J;R)

�m to
�
C0C (J;R)

�m. The algebra �C0C (J;R)�m
(resp.

�
C1C (J;R)

�m) generalize �C0 (J;R)�m (resp.
�
C1 (J;R)

�mand �C0�;C(J � Rm;R)�mis a
generalization of

�
C0(J � Rm;R)

�mwithout use of derivatives.
The main result of that section (Theorem 10) is that it exists a ring of generalized numbers

C = A=IA, such that f 2
�
C0�;C(J � Rm;R)

�m
and a map � :

�
C0C (J;R)

�m ! �
C0C (J;R)

�m with

an unique �xed point solving the Cauchy-Lipschitz problem (2) with t0 2 R+ and � 2gRm.
All our ideas, technics and results are explicitely detailed and summarized in the �nal example

(Example 2).
The last subsection shows a link between the Cauchy-Lipschitz theorem and the transport

equation. We cite some results when the coe¢ cients have a weak regularity of Sobolev type ([5])
or with controlled irregularities [3]. But it is not the case of distributions we wish to treat later
with our generalized methods.

2 Contractions in locally convex and complete spaces

We suppose here tat the (seminormed with P = (pi)i2I) space E is sequentially complete. A
basis of 0-neighbourhood is the set of all "balls" of the seminorms (pi)i2I

�(i; r) = fx 2 E=pi (x) < rg

for all i 2 I and r > 0. Then, (xn)n2N is a Cauchy sequence i¤

(8" > 0) (8i 2 I) (9n0) (8n; p) (n > n0; p > 0 =) pi (xn+p � xn) < ")

and E is sequentially complete if any Cauchy sequence converges to an element e in E.
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De�nition 1 A map F : E ! E is called a contraction if for all i 2 I it exists ki < 1 such
that

8 (x; y) 2 E � E; pi(F (x)� F (y)) � kipi(x� y):

This de�nition is an obvious generalization of the Frigon-Granas one [6] given when P is a
countable family of semi norms (pi)i2N rending E a Fréchet space.

In this case, F is not necessary a contraction in the usual sense when E is endowed with the
metric d(x; y) =

P
i2Npi(x� y)= (1 + pi(x� y)).

Theorem 1 Any contraction F : E ! E hax a �xed point. If E is Hausdor¤, this �xed point
is unique.

Proof. Starting from x0 2 E; de�ne xn+1 = F (xn) by induction. It is easy to verify
that xn is a Cauchy sequence in the complete space E and converges to some x 2 E. The
contraction property of the map F implies obviously its continuity. Then, passing to the limit
in xn+1 = F (xn), we obtain that x is a �xed point of E: If E is Haudor¤, for all z 6= 0 it exists
V 2 V (0) such that z =2 V . Then it exists i (depending on z) such that pi(z) > 0. If x and y
are two di¤erent �xed points of F , it exists j (depending on x� y) such that

0 < pj(x� y) = pj(F (x)� F (y)) � kjpj(x� y) < pi(x� y)

which gives a contradiction

Notation 1 We denote by
� � a set of indices
� (E; �) the space E endowed with the toplogy � of the previous family P = (pi)i2I
� (E; ��)�2� the family of spaces (E; ��) seminormed by the family Q� = (q�;i)i2I
� (F�)�2� a family of contractions F� : (E; ��)! (E; ��).

Theorem 2 Each F� has a �xed point z� 2 E. If in addition we suppose that (E; �) is Hausdor¤
and for each i 2 I and � 2 � it exists a strictly positive constant a�;i such that

a�;ipi � q�;i

then z� is unique

Proof. From Theorem 1 we know that each F� has a �xed point z� 2 E. If (E; �) is
Hausdor¤, for each x 6= 0 in E, it exists i(x) 2 I such that pi(x) > 0. Then we have q�;i(x) > 0
which implies that (E; ��) is Hausdor¤. As F� : (E; ��)! (E; ��) is a contraction, z� is unique.

3 Contractions in generalized spaces or algebras

3.1 The (C; E ;P) setting
We consider the setting of (C; E ;P)-algebras which is an extension of Colombeau�s one. It allows
to construct multiparametrized generalized spaces or algebras where the "asymptotic C" is given
independantly from the basis topological space or algebra C. To summarize the de�nitions and
results given in [10, 11] the asymptotics is given by
(1) �: a set of indices;
(2) A: a solid subring of the ring K� (K = R or C); this means that whenever (js�j)� � (jr�j)�
for some ((s�)�; (r�)�) 2 K� �A, that is, js�j � jr�j for all �, it follows that (s�)� 2 A ;

3



(3) IA: a solid ideal of A .
Then C is de�ned as the factor ring A=IA: On the other hand we give

(4) E : a K-topological space endowed with a family P = (pi)i2I of semi-norms.
De�ne jBj = f(jr�j)� ; (r�)� 2 Bg, B = A or IA, and set

H(A;E;P) =
n
(u�)� 2 [E ]� j 8i 2 I; ((pi(u�))� 2 jAj

o
H(IA;E;P) =

n
(u�)� 2 [E ]� j 8i 2 I; (pi(u�))� 2 jIAj

o
The following result summarize some results recalled in [9].

Theorem 3 If A is a solid subring of K�, then H(A;E;P) is an A�module, and an A�algebra if
E is a topological algebra.

Moreover, if IA is an ideal of A sharing the solidness property, then H(IA;E;P) is an A�linear
subspace of H(A;E;P), and an ideal of H(A;E;P) if E is a topological algebra.

As a consequence, the factor space H(A;E;P)=H(IA;E;P) is again an A�module, but also an
A=IA�module (and of course an algebra, if E is a topological algebra).

For (E ;P) = (K; fj�jg), we get H(A;K;j�j)=H(IA;K;j�j) = A=IA.

Remark 1 If we require E to be a topological algebra, this means that multiplication in E is
continuous for the topology de�ned by the family of seminorms.

De�nition 2 The factor ring C = A=IA is called the ring of generalized numbers (associated to
A and IA), and the C�algebra

AC(E ;P) := H(A;E;P)=H(IA;E;P)

is called the (C; E ;P)�algebra of C�generalized functions. We denote by [x�] the class in
AC(E ;P) of the family (x�)� 2 H(A;E;P).

Example 1 Let us de�ne

A =
n
(r")" 2 R

(0;1] j 9m 2 N : ju"j = o("�m); as "! 0
o

IA =
n
(r")" 2 R

(0;1] j 8q 2 N : ju"j = o("q); as "! 0
o
:

In this case (with E = C1 (Rn) and P = fpK;� : f !k @�f kKbRn;�2Nng), the algebra A =
H(A;E;P)=J(IA;E;P) is exactly the so-called special Colombeau algebra G (Rn).

Remark 2 If E is a sheaf of K-topological algebras over a topological space X;we can prove that
the factor H(A;E;P)=H(IA;E;P) is at least a presheaf satisfying the localization principle. But we
don�t need the sheaf structure in the sequel.

We are going now to the the concept of "Overgenerated algebras". It is useful when con-
structing a (C; E ;P)-structure to solve some problems with irregular data or coe¢ cients.

Choose Bp a �nite family of p nets in (R�+)� (usually given by the asymptotic structure of
the problem.) Consider B the subset of elements in (R�+)� obtained as rational fractions with
coe¢ cients in R�+, of elements in Bp as variables.

De�nition 3 De�ne

A =
�
(a�)� 2 K

� j 9 (b�)� 2 B;9�0 2 �;8� � �0 : ja�j � b�
	
:
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We say that A is overgenerated by Bp (and it is easy to see that A is a solid subring of
K�).If IA is some solid ideal of A, we also say that C = A=IA is overgenerated by Bp. For
example, as a �canonical� ideal of A, we can take

IA =
�
(a�)� 2 K

� j 8 (b�)� 2 B;9�0 2 �;8� � �0 : ja�j � b�
	
.

This de�nition implies that B is stable by inverse.

3.2 Contraction operator in AC(E ;P)
First, we are looking if it is possible to de�ne a map � : A ! A by means of a given family
(��)�2�of maps �� : E ! E . The general requirement is given in the following

Lemma 4 Let (��)�2� be a given family of maps : E ! E.
Suppose that for each (x�)� 2 H(A;E;P) and (i�)� 2 H(IA;E;P) we have
(i) (�� (x�))� 2 H(A;E;P) ,
(ii) (�� (x� + i�))� � (�� (x�))� 2 I(A;E;P) .
Then, � : A ! A is well de�ned by

A 3 [x�] = x! � (x) = [�� (x�)] 2 A.

Proof. From (i) we see that the class [�� (x�)] lies inA. Let x�+i� be another representative
of x = [x�]. From (ii) we have [�� (x� + i�)] = [�� (x�)]. Then, � is well de�ned.

Theorem 5 Let be full�lled the following hypotheses: It exists a family (an;�)n;�2N�� of positive
numbers with (an;�)� 2 A, verifying: for each i 2 I there exists N(i) and j(i) 2 I such that, for
each � 2 � and e 2 E

pi(��(e)) �
N(i)P
n=0

an;�p
n
j(i) (e) :

Then for each (x�)� 2 H(A;E;P) we have (�� (x�))� 2 H(A;E;P) .

Proof. (x�)� 2 H(A;E;P) implies 8i 2 I; (pi (x�))� 2 jAj. Then,
N(i)P
n=0

an;�p
n
j(i) (x�) 2 jAj. As

A is a solid subring of K�, it follows that (pi (�� (x�))� 2 jAj

De�nition 4 The following hypotheses permit to well de�ne a map � : A ! A from the family
(��)�2� and to call it a contraction.

(a) for each (x�)� 2 H(A;E;P) ; (�� (x�))� 2 H(A;E;P) ,
(b) Each �� is a contraction in (E ; ��) endowed with the family Q� = (q�;i)i2I , and the

corresponding contraction constants are denoted by k�;i < 1,
(c) For each i 2 I and � 2 � it exist some strictly positive constants ��;i and ��;i such

that
��;ipi � q�;i � ��;ipi,

(d) For each i 2 I, the families
�
��;i
��;i

�
�

and
�

1

1� k�;i

�
�

lies in jAj :

Theorem 6 Any contraction � A ! A has a �xed point in A.

5



Proof. Remark that condition (a) which is (i) in Lemma 4 can be ful�lled when giving the
hypotheses in Theorem 5, that is to say (an;�)� 2 A. Now we have from (c)

pi(�� (x� + i�)� (�� (x�)) �
1

��;i
ki;�q�;i(i�) �

��;i
��;i

pi(i�)

from what we deduce that (pi(�� (x� + i�) � (�� (x�))� 2 A and the condition (ii) in Lemma
4 is veri�ed. Then � is well de�ned. From Theorem 2 we know that each �� has a �xed point
z� obtained as limit of the Cauchy sequence zn;� de�ned by induction by zn+1;� = ��(zn;�).
Starting from z0 = [z0;�] 2 A, we deduce that z1 = [��(z0;�)] 2 A, and z1 � z0 2 A. That is to
say pi (z1;� � z0;�)� 2 jAj.

By induction we can compute for all n; p 2 N

q�;i (zn+p;� � zn;�) �
kn�;i

1� k�;i
q�;i (z1;� � z0;�) giving

q�;i (zp;� � z0;�) �
1

1� k �;i
qi;� (z1;� � z0;�) :

When taking the limit z� of zp;� in (E ; ��) when p!1, we get

q�;i (z� � z0;�) �
1

1� k�;i
q�;i (z1;� � z0;�) :

Writing now q�;i (z�) � q�;i (z� � z0;�) + q�;i (z0;�) we have

pi (z�) �
1

��;i
qi;� (z�) �

��;i
��;i

�
1

1� k�;i
(pi (z1;� � z0;�) + pi (z0;�))

�
.

Then, from the hypotheses (pi (z�))� 2 jAj, that is to say ((pi (z�)))� 2 H(A;E;P). If z = [z�],
then we have � (z) = [�� (z�)] = [z�] = z. Then z is a �xed point of �.

However following the under Remark 3 we cannot prove the uniqueness of z without other
hypotheses than uniqueness of �xed points of ��.

3.3 Contractions in product of algebras

De�nition 5 For m 2 N, we de�ne

Hm(A;E;P) =
n
(u�)� = (u1;�;:::um;�;) 2 [Em]� j 8i 2 I;8k = 1; :::m; ((pi(uk;�))� 2 jAj

o
,

Hm(IA;E;P) =
n
(u�)� = (u1;�;:::um;�;) 2 [Em]� j 8i 2 I;8k = 1; :::m; ((pi(uk;�))� 2 jIAj

o
.

According to the results and de�nitions in Subsection 3:1, if A is a solid subring of K�,
then Hm(A;E;P) is an A�module, and an A�algebra if E is a topological algebra. Moreover, if
IA is an ideal of A sharing the solidness property, then Hm(IA;E;P) is an A�linear subspace of
Hm(A;E;P), and an ideal of H

m
(IA;E;P) if E is a topological algebra. As a consequence, the factor

space Hm(A;E;P)=H
m
(IA;E;P) is again an A�module, but also an A=IA�module (and of course an

algebra, if E is a topological algebra).

De�nition 6 We pose AmC (E ;P) := Hm(A;E;P)=H
m
(IA;E;P) and denote by [x�] the class in A

m
C (E ;P)

of the family (x�)� = (x1;�;:::xm;�;)� 2 H
m
(A;E;P).
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First, it is possible as previously, to de�ne a map � : Am! Am by means of a given family
(��)�2� of maps �� : Em! Em. The general requirement is similar to the previous one given in
Lemma 4.

Suppose that for each (x�)� 2 Hm(A;E;P) and (i�)� 2 H
m
(IA;E;P) we have

(i) (�� (x�))� 2 Hm(A;E;P) ,
(ii) (�� (x� + i�))� � (�� (x�))� 2 Hm(IA;E;P) .
Then, � : Am! Am is well de�ned by

Am3 [x�] = x! � (x) = [�� (x�)] 2 Am.

Now, we are de�ning a contraction property for the given family (��)�2�of maps �� :
Em! Em.

Notation 2 The natural topology (denoted �m) on the product Em is de�ned by the family�
p
(m)
i

�
i2I

of seminorms such that p(m)i (x) = p
(m)
i (x1:::xm) = N(pi(x1); ::pi(xn)) where N is

any norm on Rn. For example, we can choose p(m)i (x) =
k=mP
k=1

pi(xk). Denote by (Em; �m� ) the

topological space Em endowed by the family
�
q
(m)
�;i

�
i2I

with q(m)�;i (x) =
k=mP
k=1

q�;i(xk) for a given

family (q�;i)i2I of seminorm on E

De�nition 7 (��)�2� is called a family of contractions in Em if for each (i; �) 2 I � � it
exists a semi norm qi;� and a constant k�;i < 1 such that for all (x; y) 2 Em � Em

(3) q
(m)
�;i (�� (x)� �� (y)) � k�;i

k=mP
k=1

q�;i(xk � yk).

Proposition 7 Each contraction �� in Em has a �xed point z� Moreover if (E ; �) is Hausdor¤
and for each (i; �) 2 I � � it exists a strictly positive constant ai;� such that ai;�pi � qi;�, then
z� is unique.

Proof. We deduce from (3) that q(m)�;i (�� (x)� �� (y)) � k�;iq
(m)
�;i (x� y). From Theorem 2

we know that each �� has a �xed point z� 2 Em. If (E ; �) is Hausdor¤ , for each nonnull r 2 E ,
it exists i 2 I such that pi(r) > 0. Then q�;i(r) > 0 which implies that (E ; ��) is Hausdor¤.
If y� 6= z� is another �xed point of ��, it exists at least h 2 N with 1 � h � m such that
y�;h � z�;h 6= 0. Therefore, exists j 2 I such that

0 < q�;j(y�;h�z�;h) � q(m)�;j (y��z�) = q
(m)
�;j (�� (y�)���(z�)) � k��;jq

(m)
i;� (y��z�) < q

(m)
�;j (y��z�)

which leads to a contradiction
And now, to achieve the construction of � : Am! Am and prove the existence of a �xed

point in the same way as in Theorem 6, we propose the following

De�nition 8 The following hypotheses permit to well de�ne a map � : Am! Am from the
family (��)�2� and to call it a contraction.

(a) for each (x�)� 2 Hm(A;E;P) ; (�� (x�))� 2 H
m
(A;E;P) ,

(b) The map �� : Em! Em is a contraction of Em following De�nition 7,
(c) For each i 2 I and � 2 � it exist some strictly positive constants ��;i and ��;i such

that
��;ipi � q�;i � ��;ipi,

(d) For each i 2 I, the families
�
��;i
��;i

�
�

and
�

1

1� k�;i

�
�

lies in jAj.

7



Theorem 8 Any contraction � Am! Am has a �xed point in Am.

Proof. First we can re-write Hm(A;E;P) and H
m
(IA;E;P) as

Hm(A;E;P) =
n
(u�)� 2 [Em]� j 8i 2 I;

�
(p
(m)
i (u�)

�
�
2 jAj

o
,

Hm(IA;E;P) =
n
(u�)� 2 [Em]� j 8i 2 I;

�
(p
(m)
i (u�)

�
�
2 jIAj

o
.

We deduce from (c) that
��;ip

(m)
i � q(m)�;i � ��;ip

(m)
i .

For (x�)� 2 Hm(A;E;P) and (i�)� 2 H
m
(IA;E;P) we have

p
(m)
i (�� (x� + i�)� �� (x�)) �

1

��;i
k�;iq

(m)
�;i (i�) �

��;i
��;i

p
(m)
i (i�) =

��;i
��;i

k=mP
k=1

pi(ik).

Then,
�
p
(m)
i (�� (x� + i�)� �� (x�))

�
�
2 jIAj and (�� (x� + i�))� � (�� (x�))� 2 Hm(IA;E;P) . It

follows that � : Am! Am is well de�ned by

Am3 [x�] = x! � (x) = [�� (x�)] 2 Am.

From (b) and Theorem 2 we know that each �� has a �xed point z� = (z1;�; :::zm;�) 2 Em
and from Theorem 1 we know that z� is obtained as limit of the Cauchy sequence zn;� de�ned
by induction by zn+1;� = ��(zn;�). Starting from z0 = [z0;�] 2 Am, we deduce that z1 =
[��(z0;�)] 2 Am, and z1 � z0 2 Am. That is to say p(m)i (z1;� � z0;�)� 2 jAj.

By induction we can compute for all n; p 2 N

q
(m)
�;i (zn+p;� � zn;�) �

kn�;i
1� k�;i

q
(m)
�;i (z1;� � z0;�) giving

q
(m)
�;i (zp;� � z0;�) �

1

1� k�;i
qm�;i (z1;� � z0;�) .

When taking the limit z� of zp;� in (Em; �m� ) when p!1, we get

q
(m)
�;i (z� � z0;�) �

1

1� k�;i
qm�;i (z1;� � z0;�) :

Writing now q(m)�;i (z�) � q
(m)
�;i (z� � z0;�) + q

(m)
�;i (z0;�) we have

p
(m)
i (z�) �

1

��;i
q
(m)
�;i (z�) �

��;i
��;i

�
1

1� k�;i
(p
(m)
i (z1;� � z0;�) + p(m)i (z0;�))

�
.

From the hypotheses of De�nition 8, we have
�
p
(m)
i (z�)

�
�
2 jAj, then ((z�))� 2 Hm(A;E;P).

Therefore, if z = [z�], we have � (z) = [�� (z�)] = [z�] = z. Then z is a �xed point of �.
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Remark 3 If y = [y�] is any �xed point of �; that point veri�es y� = �� (y�) + i� for some
(i�)� 2 Hm(IA;E;P). We try prove that [y�] = [z�] that is to say . (y� � z�)� 2 H

m
(IA;E;P). Then, it

exists at least � 2 � such that y� � z� 6= 0. As
�
Em; �m�

�
is Hausdor¤ it exists j 2 I (depending

on y� � z�) such that q(m)�;j (y� � z�) > 0. Writing

0 < q
(m)
j;� (y� � z�) � q

(m)
j;� (�� (y�)� �� (z�) + i�) � kj;�q

(m)
j;� (y� � z�) + q

(m)
j;� (i�)

< q
(m)
j;� (y� � z�) + q

(m)
j;� (i�) .

We don�t see a contadiction and uniqueness cannot be proved without other hypotheses.

4 The Cauchy-Lipschitz theorem

We try to give a generalized formulation of the Cauchy-Lipschitz theorem close to the classical
one. We can limit the order of derivatives to one or even zero, as in the globally Lipschitz
problem.

Let J be an intervall of R and f a continuous function 2 C0(J�Rm;Rm) =
�
C0(J � Rm;R)

�m
satisfying a global Lipschitz condition as

8K b J;9k > 0;8t 2 J;8y; z 2 Rm; jjf (t; y)� f (t; z)jj � k jjy � zjj :

Then, the Cauchy problem

(4)
�
x0(t) = f(t; x (t))
x(t0) = x0

with x0 2 Rm and t0 2 J admits one unique global solution x 2 C1(J;Rm) =
�
C1(J;R)

�m.
The problem reduces to �nding a �xed point of the map F 2 C0(J;Rm) ! C0(J;Rm) such

that
8t 2 J; F (x)(t) = x0 +

R t
t0
f(s; x(s))ds

that is to say, for each k = 1; 2:::m and x = (x1;:::xm), F = (F1;:::Fm), f = (f1;:::fm) 2
C0(J � Rm;R)m

8t 2 J; k = 1; 2:::m : Fk(x)(t) = x0;k +
R t
t0
fk(s; x(s))ds.

The standard proof gives a convenient norm on C0(J;Rm) for which F is a contraction, and
the Picard procedure gives its �xed point.

To formulate (4) in a generalized setting we have to introduce some convenient algebras.

4.1 The generalized framework

De�nition 9 When l = 0 or 1, with E = Cl(J;R) and P l = (pK;l)K such that
pK;l (u) = sup

t2K;0�j�l

��u(j)(t)��, we can write H(A;E;Pl) and H(IA;E;Pl) as
HlA(J;R) = H(A;Cl(J;R);Pl) =

n
(u�)� 2 [E ]� j 8K b J; ((pK;l(u�))� 2 jAj

o
HlIA(J;R) = H(IA;Cl(J;R);Pl) =

n
(u�)� 2 [E ]� j 8K b J; ((pK;l(u�))� 2 jIAj

o
:

and de�ne H1A (J;R) or H1IA(J;R) by replacing l by 1 in the previous de�nitions, with
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P1 = (pK;l)KbJ;l2N. We begin to pose:

C0C (J;R) = H0A (J;R) =H0IA (J;R) ;
C1C (J;R) = H1A (J;R) =H1A (J;R) \H0IA (J;R) :

Remark 4 We have the classical embedding: C1(J;R)! C0(J;R) which inspires our generalized
requirements. But the only way to embed the factor algebra C1C (J;R) (de�ned from H1A (J;R)) into
C0C (J;R) is to de�ne C1C (J;R) as H1A (J;R) =H1A (J;R)\H0IA (J;R), following a well-know result
on the embedding of factor algebras. We would like to de�ne C1C (J;R) = H1A (J;R) =H1IA (J;R).
Infortunately, in this case the natural mapping C1C (J;R) ! C0C (J;R) is neither injective nor
surjective. Indeed we cannot prove here that H1A (J;R)\H0IA (J;R) = H

1
IA
(J;R), in contrary to

the "well known"equality H1A (J;R)\H0IA (J;R) = H
1
IA
(J;R), proved in Lemma 4:4 in [9] which

generalize 1:2:3 Theorem in [8]. However, we can de�ne a map @ from ImC1C (J;R) to C0C (J;R)
which looks like a derivation.

De�nition 10 If i(x) 2 ImC1C (J;R) the embedding i veri�es

i : (x")" +H
1
A (J) \H0IA (J)! (x")" +H

0
IA
(J)

which implies that (x0")" 2 H0A (J) and allows to de�nee@ : C1C (J;R) 3 i�1(x) = (x")" +H1A (J) \H0IA (J)! �
x0"
�
"
+H0IA (J) 2 C

0
C (J;R)

which leads to de�ne the map @ = e@ � i�1 from ImC1C (J;R) to C0C (J;R).

For f 2 C0(J � R;R);K b J; p > 0;we pose
qK;�p(f) = sup

t2K;y2R
(1 + jyj)�p jf(t; y)j ,

then for any solid unitary subring A with ideal IA of K�, we de�ne

H0�;A(J � R;R) =
n
(f�)� 2

�
C0(J � R;R)

�� j 8K b J;9p > 0; (qK;�p(f�))� 2 jAj
o
,

H0�;IA(J � R;R) =
n
(f�)� 2

�
C0(J � R;R)

�� j 8K b J;9p > 0; (qK;�p(f�))� 2 jIAj
o
.

For f = (f1; ::fm) 2
�
C0(J � Rm;R)

�m
;K b J; p > 0, we pose

q
(m)
K;�p(f) = sup

t2K;y2Rm
(1 + jyj)�p jf(t; y)j(m) with jf(t; y)j(m) =

k=mP
k=1

jfk(t; y)j ,

and de�ne, for f� = (f1;�; :::fm;�)�
H0�;A(J � Rm;R)

�m
=
n
(f�)� 2

��
C0(J � Rm;R)

�m�� j 8K b J;9p > 0;
�
q
(m)
K;�p(f�)

�
�
2 jAj

o
,�

H0�;IA(J � R
m;R)

�m
=
n
(f�)� 2

��
C0(J � Rm;R)

�m�� j 8K b J;9p > 0;
�
q
(m)
K;�p(f�)

�
�
2 jIAj

o
.

In the same way when l = 0 or 1, with E = Cl(J;R) and P l =
�
p
(m)
K;l

�
KbJ

such that

p
(m)
K;l (u) = sup

t2K;0�j�l

����u(j)(t)����, we can re-write Hm
(A;E;Pl) and H

m
(IA;E;Pl) as�

HlA(J;R)
�m

= Hm(A;Cl(J;R);Pl) =
n
(u�)� 2 [Em]� j 8K b J;

�
(p
(m)
K;l (u�)

�
�
2 jAj

o
,�

HlIA(J;R)
�m

= Hm(IA;Cl(J;R);Pl) =
n
(u�)� 2 [Em]� j 8K b J;

�
(p
(m)
K;l (u�)

�
�
2 jIAj

o
.
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De�nition 11 Summarizing, we �nally de�ne for any m 2 N

�
�
C0�;C(J � Rm;R)

�m
=
�
H0�;A(J � Rm;R)

�m
=
�
H0�;IA(J � R

m;R)
�m
,

�
�
C0C (J;R)

�m
=
�
H0A(J;R)

�m
=
�
H0IA(J;R)

�m
,

�
�
C1C (J;R)

�m
=
�
H1A(J;R)

�m
=
�
H1A(J;R)

�m \ �H0IA(J;R)�m
which leads to de�ne as previously the map @ = e@ � i�1 from Im

�
C1C (J;R)

�m to �C0C (J;R)�m.
Theorem 9 Let F = (F1; :::Fm) 2

�
C0�;C(J � Rm;R)

�m
and u = (u1;u2;:::um) 2

�
C0C (J;R)

�m.
Then, F (:; u) is a well de�ned element of

�
C0C (J;R)

�m.
Proof. F has for representatives (F�)� with F� : t ! F�(t; y). If u� is a representative of

u 2
�
A0 (J)

�m
; we have to prove that the family (t! F�(t; u�(t))� lies in

�
H0�;A(J � Rm)

�m
=

Hm(A;C0(J;R);P0). To simplify the proof, suppose that m = 1 for basic estimates.

With one hand, if u = [u�] 2 A0 (J), we have: 8K b J;
�
sup
t2K

ju� (t)j
�
�

2 jAj, then

8t 2 K; ju� (t)j � sup
t2K

ju� (t)j = ja�j with a� 2 A.

As A is solid, (u� (t))� is in A (and (ju� (t)j)� in jAj): Then, for any p > 0; ((1 + ju� (t)j)p)� 2 jAj.
On the other hand, F 2 A0�;C(J � R) has for representatives (F�)� such that

9p > 0; sup
t2K;y2Rm

(1 + jyj)�p jF�(t; y)j = jb�j with (b�)� 2 jAj :

Then,
9p > 0;8t 2 K; jF�(t; u� (t))j � (1 + ju� (t)j)p jb�j = jcp;�j with (cp;�)� 2 A

and from solidness of A, (jF�(t; u� (t))j)� 2 jAj. Then (t 7! (F�(t; u� (t))� 2 H(A;C0(J;R);P0).
If (v�)�is another representative of u and (G�) another representative of F; it is easy to show

that (t 7! (F�(t; u� (t))� � (t 7! (G�(t; v� (t))� 2 H(IA;C0(J;R);P0). Then F (:; u) is a well
de�ned element of C0C (J). Similar estimates permits to replace R by Rm, C0C (J) by

�
C0C (J)

�m
and C0�;C(J � R) by

�
C0�;C(J � Rm)

�m
.

De�nition 12 Let f 2
�
C0�;C(R+ � Rm)

�m
. We tell that f is globally Lipschiz if for any repre-

sentative (f")" of f we have (with jjxjj =
k=mP
k=1

jxkj when x = (x1; :::xm) 2 Rm)

8t 2 R+;8" 2 ]0; 1] ;9k" (t) > 0;8 (v; w) 2 Rm � Rm; jjf" ((t; v)� f" ((t; w)jj � k" (t) jjv � wjj

with
8T 2 R+; sup

t2[0;T ]
k" (t) =MT;" < +1.
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4.2 The generalized Cauchy-Lipschitz problem

In terms of generalized functions the Cauchy-Lipschitz problem (4) can be de�ned as

De�nition 13 The Cauchy-Lipschitz generalized problem is to solve (2) that is�
@x = f(:; x)
x(t0) = �

with x 2 Im
�
C1C (J)

�m � �C0C (J)�m and f 2
�
C0�;C(J � Rm)

�m
gobally Lipschitz, for some ring

of generalized numbers C = A=IA, with t0 2 J and � is a given element 2gRm
It is classical to choose J = R+ when t is the time parameter, then we do that, without loss

of generality. But we have exactly the same result when J is an open subset of R and taking
J = R simpli�es some estimates.

Theorem 10 It exists a ring of generalized numbers C = A=IA, such that f 2
�
C0�;C(R+ � Rm;R)

�m
and a map � :

�
C0C (R+;R)

�m ! �
C0C (R+;R)

�m with a �xed point solving the Cauchy-Lipschitz

problem (2) with t0 2 R+ and � 2gRm.
Proof. To construct the convenient ring of generalized numbers C = A=IA interacting with

the consrtruction of � and its �xed point, we follow four steps to verify the hypotheses of
De�nition of a generalized contraction
� (a) For x0 2 Rm; x 2

�
C0 (R+;R)

�m
; t 2 R+ and f" 2

�
C0(R+ � Rm;R)

�m we pose
�" (x) (t) = x0 +

R t
0f"(s; x(s))ds

from what it is clear that �" is a map Em ! Em with E = C0 (R+;R).
(Em; �m) is here a topological space where �m is given by the family of norms

�
p
(m)
T

�
T2R+

such that p(m)T (x) = sup
t2[0;T ]

jjx(t)jj. We suppose that it exists a family (a")" 2 E ]0
01] =

�
C0 (R+;R)

�]0;1]
such that �

8T 2 R+; (pT (a"))" 2 jAj
8t 2 R+; jjf"(t; x (t)jj � ja" (t)j jjx(t)jj :

Then, we have

jj�" (x) (t)jj � jjx0jj+
R t
0 ja" (s)j jjx(s)jj ds � jjx0jj+ ja" (r)j

R t
0 jjx(s)jj ds; r 2 [0; t]

which leads to p(m)T (�" (x)) � jjx0jj+ TpT (a") p(m)T (x).

Then if (x")" 2 Hm(A;C0(J;R);P0), that is to say
�
p
(m)
T (x")

�
"
2 jAj, we have�

p
(m)
T (�" (x"))

�
"
� (jjx0;"jj)" + T (pT (a"))"

�
p
(m)
T (x")

�
"

which leads (from 9n 2 N such that T (pT (a"))" � n (pT (a"))") to
�
p
(m)
T (�" (x"))

�
"
2 jAj that

is to say (�" (x")" 2 Hm(A;C0(J;R);P0).
� (b) Putting � = ]0; 1], t0 = 0 and � = ", we �rst have to write (2) in term of representatives
k" (t)

(5)
�
x0"(t) = f"(t; x" (t))

x"(0) = �"

12



where (jj�"jj)" 2 jAj.
We recall that if (f")" is a representative of f 2

�
C0�;C(R+ � Rm)

�m
, we have

f" 2
�
C0(R+ � Rm;R)

�m and 8K b J;9p > 0;
�
q
(m)
K;�p(f")

�
"
2 jAj and independantly of this

estimate we have to add the following one

8t 2 R+;8" 2 ]0; 1] ;9k" (t) > 0;8 (v; w) 2 Rm � Rm; jjf" ((t; v)� f" ((t; w)jj � k" (t) jjv � wjj

with
8T 2 R+; sup

t2[0;T ]
k" (t) =MT;" < +1.

For x0 given in Rm; x 2
�
C0 (R+;R)

�m
; t 2 R+ and f" 2

�
C0(R+ � Rm;R)

�m we pose
�" (x) (t) = x0 +

R t
0f"(s; x(s))ds

from what it is clear that �" is a map Em ! Em with E = C0 (R+;R).
The natural topology (denoted �m) on the product Em is here de�ned by the family

�
p
(m)
T

�
T2R+

of seminorms such that for x = (x1;:::xm) ; p
(m)
T (x) =

k=mP
k=1

pT (xk) with pT (xk) = sup
t2[0;T ]

jxk (t)j.

Denote by (Em; �m" ) the topological space Em endowed by the family
�
q
(m)
T;"

�
T2R+

with q(m)T;" (x) =

k=mP
k=1

qT;"(xk) for a given family (qT;")T2R+ of seminorm on E = C0 (R+;R) such that for each

" 2 ]0; 1] and y 2 C0 (R+;R) we have qT;"(y) = sup
t2[0;T ]

�
jy(t)j e�tMT;"

�
. Then q(m)T;" (x) =

sup
t2[0;T ]

�
jjx(t)jj e�tMT;"

�
We claim that the map �" is a contraction in (Em; �m" ). From De�nition 12, we have to

prove that that for each (T; ") 2 R+ � ]0; 1] it exists a constant kT;" < 1 such that for all
(x; y) 2 Em � Em

q
(m)
T;" (�" (x)� �" (y)) � kT;"q

(m)
T;" (x� y).

We have, for each t 2 R+

�" (x) (t)� �" (y) (t) = x0 +
R t
0 (f"(s; x(s)� f"(s; y(s))) ds

from what we deduce

e�tMT;" jj�" (x) (t)� �" (y) (t)jj � e�tMT;"
R t
0 jjf"(s; x(s)� f"(s; y(s))jj ds

and, for t 2 [0; T ]

e�tMT;" jj�" (x) (t)� �" (y) (t)jj � e�tMT;"
R t
0MT;" jjx(s)� y(s)jj ds:

Writing now

e�tMT;"
R t
0MT;" jjx(s)� y(s)jj ds = e�tMT;"

R t
0MT;"e

sMT;"
�
e�sMT;" jjx(s)� y(s)jj

�
ds

we obtain

e�tMT;"
R t
0MT;"e

sMT;"
�
e�sMT;" jjx(s)� y(s)jj

�
ds � e�tMT;"

R t
0MT;"e

sMT;"q
(m)
T;" (x� y) ds

which leads to
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e�tMT;" jj�" (x) (t)� �" (y) (t)jj � e�tMT;"q
(m)
T;" (x� y)

�
etMT;" � 1

�
=
�
1� e�tMT;"

�
q
(m)
T;" (x� y) :

When taking sup
t2[0;T ]

we �nally obtain a constant kT;" =
�
1� e�TMT;"

�
< 1 such that

for all (x; y) 2 Em � Em

q
(m)
T;" (�" (x)� �" (y)) � kT;"q

(m)
T;" (x� y).

Then according to De�nition 12, �" is a contraction in Em and has an unique �xed point z"
from Theorem 6.
� (c) We can write for x 2 Em

e�TMT;" sup
t2[0;T ]

jjx(t)jj � sup
t2[0;T ]

�
jjx(t)jj e�tMT;"

�
� sup
t2[0;T ]

jjx(t)jj

then
e�TMT;"p

(m)
T � q(m)T;" � p

(m)
T :

� (d). Assume now that for each T 2 R+ the family
�
eTMT;"

�
"
lies in jAj and recall that we have

asked in (a) that (pT (a"))" 2 jAj. As kT;" =
�
1� e�TMT;"

�
we have

�
1

1� kT;"

�
"

=
�
eTMT;"

�
"
.

De�ne now
�" (x") (t) = �" +

R t
0f"(s; x"(s))ds

where (�")"is a given representative of the given element � 2gRm

Finally, from De�nition 8, the map � :
�
C0C (R+;R)

�m ! �
C0C (R+;R)

�m such that
[x"] 7! [�" (x")]

is a contraction, with z = [z"] as �xed point from Theorem 8, z" being the unique �xed point of
�" verifying

z"(t) = �" +
R t
0f"(s; z"(s))ds:

Then, z0"(t) = f"(t; z" (t)). and z"(0) = �". Moreover z is solution to the Cauchy-Lipschitz
problem (2) given in De�nition 13.

We are going to prove that z is the unique �xed point of �, and therefore the unique solution
of ().

If y = [y"] is another �xed point of �, we have y" = �" (y")+i" with (i")" 2 Hm(IA;C0(R+;R);P0),

that is to say
�
p
(m)
T (i")

�
"
2 IA. Writing now

z" (t)� y" (t) =
R t
0 (f"(s; z"(s)� f"(s; y"(s)) ds+ i"(t)

we have
jjz" (t)� y" (t)jj �

R t
0 jj(f"(s; z"(s)� f"(s; y"(s))jj ds+ jji"(t)jj

jjz" (t)� y" (t)jj � jji"(t)jj+
R t
0MT;" jjz"(s)� y"(s)jj ds

and, from Gronwall lemma, for t 2 [0; T ]

jjz" (t)� y" (t)jj � jji"(t)jj eTMT;"

p
(m)
T (z" � y") � p(m)T (i")e

TMT;" :
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As
�
eTMT;"

�
"
2 jAj and

�
p
(m)
T (i")

�
"
2 jIAj, we have

�
p
(m)
T (z" � y")

�
"
2 jIAj, which �nish the

proof.

All our ideas, technics and results can be explicitely detailed and summarized in the following
example

Example 2 The Cauchy-Lipschitz generalized problem to solve is given as

(6)
�
@x = �(:; x)
x(0) = �

with x 2 C0C (R;R), with t0 2 R and � is a given element 2 eR . We de�ne � from �" (t; x) =

'"(t)'"(x) when '" is the "standard molli�er" '"(:) = '
� :
"

�
, ' 2 C1 (R), supp' = [�1; 1],R

' (s) ds = 1:

� Existence of �.
We begin to take A as containing some elements such that � lies in C0�;C(R � R) and is

globally Lipschitz for C = A=IA. From �" (t; x) = '"(t)'"(x) we have, for any p � 0

j�" (t; x)j �
1

"2

����'� t"
�
'
�x
"

����� � M2

"2
� M2

"2
(1 + jxj)p

with M = sup
s2R

j'(s)j. Then

8T � 0;8p � 0; qT;�p (�") �
M2

"2

with qT;�p (�") = sup
t2[�T;T ];x2R

(1 + jxj)�p j�"(t; x)j.

We constuct here A as a set of families of real elements, being a solid unitary subring of
R]0;1], and such that the family (")" 2 A (or jAj). As exists n 2 N such that M2 � n and� n
"2

�
"
2 jAj, then we have: (qT;�p (�"))" � jAj that is to say � lies in C0�;C(R� R).

� The Cauchy-Lipschitz condition.
We have to prove that

8" > 0;8T 2 R;9MT;" > 0; sup
t2[�T;T ];(v;w)2R2

j�"(t; v)��"(t; w)j � MT;" jv � wj .

Writing

�"(t; v)��"(t; w) =
1

"2
'

�
t

"

�h
'
�v
"

�
� '

�w
"

�i
=
1

"2
'

�
t

"

�
'0(
r

"
)
hv
"
� w
"

i
with

r

"
2 (v
"
;
w

"
) we obtain

sup
t2[�T;T ];(v;w)2R2

j�"(t; v)��"(t; w)j �
MM 0

"3
jv � wj

with M 0) = sup
s2R

j'0(s)j.

� Construction of the factor ring C = A=IA.
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From the (d) point of Theorem 10, we have to choose A containing
�
e
TMM 0

"3

�
"

. As it exists

n 2 N such that TMM 0 � n, we have e
TMM 0

"3 =
�
e
1
"3

�TMM 0

�
�
e
1
"3

�n
. As A is a solid subring,

we only have to require that
�
e
1
"3

�n
"

2 jAj, that is to say
�
e
1
"3

�
"

2 jAj, and as we have 1
"
< e

1
"3 ,

then
�
1

"

�
"

and (")" also are in jAj. But e
� 1
"3 � e�

1
" and the previous statements are obviously

veri�ed if we require only that
�
e
1
"

�
"

2 jAj :Then it su¢ ce to take C "overgenerated " by the

family
�
e
1
"

�
"

in the meaning of De�nition 3.

� Construction of the algebra C0C (R;R) = H0A(R;R)=H0IA(R;R).
We recall that

H0A(R;R) =
n
(u")" 2

�
C0 (R;R)

�]0;1] j 8K b R; ((pK;0(u"))" 2 jAj
o
,

H0IA(R;R) =
n
(u")" 2

�
C0 (R;R)

�]0;1] j 8K b R; ((pK;0(u"))" 2 jIAj
o
.

We explicit the construction of A and IA "overgenerated " by the family
�
e
1
"

�
"

. First, consider

B the subset of elements in (R�+)]0;1] obtained as rational fractions with coe¢ cients in R�+, of e
1
"

as variable. It follows that

A =
n
(a")" 2 R

]0;1] j 9 (b")" 2 B;9"0 2 ]0; 1] ;8" � "0 : ja"j � b"
o

IA =
n
(a")" 2 R

]0;1] j 8 (b")" 2 B;9"0 2 ]0; 1] ;8" � "0 : ja"j � b"
o

� Fixed point of the map � and solution to (6).
We know that the map � : C0C (R+;R)! C0C (R+;R) such that

[x"] 7! [�" (x")]

is a contraction, with z = [z"] as �xed point, z" being the unique �xed point of �" verifying

z"(t) = �" +
R t
0f"(s; z"(s))ds

where (�")"is a given representative of the given element � 2 eR. Moreover z is the unique solution
to the Cauchy-Lipschitz problem (6).

4.3 Towards the transport equation with irregular coe¢ cients

We consider the following Cauchy problem for the transport equation in (t; x)-variables

(7)
@u

@t
+ �

@u

@x
= f , u(0; x) = u0(x)

In a general case (typically the distribution one), the nonlinear term needs some regularity to
be de�ned. And it is not the case if � is a distribution in (t; x)-variables. Under some hypotheses
on �: weak regularity (of Sobolev type), control of its uniform divergency in space and some
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space increasing condition, Di Perna and Lions [5] have obtained some results with uniqueness
and stability. More recently the paper of L. Ambrosio [1] studies the same subject.

However this context don�t permits to de�ne and solve (7) when � is a distribution in (t; x)-
variables.

In a simpli�ed case where f = 0 and � = at
 1x where at 2 D0 (R), the problem is posed an
solved in [4]. When � 2 D0

�
R2
�
we turn back to the regular case as the starting point of our

generalized methods. It is well known that when �, f and u0 are of class C1, the problem (7)
admits a unique solution of class C1 given by integrating along the characteristics

(8) u(t; x) = u0(X(0; t; x) +
R t
0f(s;X(s; t; x)ds:

We can see that the regular solution of (7) is linked to the following Cauchy-Lipschitz problem
of which X(s; t; x) is the unique solution(

dX

ds
(s; t; x) = �(s;X(s; t; x))

X(t; t; x) = x.

When � and f are not continuous, N. Caro¤ [3] propose an approach based on the approx-
imation of discontinuous data by C1 function �n and fn and an Egorov theorem. She gives a
result similar to (8) when the irregularities are controled by: u0 2 Liploc(R;R);� 2 L1(R2;R)
and for some � > 0; ��1 � �(t; x) � �; f 2 L1(R2;R);8x 2 R; � (:; x) and f(:; x) are locally
Lipschitz uniformly in x:

But as in the previous case, this context don�t permit to de�ne and solve (7) when � is a
distribution in (t; x)-variables.

With the generalized methods over exposed we are trying to generalize that result to the
distributional case in consideration.
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