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Abstract. In analogy to the classical isomorphism between L(D(Rn),D′(Rm)) and D′(Rm+n)

(resp. L(S(Rn),S ′(Rm)) and S ′(Rm+n)), we show that a large class of moderate linear map-

pings acting between the space GC(Rn) of compactly supported generalized functions and G(Rn)

of generalized functions (resp. the space GS(Rn) of Colombeau rapidly decreasing generalized

functions and the space Gτ (Rn) of temperate ones) admits generalized integral representations,

with kernels belonging to specific regular subspaces of G(Rm+n) (resp. Gτ (Rm+n)). The main

novelty is to use accelerated δ-nets, which are unit elements for the convolution product in these

regular subspaces, to construct the kernels. Finally, we establish a strong relationship between

these results and the classical ones.

1. Introduction. During the last three decades, theories of nonlinear generalized func-
tions have been developed by many authors (see [1, 11, 13, 14] and others), mainly based
on the ideas of J.-F. Colombeau [3, 4], which we are going to follow in the sequel. These
theories appear to be a natural continuation of distribution theory [12, 19, 20], specially
efficient to pose and solve differential or integral problems with irregular data.

We continue the investigations, initiated by [16] (published in [17, 18]) and carried on
by [2, 5, 7, 8, 10, 21], in the field of generalized integral operators (which generalize in the
Colombeau framework the operators with distributional kernels). More precisely, we im-
prove and give the final version of Schwartz kernel type theorems published in [5], thanks
to a remark by Dimitris Scarpalézos (private communication): In some specific subspaces
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2 A. DELCROIX

of Colombeau type algebras, accelerated δ-nets are unit elements for the product of con-
volution. This property makes it possible to remove some technical assumptions. Thus,
we can give completely similar results as the nuclear type theorems of [7] and compare
all these results with the one of [21].

Our starting point is a moderate net of linear maps (Lε : D(Rn) → C∞(Rm))ε
(resp. (Lε : S(Rn) → OM (Rm))ε), that is, satisfying some growth properties with re-
spect to the parameter ε, which gives rise to a linear map L : GC(Rn) → G(Rm) (resp.
L : GS(Rn) → Gτ (Rn)). (G(Rm), GC(Rn), GS(Rn) and Gτ (Rm) denote respectively the
space of generalized functions, of compactly supported ones, of rapidly decreasing and of
tempered ones. These spaces play respectively the role of C∞(Rm), D(Rn), S(Rn) and
S ′(Rm) in the corresponding classical kernel theorems.) The main result (Theorems 3.6
and 3.7) is that L can be represented as a generalized integral operator in the spirit of
Schwartz Kernel Theorem (resp. kernel theorem for nuclear spaces). The use of accel-
erated δ-nets is a fundamental tool to obtain results valid with no restriction in spaces
of generalized functions with sublinear asymptotic growth. (Note that we correct here
the definitions given in [7] for the case of regular subspaces of Gτ (Rm).) Furthermore,
these results contains the classical isomorphism theorem recalled above in the following
sense. We can associate to each linear continuous operator Λ : D(Rn) → D′(Rm) (resp.
S(Rn)→ S ′(Rm)) a moderate map LΛ : GC(Rn)→ G(Rm) (resp. LΛ : GS(Rn)→ Gτ (Rn))
and consequently a kernel HLΛ ∈ G(Rm+n) (resp. Gτ (Rm+n)) such that, for all f in D(Rn)
(resp. S(Rn)), Λ(f) and H̃LΛ(f) are equal, where H̃LΛ is the integral operator associated
with HLΛ (Proposition 3.9).

The next steps in this topic would be to introduce a complete theory of nuclear
spaces in the framework of Colombeau algebras and to establish Kernel Theorems directly
for linear mappings acting on C̃ modules, following [9] and further works in the same
direction.

2. Colombeau type algebras. Throughout this section d will be a strictly positive
integer and Ω an open subset of Rd. For f ∈ C∞(Ω), r ∈ Z, l ∈ N and K ⊂⊂ Ω set

pK,l(f) = sup
x∈K,|α|≤l

|∂αf(x)|, µr,l(f) = sup
x∈Ω, |α|≤l

(1 + |x|)r|∂αf(x)|

with values in [0,+∞] for the latter.

2.1. Sheaves and presheaves of regular generalized functions

Definition 2.1 ([6]). A subspace R of RNi

+ (i = 1, 2) is regular if it is nonempty and:

(i) R is “overstable” by translation and by maximum, that is

∀N ∈ R, ∀a ∈ Ni, ∀b ∈ R+, ∃N ′ ∈ R, N(·+ a) + b ≤ N ′(·),
∀N1 ∈ R, ∀N2 ∈ R, ∃N ∈ R, max(N1, N2) ≤ N.

(ii) For all N1 and N2 in R, there exists N ∈ R such that

∀a, b ∈ Ni, N1(a) +N2(b) ≤ N(a+ b).

Example 2.2. The set B of bounded sequences of RN
+ is a regular subset of RN

+, which
is itself regular.
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In the sequel ”O(εp) as ε→ 0” is abbreviated to ”O(εp)”. Take R and Λ two regular
subsets of RN

+ and R2 a regular subset of RN2

+ . Set

ERM (Ω) = {(fε)ε ∈ C∞(Ω)(0,1] | ∀K ⊂⊂ Ω, ∃N ∈ R, ∀l ∈ N, pK,l(fε) = O(ε−N(l))},

ER,Λτ (Ω) = {(fε) ∈ OM (Ω)(0,1] | ∃(N,λ) ∈ R× Λ, ∀l ∈ N, µ−λ(l),l(fε) = O(ε−N(l))},

ER2
S (Ω) = {(fε)ε ∈ S(Ω)(0,1] | ∃N ∈ R2, ∀(q, l) ∈ N2, µq,l(fε) = O(ε−N(q,l))}.

Note that, in the definition of ER,Λτ (Ω), two regular subsets are involved. One is linked
with the growth of (fε)ε with respect to ε and the other to the growth with respect to
1 + |x|. Set

N (Ω) = {(fε)ε ∈ C∞(Ω)(0,1] | ∀K ⊂⊂ Ω, ∀l ∈ N, ∀m ∈ N, pK,l(fε) = O(εm)},

Nτ (Ω) = {(fε)ε ∈ OM (Ω)(0,1] | ∀l ∈ N, ∃q ∈ N, ∀m ∈ N, µ−q,l(fε) = O(εm)},

NS(Ω) = {(fε)ε ∈ S(Ω)(0,1] | ∀(q, l) ∈ N2, ∀m ∈ N, µq,l(fε) = O(εm)}.

Finaly, set

EM (C) = {(rε)ε ∈ C(0,1] | ∃N ∈ N, |rε| = O(ε−N )},

N (K) = {(rε)ε ∈ C(0,1] | ∀m ∈ N, |rε| = O(εm)}.

The functor ERM (·) defines a sheaf of differential algebras over the ring EM (C) whereas
the functor ER,Λτ (·) (resp. ER2

S (·)) defines a presheaf of differential algebras over EM (C).
The functor N (·) (resp. Nτ (·), NS(·)) defines a sheaf (resp. presheaves) of ideals of the
sheaf ERM (·) (resp. ER,Λτ (·), ER2

S (·)). Moreover, GR(·) = ERM (·)/N (·) (resp. GR,Λτ (·) =
ER,Λτ (·)/Nτ (·) and GR2

S (·) = ER2
S (·)/NS(·)) is (resp. are) a sheaf (resp. presheaves) of

differential algebras and a sheaf (resp. presheaves) of modules over the factor ring of
generalized constants C̃ = EM (C)/N (C).

For any regular subspace R of RN
+, the notion of support of a section f ∈ GR(Ω)

makes sense since GR(·) is a sheaf. We denote by GRC (Ω) the subset of GR(Ω) of elements
with compact support. Note that every f ∈ GRC has a representative (fε)ε such that each
fε has the same compact support.

Example 2.3.

(i) Taking R = RN
+ (resp. R = RN

+ and Λ = RN
+), we recover the sheaf G(·) = GRN

+(·)
(resp. presheaf Gτ (·) = GRN

+,R
N
+

τ (·)) of Colombeau simplified or special algebras (resp.
of tempered generalized functions) [3, 4, 14, 16]. Taking R2 = RN2

+ , we obtain the

presheaf GS(·) = GRN2
+
S (·) of algebras of rapidly decreasing generalized functions

[8, 15, 16].
(ii) Taking R = B, introduced in Example 2.2, we obtain the sheaf of G∞-generalized

functions [14].

Notation 2.4. We set EM (·) = ERN
+

M (·), Eτ (·) = ERN
+,R

N
+

τ (·) and ES(·) = ERN2
+
S (·); [(fε)ε]

(resp. [(fε)ε]τ , [(fε)ε]S) denotes the class of (fε)ε in G(·) (resp. Gτ (·), GS(·)).

In this paper, we consider mainly the following two examples of regular spaces.
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Example 2.5 (Generalized functions with sublinear asymptotic growth, [5, 7]). Set

L0 = {N ∈ RN
+ | lim

l→+∞
(q(l)/l) = 0},

La = {N ∈ RN
+ | lim sup

l→+∞
(N(l)/l) < a} (a > 0).

(i) The corresponding sheaves GLa(·) of algebras are called the sheaves (resp. presheaves
of temperate) generalized functions with sublinear asymptotic growth.
(ii) Define analogously

ELa
τ (Ω) = {(fε) ∈ OM (Ω)(0,1] | ∃N ∈ La, ∃q ∈ N, ∀l ∈ N, µ−q,l(fε) = O(ε−N(l))},

ELa

S (Ω) = {(fε)ε ∈ S(Ω)(0,1] | ∃N ∈ La, ∀q ∈ N, ∀l ∈ N, µq,l(fε) = O(ε−N(l))}.
(1)

The presheaves GLa
τ (·) = ELa

τ (·)/NS(·) (resp. GLa

S (·) = ELa

S (·)/NS(·)) are called the
presheaves of temperate (resp. rapidly decreasing) generalized functions with sublinear
asymptotic growth.

In other words, for ELa
τ (·), we take R = La and Λ = B (the set of bounded sequences).

For ELa

S (·), we take

R2 = {N2 ∈ RN2

+ | ∃N ∈ La, ∀(q, l) ∈ N2, N2(q, l) = N(l)}.
We refer the reader to [6] for a thorough study of regular subspaces of GS(·).

2.2. Some embeddings [6, 13]. As we need in the sequel some results related to the
embeddings of classical spaces into spaces of nonlinear generalized functions, we collect
them here without proof.

(i) The canonical map σ : C∞(Ω) → GR(Ω), f → [(fε)ε], with fε = f for all ε ∈ (0, 1],
is an embedding of differential algebras. For the embedding of D′(Ω) into G(Ω), consider
ρ ∈ S(Rd) such that∫

ρ(x) dx = 1 ,
∫
xmρ(x) dx = 0 for all m ∈ Nd\{0}. (2)

Choose χ ∈ D(Rd) such that 0 ≤ χ ≤ 1, χ ≡ 1 on a neighborhood of 0. Define

∀ε ∈ (0, 1], ∀x ∈ Rd, θε(x) = ε−d ρ(x/ε)χ(| ln ε|x) . (3)

It is easily seen that (θε)ε satisfy, for all k ∈ N,∫
θε(x) dx = 1 + O(εk), ∀m ∈ Nd\{0},

∫
xmθε(x) dx = O(εk). (4)

Finally, consider (κε)ε ∈ (D(Rd))(0,1] such that

∀ε ∈ (0, 1], 0 ≤ κε ≤ 1 , κε ≡ 1 on {x ∈ Ω | d(x,Rd\Ω) ≥ ε and d(x, 0) ≤ 1/ε}.
With these ingredients, the map

ι : D′(Ω)→ G(Ω), T 7→ (κεT ∗ θε)ε +N (Ω)

is an embedding of D′(Ω) into G(Ω) such that ι|C∞(Ω) = σ. Note that the additional
cutoff (κε)ε is not needed if Ω = Rd.

(ii) The canonical map σS : S(Rd)→ GS(Rd), f 7→ [(fε)ε]S , with fε = f for all ε ∈ (0, 1],
is an embedding of differential algebras. Moreover, the image of σS is included in GR2

S (Rd)
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for any regular subset of R2 ⊂ RN2

+ . The space of rapidly decreasing distributions O′C(Rd)
is embedded into GS(Rd), via the map

ιS : O′C(Rd)→ GS(Rd), u 7→ [(u ∗ ρε)ε]S
(with ρε(·) = ε−dρ(·/ε), where ρ satisfies (2)). This map is a linear embedding which
commutes with partial derivatives and satisfies ιS|S(Rd) = σS .

(iii) The canonical map στ : OM (Rd) → GR
τ (Rd), f 7→ [(f)ε]τ , with fε = f for all

ε ∈ (0, 1], is an embedding of differential algebras. The map

ιτ : S ′(Rd)→ Gτ (Rd) u 7→ (u ∗ ρε)ε +Nτ (Rd)

is an embedding of differential vector spaces which commutes with partial derivatives.
(ρε is defined as above.) Moreover, ιτ |OC(Rd) = στ , where

OC(Ω) = {f ∈ C∞(Ω) | ∃q ∈ N, ∀l ∈ N, µ−q,l(f) < +∞}.

2.3. Units for convolution in spaces of generalized functions with sublin-
ear asymptotic growth. We recall here that convolution has no unit in G(Rd) (resp.
GS(Rd), Gτ (Rd)). We are going to show that such units exist in some regular subspaces.

Definition 2.6. Consider a real number a greater than 1 and ρ ∈ S(Rd) which satisfies
(2). The net

(ρεa(·))ε = (ε−ad ρ(·/εa))ε

is called an accelerated δ-net.

This definition is justified by the following:

Theorem 2.7. Consider a ∈ R+\{0} and ρ ∈ S(Rd) which satisfies (2).

(i) Choose χ ∈ D(Rd) such that 0 ≤ χ ≤ 1, χ ≡ 1 on a neighborhood of 0 and define
(θεa)ε by θεa(·) = ε−ad ρ(·/εa)χ(| ln ε|·) for ε ∈ (0, 1]. For any (gε)ε ∈ ELa

M (Rd), we
have

(gε ∗ θεa − gε)ε ∈ N (Rd). (5)

(ii) For any (gε)ε ∈ ELa

S (Rd) (resp. ELa
τ (Rd)), we have

(gε ∗ ρεa − gε)ε ∈ NS(Rd) (resp. Nτ (Rd)). (6)

Relation (5) (resp. (6)) shows that [(θεa)ε] (resp. [(ρ
εa )ε]S , [(ρ

εa )ε]τ ) plays the role of
unit for convolution in GLa(Rd) (resp. GLa

S (Rd), GLa
τ (Rd)).

Proof. We shall detail the proof of (i) and comment on the differences in the proof of (ii).

(i) It is easily seen that (θεa)ε satisfy, analogously to (4),(∫
θεa(x) dx− 1

)
ε

∈ N (R) ; ∀m ∈ Nd\{0},
(∫

xmθε(x) dx
)
ε

∈ N (R). (7)

Consider r > 0 such that supp θ ⊂ B(0, r). Fix (gε)ε ∈ ELa

M (C∞(Rd)), K a compact
set of Rd and set ∆ε = gε ∗ θεa − gε for ε ∈ (0, 1). Writing

∫
θεa(x) dx = 1 + Nε with

(Nε)ε ∈ N (R), we get
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∆ε(y) =
∫
gε(y − x)θεa(x) dx− gε(y) =

∫
(gε(y − x)− gε(y))θεa(x) dx+Nεgε(y).

The integration is performed on the compact set B(0, r/| ln ε|) which contains supp θε.
There exists a compact set K ′ such that y+B(0, 1) ⊂ K ′ for all y ∈ K, and a sequence

N ∈ La such that
∀i ∈ N, pK′,i(gε) = O(ε−N(i)).

Note that (Nεgε(·))ε belongs clearly to N (Rd). Thus we focus on estimating

∆1
ε(y) =

∫
(gε(y − x)− gε(y))θε(x) dx.

Let m be a positive integer. As limsupi→+∞(N(i)/i) < a, we get limi→+∞(ai−N(i)) =
+∞ and the existence of an integer k such that k −N(k) > m. Taylor’s formula gives

gε(y − x)− gε(y) =
k−1∑
i=1

1
i!
Digε(y) · (−x)i +

∫ 1

0

(1− t)k−1

(k − 1)!
Dkg(k)

ε (y − tx) · (−x)kdt.

Thus

∆1
ε(y) = Pε(k, y) +Rε(k, y)

where

Pε(k, y) =
∫ k−1∑

i=1

1
i!
Digε(y) · (−x)iθεa(x) dx

and

Rε(k, y) =
∫ ∫ 1

0

(1− t)k−1

(k − 1)!
Dkg(k)

ε (y − tx) · (−x)kdt θεa(x) dx.

According to (7) we have (
∫
xjθε(x) dx)ε ∈ N (R) for all j ∈ N. Consequently

sup
y∈K
|Pε(k, y)| = O(εm).

Using the definition of θεa , and setting v = x/εa, we get

Rε(k, y) = εak
∫
B(0, r

εa ln ε )

∫ 1

0

(1− t)k−1

(k − 1)!
Dkg(k)

ε (y − εatv) · (−v)kdt ρ(v)χ(εa ln εv) dv.

For (t, v) ∈ [0, 1]×B(0, r/(εa| ln ε|)), we have y − εatv ∈ y +B(0, 1) for ε small enough.
Then, for y ∈ K, y − εatv lies in K ′ for (t, v) in the domain of integration. It follows

|Rε(k, y)| ≤ εak

(k − 1)!
pK′,k(gε)

∫
B(0, r

εa| ln ε| )

|v|k|ρ(v)|dv ≤ C εakpK′,k(gε)

≤ Cεak−N(k) = O(εm).

(The constant C > 0 depends only on the integer k and on ρ.) Summing up all results,
we get supy∈K |∆ε(y)| = O(εm).

As (∆ε)ε ∈ EM (Rd) and pK,0(∆ε) = O(εm) for all m > 0 and K ⊂⊂ R, we conclude
that (∆ε)ε ∈ N (Rd), without estimating the derivatives, by using theorem 1.2.3 of [11].

(ii) The main tools for the proof of both cases are, as for (i), the Taylor formula and the
nature of the regular spaces La. Nonetheless, let us quote some differences: On the one
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hand, both cases differ from (i) by the global estimates they need; On the other hand,
the construction of the accelerated δ-net is simpler. For the case of ELa

S (Rd), the detailed
proof can be found in [7]. For the case of ELa

τ (Rd), note that the independence of q with
respect to the derivative index l in the definition of ELa

τ (Rd) plays a big part in the result
(see (1)).

Remark 2.8. In addition, we have a quasi-uniqueness result in the following sense: For
every accelerated δ-net (ρεa(·))ε, one has ρεa → δ as ε → 0. Thus, all the units defined
as above are associated. (This does not violate the usual uniqueness of units for internal
laws, since (θεa)ε does not belongs to ELa

M (Rd).) The same holds for (ρεa)ε defined as
in (ii).

3. Kernel theorems

3.1. Generalized integral operators. From now on m and n are two strictly positive
integers.

Definition 3.1. Let H be in G(Rm+n) (resp. Gτ (Rm+n)). The integral operator of kernel
H is the map H̃ defined by

H̃ : GC(Rn)→ G(Rm) (resp. GS(Rn)→ Gτ (Rm)), f 7→ H̃(f) =
∫
H(·, y)f(y) dy.

The integral, in the previous definition, is well defined by means of representatives
(Hε)ε and (fε)ε of H and f respectively [3]. Indeed, for the case of H ∈ G(Rm+n) and
f ∈ GC(Rn), we have

H̃(f) =
[(
x 7→

∫
W

Hε(x, y)fε(y) dy
)
ε

]
where W is an open neighborhood of supp f . (Note that, in [2] and [8], the generalized
function H has to be properly supported since H̃ acts on G(Rn).) For the case of H in
Gτ (Rm+n), the net (y 7→ Hε(x, y)fε(y))ε belongs to ES(Rn) for all x in Rm. Thus, the inte-
gral

∫
Hε(x, y)fε(y) dy exists for all ε ∈ (0, 1]. Moreover, the net (x 7→

∫
Hε(x, y)fε(y) dy)ε

belongs to Eτ (Rn) and its class defines the element H̃(f) of Gτ (Rm).
In both cases, it can be easily seen that the map H̃ is a linear map of C̃-modules,

continuous for the respective sharp topologies of the spaces under consideration. We
refer the reader to [17, 18] for the sharp topology and to [2] for additional comments on
continuity for integral operators acting on the usual Colombeau algebras. The map which
associates H̃ to H is injective. Indeed, for the case of H ∈ G(Rm+n) acting on GC(Rn),
one adapts the proofs given in [2] or [8] for the case of H ∈ G(Rm+n) properly supported
acting on G(Rn). The case of H ∈ Gτ (Rm+n) is treated in [7].

3.2. Extension of linear maps. We turn to the definition and the properties of the
nets of linear maps used in the main theorems. We have to distinguish the two cases
under consideration. This is due, in particular, to the topological nature of D(Rn). We
recall that D(Ω) can be considered as the inductive limit of

Dj(Ω) = DKj
(Ω) = {f ∈ D(Ω) | supp f ⊂ Kj},
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where (Kj)j∈N is an increasing sequence of compact sets exhausting Ω, with Kj ⊂
◦
Kj+1

and Dj(Ω) is endowed with the topology given by the family of seminorms (pj,l)l∈N
defined by pj,l(f) = supx∈Kj , |α|≤l |∂

αf(x)|. (The topology on D(Ω) does not depend on
the particular choice of the sequence (Kj)j∈N.)

Definition 3.2 ([5]). Let (Lε)ε ∈ L(D(Rn),C∞(Rm))(0,1] be a net of linear maps.

(i) We say that (Lε)ε is continuously moderate (resp. negligible) if

∀j ∈ N, ∀K ⊂⊂ Rm, ∀l ∈ N, ∃(Cε)ε ∈ XM (R+) (resp. N (R+)),
∃l′ ∈ N, ∀f ∈ Dj(Rn), pK,l(Lε(f)) ≤ Cε pj,l′(f), for ε small enough.

(8)

(ii) Let (b, c) be in [0,+∞]×R+. We say that (Lε)ε is Lb,c-strongly continuously moderate
if: ∀j ∈ N, ∀K ⊂⊂ Rm,

∃λ ∈ NN with lim sup
l→+∞

(λ(l)/l) ≤ b, ∃r ∈ RN
+ with lim sup

l→+∞
(r(l)/l) ≤ c,

∀l ∈ N, ∃C ∈ R+, ∀f ∈ Dj(Rn), pK,l(Lε(f)) ≤ Cε−r(l)pj,λ(l)(f), for ε small enough.

Definition 3.3 ([7]). Let (Lε)ε ∈ L(S(Rn),OM (Rm))(0,1] be a net of linear maps.
(i) We say that (Lε)ε is moderate (resp. negligible) if

∀l ∈ N, ∃(Cε)ε ∈ EM (R+) (resp. N (R+)), ∃(p, q, l′) ∈ N3,

∀f ∈ S(Rn), µ−p,l(Lε(f)) ≤ Cε µq,l′(f), for ε small enough.
(9)

(ii) Let (b, c) be in [0,+∞]× R+. We say that (Lε)ε is Lb,c-strongly moderate if

∃λ ∈ NN with lim sup
l→+∞

(λ(l)/l) ≤ b, ∃r ∈ RN
+ with lim sup

l→+∞
(r(l)/l) ≤ c,

∀l ∈ N, ∃C ∈ R+, ∃(p, q) ∈ N2, ∀f ∈ S(Rn), µ−p,l(Lε(f)) ≤ C ε−r(l) µq,λ(l)(f),

for ε small enough.

These nets give rise to linear maps acting between the respective generalized spaces.
More precisely, we get the:

Proposition 3.4 ([5, 7]).

(i) Any continuously moderate net

(Lε)ε ∈ L(D(Rn),C∞(Rm))(0,1] (resp. L(S(Rn),OM (Rm))(0,1])

can be extended in a map L ∈ L(GC(Rn),G(Rm)) (resp. L(GS(Rn),Gτ (Rm))) defined
by L(f) = (Lε(fε))ε+N (Rm) (resp. Nτ (Rm)) where (fε) is any representative of f .

(ii) The extension L depends only on the family (Lε) in the following sense: If (Nε)ε
is a net of negligible maps, then the extensions of (Lε)ε and (Lε +Nε)ε are equal.
The extension L depends only on the family (Lε) in the following sense: If (Nε)ε is
a net of negligible maps, then the extensions of (Lε)ε and (Lε +Nε)ε are equal.

(iii) If the family (Lε)ε is moderate, with the assumption that the net of constants (Cε)ε
in (8) (resp. (9)) satisfies Cε = O(ε−r(l)) with lim supl→+∞(r(l)/l) < c, then
L(G∞C (Rn)) (resp. L(G∞S (Rn))) is included in GLc(Rm) (resp. GLc

τ (Rm)).
(iv) Let (b, c) be in (R+)3 and suppose that the net (Lε)ε is Lb,c-strongly continu-

ously moderate. Then, for all a > 0, L(GLa

C (Rn)) (resp. GLa

S (Rn)) is included
in GLab+c(Rm) (resp. GLab+c

τ (Rn)).
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Moreover, L(GL0
C (Rn)) (resp. L(GL0

S (Rn))) is included in GLc′ (Rm) (resp. GLc′
τ (Rm)) for

any c′ > c, even if b = +∞.

Remark 3.5. Following [21], a linear map L : D(Rn) → G(Rm) (which is a similar
situation to ours) is continuously moderate if, and only if, it is r-continuous and moderate
in the following sense: L admits a representative (Lε : D(Rn) → C∞(Rm))ε formed by
continuous linear maps, which are moderate (that is: (Lε(f))ε ∈ EM (Rm), for all f ∈
D(Rn)). This, in some sense, justifies the definition given here of continuously moderate
nets.

3.3. Kernel theorems

Theorem 3.6 (Schwartz kernel type theorem). Consider (b, c) ∈ R2
+. Let (Lε) ∈

L(D(Rn),C∞(Rm))(0,1] be a net of Lb,c-strongly continuously moderate linear maps and
L ∈ L(GC(Rn),G(Rm)) its canonical extension. For any a > 0, there exists HL in
GL2(ab+c) (Rm+n) such that

∀f ∈ GLa

C (Rn), L(f) =
∫
HL(·, y)f(y) dy.

Theorem 3.7 (Nuclear kernel type theorem). Consider (b, c) ∈ R2
+ and (Lε)ε ∈

L(S(Rn),OM (Rm))(0,1] a net of Lb,c-strongly moderate linear maps. Denote by L ∈
L(GS(Rn),Gτ (Rm)) its canonical extension. For any a > 0, there exists HL in

G
L2(ab+c)
τ (Rm+n) such that

∀f ∈ GLa

S (Rn), L(f) =
∫
HL(·, y)f(y) dy. (10)

These results have exactly the same structure. In fact, the difference between them
is somehow hidden but can be seen in the definition of moderate maps which takes into
account the specific topological structure of the starting spaces. (See Definitions 3.2 and
3.3.) In both results, the parameter a gives the size of the space on which the result holds,
the parameter b (resp. c) is related to the “regularity” of the net (Lε)ε, with respect to
the derivative index l in the family of semi-norms defining the topology (resp. to the
parameter ε).

By using Proposition 3.4-(iii), we can obtain an analog of this result valid for more
irregular nets of maps. We give it for the case of nuclear kernel type theorem.

Theorem 3.8. Let (Lε)ε ∈ L(S(Rn),OM (Rm))(0,1] be a net of moderate linear maps
such that the net of constants (Cε)ε in relation (9) satisfies Cε = O(ε−r(l)) with r ∈ L

c

(c > 0). Then, the extension of (Lε)ε admits an integral representation such that relation
(10) holds for f in G∞S (Rn).

We turn now to the relationship with the classical isomorphism result: Consider

Λ ∈ L(D(Rn),D′(Rm)) (resp. L(S(Rn),S ′(Rm)))

and define a net of linear mappings (Lε)ε by

Lε : D(Rn) (resp. S(Rn))→ C∞(Rm), f 7→ Λ(f) ∗ ϕε,

where (ϕε)ε is constructed as (θε)ε in (3). (For the resp. case, ϕ could be simply chosen
in D(Rm) satisfying (2).)

We have:
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Proposition 3.9.

(i) For all ε ∈ (0, 1], Lε is continuous for the usual topologies of D(Rn) (resp. S(Rn))
and C∞(Rn) (resp. OM (Rm)) and the net (Lε)ε is (0, s)-strongly moderate for any
s > 1.

(ii) From (i), the extension LΛ of the net (Lε)ε admits a kernel HLΛ of sublinear
asymptotic growth. Furthermore, for all f ∈ D(Rn) (resp. S(Rn)), ι(Λ(f)) (resp.
ιτ (Λ(f))) is equal to H̃L(f).

From Proposition 3.9, we immediately get that the following diagram is commutative

D(Rm) Λ−→ D′(Rn)
↓ σ ↓ ι

GL0
C (Rm)

LΛ= eHLΛ−→ G(Rn)

resp.
S(Rm) Λ−→ S ′(Rn)
↓ σS ↓ ιτ

GL0
S (Rm)

LΛ= eHLΛ−→ Gτ (Rn)

(11)

This shows that in this case, we transpose the classical result to the generalized frame-
work. (See [2] for further remarks on this subject.) Note that Proposition 3.9 also implies
that Λ(f) and H̃LΛ(f) are equal in the generalized distribution sense [13] that is, for all
p ∈ N, and for the resp. case

∀g ∈ S(Rm), 〈Λ(f), g〉 −
∫ (∫

HLΛ,ε(x, y)f(y) dy
)
g(x) dx = O(εp),

where (HLΛ,ε)ε is any representative of HLΛ . In particular, this result implies that Λ(f)
and H̃LΛ(f) are associated or weakly equal, i.e.(

x 7→
∫
HLΛ,ε(x, y)f(y) dy

)
→ Λ(f) in S ′(Rm) as ε→ 0.

Finally, let us mention that in [21], a kernel theorem is proved for r-continuous maps
L acting between D(Rn) and G(Rm) (see Remark 3.5). On the one hand, using the
continuous and moderate representative of L, the result is more closely related to the
classical one. For example, the proof can use the explicit form of the kernel of a continuous
linear map from D(Rn) to D(Rm), as given by the classical Schwartz kernel theorem.
We refer the reader to [21] for more details, and for additional properties of G∞-type,
specially concerning uniqueness, which are allowed by this framework. On the other hand,
our results seem a little more general as they concern linear maps acting between spaces
of generalized functions (even if these maps are particular ones in the sense they are given
by representatives).

4. Proofs of the main results. We shall give the main ideas of the proof of Theorem
3.6. The proofs of Theorem 3.7 and 3.8 follow quite similar lines. In particular, Theorem
2.7 plays a major role, as seen at the end of the proof. To show different technics, we
shall give the proof of Proposition 3.9 for the temperate case.

4.1. Proof of Theorem 3.6. Let us fix a net of mollifiers (ϕεt)ε ∈ (D(Rm))(0,1] (resp.
(ψεa)ε ∈ (D(Rm))(0,1]) satisfying conditions (4), where t ∈ R+ will be fixed latter. Set

ψεa, · : Rn → D(Rn), y 7→ {v 7→ ψεa(y − v)}.
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Consider
HL,ε : Rm+n → C, (x, y) 7→ Lε(ψεa,y) ∗ ϕεt(x),

which is well defined since ϕεt is compactly supported. Classical regularity results imply
that Hε is of class C∞ for all ε ∈ (0, 1]. A routine checking shows that (Hε)ε ∈ EM (Rm+n).
A closer inspection (left to the reader) leads to

(Hε)ε ∈ E
Lab+c+t

M (Rm+n). (12)

We shall now prove that the operator H̃L of kernel [(HL,ε)ε] is the expected kernel
operator. We fix f ∈ GC(Rn) and one of its representatives (fε)ε such that all fε have
the same compact support. We have to show that L([(fε)ε]) = [(H̃ε(fε))ε].

Lemma 4.1. For all ε ∈ (0, 1], we have

H̃ε(fε)(x) = (Lε(ψεa ∗ fε) ∗ ϕεt)(x).

Proof. Fix ε ∈ (0, 1] and x ∈ Rm. With the above notations, we have

H̃ε(fε)(x) =
∫

supp f

(∫
suppϕε

Lε(ψεa,y)(x− λ)ϕεt(λ) dλ
)
fε(y) dy

=
∫

suppϕε

∫
supp f

Lε(ψεa,y)(x− λ)ϕεt(λ)fε(y) dλ dy

=
∫ (∫

Lε(ψεa,y)(x− λ)fε(y) dy
)
ϕεt(λ) dλ,

the last two equalities being true by Fubini’s theorem, each integral being calculated on
a compact set. Then, it can be shown, using similar arguments as in ([12], Lemma 4.1.3)
that ∫

Lε(ψεa,y)(ξ)fε(y) dy = Lε

(
v 7→

∫
ψεa(y − v)fε(y)dy

)
(ξ) = Lε(ψεa ∗ fε)(ξ).

(Essentially, the integrals under consideration in the above equalities are integrals of
continuous functions on compact sets and can be considered as limits of Riemann sums
allowing the interchange of the integral and the linear map Lε.) Thus

H̃ε(fε)(x) =
∫
Lε(ψεa ∗ fε)(x− λ)ϕεt(λ) dλ = (Lε(ψεa ∗ fε) ∗ ϕεt)(x)

which completes the proof.

We suppose, in addition, that (fε)ε is in ELa(Rn). According to Lemma 4.1, we have
for all ε ∈ (0, 1],

H̃ε(fε)− Lε(fε) = Lε(ψεa ∗ fε) ∗ ϕεt − Lε(fε)
= Lε(ψεa ∗ fε) ∗ ϕεt − Lε(fε) ∗ ϕεt + Lε(fε) ∗ ϕεt − Lε(fε)
= Lε(ψεa ∗ fε − fε) ∗ ϕεt + Lε(fε) ∗ ϕεt − Lε(fε).

As (fε)ε ∈ ELa(Rn), we have (Lε(fε))ε ∈ ELab+c(Rm), because of the Lb,c-strongly con-
tinuously moderateness of (Lε)ε. We take t = ab+c and obtain (Lε(fε)∗ϕεt−Lε(fε) )ε ∈
N (Rm). We also have (ψεa ∗ fε − fε)ε ∈ N (Rn) by Theorem 2.7. Thus

(Lε(ψεa ∗ fε − fε))ε ∈ N (Rm).
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As (ηε ∗ϕεt)ε ∈ N (Rm) for all (ηε)ε ∈ N (Rm), we have Lε(ψεa ∗ fε− fε) ∗ϕεt ∈ N (Rm)
and, finally H̃ε(fε) − Lε(fε) ∈ N (Rm). Thus L([(fε)ε]) = H̃L([(fε)ε]) as expected. Due
to (12), we obtain that H̃L ∈ G

L2(ab+c) (Rm+n) ending the proof.

4.2. Proof of Proposition 3.9

Assertion (i). For a fixed ε ∈ (0, 1], Lε is obtained by composition of the continuous maps
Λ : S(Rn) 7→ S ′(Rm) and

S ′(Rm)→ OM (Rn), T 7→ T ∗ ϕε.

Thus Lε is continuous. We have now to show that the net (Lε)ε ∈ L(S(Rn),OM (Rm))(0,1]

is strongly moderate. We have

∀f ∈ S(Rn), ∀x ∈ Rm, ∀α ∈ Nm, ∂α(Lε(f))(x) = (Λ(f) ∗ ∂αϕε)(x)

= 〈Λ(f), {y 7→ ∂αϕε(x− y)}〉.

The map
Θ : S(Rn)× S(Rm), (f, ϕ)→ 〈Λ(f), ϕ〉,

is a bilinear map, separately continuous since Λ is continuous. As S(Rn) and S(Rm) are
Fréchet spaces, Θ is globally continuous. There exist C1 > 0, (q1, l1, q2, l2) ∈ N4, such
that

∀(f, ϕ) ∈ S(Rn)× S(Rm), |〈Λ(f), ϕ〉| ≤ C1 µq1,l1(f)µq2,l2(ϕ).

In particular, for any l ∈ N and α ∈ Nm with |α| ≤ l, we have

∀x ∈ Rm, |〈Λ(f), ∂αϕε(x− ·)〉| ≤ C1 µq1,l1(f)µq2,l2(∂αϕε(x− ·)),

with

∀x ∈ Rm, µq2,l2(∂αϕε(x− ·)) = sup
ξ∈Rm,|β|≤l2

(1 + |ξ|)q2 |∂α+βϕε(x− ξ)|

= sup
ξ∈Rm,|β|≤l2

(1 + |x− ξ|)q2 |∂α+βϕε(ξ)|

≤ (1 + |x|)q2µq2,l2+l|ϕε|.

Using the definition of (ϕε)ε, we get C2 > 0 such that µq2,l2+l|ϕε| ≤ C2 ε
−(m+l2+l), for ε

small enough. Thus, there exists C > 0 such that, for ε small enough,

∀x ∈ Rm, |∂α(Lε(f))(x)| = |〈Λ(f), ∂αϕε(x− ·)〉| ≤ C(1 + |x|)q2µq1,l1(f)ε−(m+l2+l).

Finally
µ−q2,l(Lε(f)) ≤ C ε−(m+l2+l)µq1,l1(f).

The sequence r(·) = {l 7→ (m + l2 + l)} satisfies liml→+∞(r(l)/l) = 1. Recalling that l1
does not depend on l, we obtain our claim.

Assertion (ii). Consider the kernel HLΛ associated to (Lε(f))ε by Theorem 3.7. As
σS(S(Rm)) ⊂ GL0

S (Rm), we have LΛ(f) = [(Lε(f))ε]τ = H̃LΛ(f) by relation (10). On
the other hand, [(Lε(f))ε]τ = [(Λ(f) ∗ ϕε)ε]τ = ιτ (Λ(f)) by definition of (Lε)ε. This
proves our assertion, the commutativity of diagram (11) and ends the proof of Proposi-
tion 3.9.
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