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Abstract. In analogy to the classical isomorphism between £(D(R™),D’(R™)) and D'(R™")
(resp. L(S(R™),S’"(R™)) and S’(R™*™)), we show that a large class of moderate linear map-
pings acting between the space Go (R™) of compactly supported generalized functions and G(R™)
of generalized functions (resp. the space Gs(R™) of Colombeau rapidly decreasing generalized
functions and the space G,(R"™) of temperate ones) admits generalized integral representations,
with kernels belonging to specific regular subspaces of G(R™*™) (resp. G,(R™*™)). The main
novelty is to use accelerated d-nets, which are unit elements for the convolution product in these
regular subspaces, to construct the kernels. Finally, we establish a strong relationship between
these results and the classical ones.

1. Introduction. During the last three decades, theories of nonlinear generalized func-
tions have been developed by many authors (see [1, 11, 13, 14] and others), mainly based
on the ideas of J.-F. Colombeau [3, 4], which we are going to follow in the sequel. These
theories appear to be a natural continuation of distribution theory [12, 19, 20], specially
efficient to pose and solve differential or integral problems with irregular data.

We continue the investigations, initiated by [16] (published in [17, 18]) and carried on
by [2, 5, 7, 8, 10, 21], in the field of generalized integral operators (which generalize in the
Colombeau framework the operators with distributional kernels). More precisely, we im-
prove and give the final version of Schwartz kernel type theorems published in [5], thanks
to a remark by Dimitris Scarpalézos (private communication): In some specific subspaces
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2 A. DELCROIX

of Colombeau type algebras, accelerated d-nets are unit elements for the product of con-
volution. This property makes it possible to remove some technical assumptions. Thus,
we can give completely similar results as the nuclear type theorems of [7] and compare
all these results with the one of [21].

Our starting point is a moderate net of linear maps (L. : D(R™) — C>®(R™)).
(resp. (Le : S(R™) — Op(R™)).), that is, satisfying some growth properties with re-
spect to the parameter e, which gives rise to a linear map L : Go(R™) — G(R™) (resp.
L : Gs(R™) — G-(R™)). (GR™), Ge(R™), Gg(R™) and G,(R™) denote respectively the
space of generalized functions, of compactly supported ones, of rapidly decreasing and of
tempered ones. These spaces play respectively the role of C*(R™), D(R"), S(R™) and
S’(R™) in the corresponding classical kernel theorems.) The main result (Theorems 3.6
and 3.7) is that L can be represented as a generalized integral operator in the spirit of
Schwartz Kernel Theorem (resp. kernel theorem for nuclear spaces). The use of accel-
erated d-nets is a fundamental tool to obtain results valid with no restriction in spaces
of generalized functions with sublinear asymptotic growth. (Note that we correct here
the definitions given in [7] for the case of regular subspaces of G,(R™).) Furthermore,
these results contains the classical isomorphism theorem recalled above in the following
sense. We can associate to each linear continuous operator A : D(R™) — D'(R™) (resp.
S(R™) — §'(R™)) amoderate map Ly : Go(R™) — G(R™) (resp. Ly : Gs(R™) — G- (R™))
and consequently a kernel Hy, € G(R™") (resp. G, (R™"")) such that, for all f in D(R")
(resp. S(R™)), A(f) and Hy, (f) are equal, where Hy, is the integral operator associated
with Hy,, (Proposition 3.9).

The next steps in this topic would be to introduce a complete theory of nuclear
spaces in the framework of Colombeau algebras and to establish Kernel Theorems directly
for linear mappings acting on C modules, following [9] and further works in the same
direction.

2. Colombeau type algebras. Throughout this section d will be a strictly positive
integer and Q an open subset of R%. For f € C*®(Q), r € Z, l € N and K CC Q set

pri(f) = sup |OUf(@)], pra(f)= sup (14 [x])"]0%f(2)]

zEK,|a|<l 2€Q, |al<l
with values in [0, +o00] for the latter.
2.1. Sheaves and presheaves of regular generalized functions
DEFINITION 2.1 ([6]). A subspace R of R{\f (1 =1,2) is regular if it is nonempty and:

(i) R is “overstable” by translation and by maximum, that is

VNeR, VaeN, YbeR,, IN'€R, N(-+a)+b<N'(-),
VN; € R, VN3 € R, 3N € R, max(Ny, No) < N.
(ii) For all N7 and Ny in R, there exists N € R such that
Va, b€ N, Nj(a)+ No(b) < N(a+b).

EXAMPLE 2.2. The set B of bounded sequences of RY is a regular subset of RY, which
is itself regular.
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In the sequel ”O(eP) as e — 07 is abbreviated to ”O(eP)”. Take R and A two regular
subsets of R§ and Ry a regular subset of le. Set

ER(Q) = {(fo)e € CX(QY VK cC @, 3N € R, VI €N, pra(fe) = OV},
ERAMQ) = {(f) € OO 3N, N) e Rx A, VI EN, p_sayi(fe) = O(e VD),
EF(Q) = {(f): € SO OV[IN € Ry, V(q,1) €N, prg(fe) = O N}

Note that, in the definition of £X4(), two regular subsets are involved. One is linked
with the growth of (f.) with respect to € and the other to the growth with respect to
1+ |x|. Set

N(©) ={(f-): € C*(Q) OV |VK cC Q, VI €N, Ym €N, pg (f-) = 0™},
NAQ) ={(f): € Ou( OV |VIEN, 3geN, Vm €N, p_gi(f-) = 0(E™)},
Ns(©) = {(f): € SO |V(q,1) e N°, ¥m €N, pgu(f:) = O(e™)}.

Finaly, set
Em(C) ={(r-)e e COU|IN €N, |r.[ =O(e™ ™)},
N(K) = {(re): € COY|¥m e N, |r| = O(e™)}.

The functor £7%(+) defines a sheaf of differential algebras over the ring £,/(C) whereas
the functor ERA(-) (resp. E52()) defines a presheaf of differential algebras over £y (C).
The functor N(-) (resp. N;(-), Ns(+)) defines a sheaf (resp. presheaves) of ideals of the
sheaf E () (resp. ERA(), EX2(+)). Moreover, GR(-) = ER()/N(-) (resp. GRA() =
ERA()INL() and GE2() = EF*(-)/Ns(-)) is (resp. are) a sheaf (resp. presheaves) of
differential algebras and a sheaf (resp. presheaves) of modules over the factor ring of
generalized constants C = &);(C) /N(C).

For any regular subspace R of RY, the notion of support of a section f € G*(Q)
makes sense since G7*(+) is a sheaf. We denote by GZ(2) the subset of G%(£2) of elements
with compact support. Note that every f € gg has a representative (f:). such that each
fe has the same compact support.

EXAMPLE 2.3.

(i) Taking R = RY (resp. R = RY and A = RY), we recover the sheaf G(-) = QRﬁr(-)
N N
(resp. presheaf G.(-) = QS*’RW-)) of Colombeau simplified or special algebras (resp.

of tempered generalized functions) [3, 4, 14, 16]. Taking R = R{\ﬁ we obtain the

presheaf Gs(-) = Q‘ﬂsi (1) of algebras of rapidly decreasing generalized functions
[8, 15, 16].
(ii) Taking R = B, introduced in Example 2.2, we obtain the sheaf of G*°-generalized
functions [14].
NOTATION 2.4. We set Exr() = Eof (), &-() = €27 () and Es() = €5+ (); [(f2)e]
(resp. [(fs)e:]'ra [(fs)s]S) denotes the class of (fe)s in g() (resp. gr(')v gS())

In this paper, we consider mainly the following two examples of regular spaces.
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EXAMPLE 2.5 (Generalized functions with sublinear asymptotic growth, [5, 7]). Set
Lo={N R | Tim (q(1)/1) =0},
L, ={N eRY |lim sup (N(1)/l) < a} (a > 0).
l—4o0
(i) The corresponding sheaves G~ (-) of algebras are called the sheaves (resp. presheaves
of temperate) generalized functions with sublinear asymptotic growth.
(#4) Define analogously
EF(Q) = {(f-) € Om() @3N € Lo, g N, VIEN, pgu(fe) = OV}, (1)
E5" (W) = {(J): € SOVOY|3N € Lo, Vg eN, VI EN, pgu(fe) =0}
The presheaves GE(-) = ELa(-)/Ns(-) (resp. G5*(-) = E5°(-)/Ns(-)) are called the
presheaves of temperate (resp. rapidly decreasing) generalized functions with sublinear

asymptotic growth.
In other words, for £54(-), we take R = £, and A = B (the set of bounded sequences).
For E§Q(~), we take
Ry = {N2 € RY |3N € L,, ¥(q,1) € N>, Ny(q,1) = N(I)}.
We refer the reader to [6] for a thorough study of regular subspaces of Gs(-).
2.2. Some embeddings [6, 13]. As we need in the sequel some results related to the

embeddings of classical spaces into spaces of nonlinear generalized functions, we collect
them here without proof.

(i) The canonical map o : C®(Q) — GR(Q), f — [(f-)c], with f. = f for all ¢ € (0, 1],
is an embedding of differential algebras. For the embedding of D’(£2) into G(2), consider
p € S(RY) such that

/p(l’) der=1, /xmp(l’) dz = 0 for all m € N%\{0}. (2)
Choose x € D(RY) such that 0 < x < 1, x = 1 on a neighborhood of 0. Define
Ve € (0,1], Vz € R, 0. (x) = e 4 p(x/e)x(|Inelz). (3)
It is easily seen that (6. ). satisfy, for all k € N,
/95(:13) dz =14+ 0("), vm e NY\{0}, /mmég(x) dz = O(e"). (4)

Finally, consider (k.). € (D(R%))®1 such that
Ve e (0,1, 0< k. <1, ke=1on{zecQ|d(z,R\Q) > ¢ and d(z,0) < 1/¢}.
With these ingredients, the map
L:D(Q) = G(Q), T (kT x0.)e + N(Q)

is an embedding of D'(2) into G(2) such that tjc=(p) = 0. Note that the additional
cutoff (k). is not needed if Q = R9.

(ii) The canonical map o5 : S(R?) — Gs(RY), f +— [(f-)e]s , with f. = f foralle € (0,1],
is an embedding of differential algebras. Moreover, the image of og is included in g§2 (R%)
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for any regular subset of Ry C ]le. The space of rapidly decreasing distributions O, (R¢)
is embedded into Gs(R?), via the map

ts: OL(RY) — Gs(RY), u s [(u* pe)els
(with p.(-) = e7%p(-/¢), where p satisfies (2)). This map is a linear embedding which
commutes with partial derivatives and satisfies ¢5sre) = 0s-
(iii) The canonical map o, : Oy (R?) — GERY), f — [(f)e]r, with fo = f for all
e € (0,1], is an embedding of differential algebras. The map
br - Sl(Rd> - g'r(Rd) U= (U* pe)e +NT(Rd)

is an embedding of differential vector spaces which commutes with partial derivatives.
(pe is defined as above.) Moreover, ¢, (r¢) = 0, Where

Oc()={feC®Q)|FgeN, VIeN, p_g:(f) <+oo}.
2.3. Units for convolution in spaces of generalized functions with sublin-

ear asymptotic growth. We recall here that convolution has no unit in G(R9) (resp.
Gs(R%), G, (R?)). We are going to show that such units exist in some regular subspaces.

DEFINITION 2.6. Consider a real number a greater than 1 and p € S(R?) which satisfies
(2). The net

(pee(-))e = (67 p(-/e%))-
is called an accelerated d-net.
This definition is justified by the following:
THEOREM 2.7. Consider a € Ry \{0} and p € S(R?) which satisfies (2).

(i) Choose x € D(R?) such that 0 < x < 1, x = 1 on a neighborhood of 0 and define
(Bea)e by Oca(-) = e~ p(-/e¥)x(|Ingl|) for e € (0,1]. For any (g-) € Ex¢ (R, we

have
(gs * Oca — 96)6 € N<Rd)- (5)
(il) For any (ge). € E5°(R?) (resp. EL+(RY)), we have
( e ¥ Pea — gs)e € NS(Rd) (resp. N‘F<Rd))' (6)

Relation (5) (resp. (6)) shows that [(6ce)c] (resp. [(p.a)els, [(p.a )e]+) Plays the role of
unit for convolution in G%*(R?) (resp. gga (RY), GEa(RY)).

Proof. We shall detail the proof of (i) and comment on the differences in the proof of (ii).
(i) Tt is easily seen that (6.« ). satisfy, analogously to (4),

( / 0. () dz — 1)5 € N(R); ¥m e N\{0}, ( / 2™0.(x) dx) ceN®). ()

€
Consider 7 > 0 such that supp# C B(0,7). Fix (g.). € 5 (C®(RY)), K a compact
set of R? and set A, = g. * 0.« — g. for € € (0,1). Writing [ 0.« (z)dz = 1 + N, with
(No)e € N(R), we get
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Ad(y) = / Gy — 2)Bee () da — g (y) = / (0e(y — 7) — 9o (4))Bee (2) dz + Noge (9).

The integration is performed on the compact set B(0,r/|lne|) which contains supp ..
There exists a compact set K’ such that y+B(0,1) C K’ for all y € K, and a sequence
N € L, such that
VieN, pgri(ge) =0 ND),

Note that (M.g-(-)). belongs clearly to N (R?). Thus we focus on estimating
A = [ (60— ) - 9. ()bo(o) do

Let m be a positive integer. As limsup;_, , (N (7)/i) < a, we get lim;_, ;o (ai — N (7)) =
~+oo and the existence of an integer k such that &k — N (k) > m. Taylor’s formula gives

k—1 11 ak
v~ 50) = 3 1D'0.00) - (o) + [ L DR — i) (e

- (k—1)!
Thus
A;(y) = Ps(kvy) + Rs(ka y)
where
k—1
Pky) = [ 3 5D'0u0) - (<o) (o) ds
and

(k. y) // a-o" Dkgé Ny —tx) - (—z)*dt 0.a () da.
According to (7) we have foHE (x) :E)s € N(R) for all j € N. Consequently
sup [Pz (k, y)| = O(e™).
yeK

Using the definition of .., and setting v = x /&%, we get
1 (1 _ t)k
Ro(k,y) = e / / =8 Doy — cat) - (—0)¥dt p(v)x(e* Inev) do.

B(0,=%—) Jo (k—1)!
For (t,v) € [0,1] x B(0,7/(e% In¢]|)), we have y — e%wv € y + B(0,1) for £ small enough.
Then, for y € K, y — %w lies in K’ for (¢,v) in the domain of integration. It follows

ak

€
ﬁpK',k(Qe)/ [v[*|p(v)|dv < C’E“ka/,k(gg)

RE ku S
| Rk, y) G e

< Cé_ak—N(k) _ O(Em).
(The constant C' > 0 depends only on the integer & and on p.) Summing up all results,
we get supy e [Ac(y)| = O@E™).
As (AL): € En(RY) and px o(AL) = O(e™) for all m > 0 and K CC R, we conclude
that (A.). € N(R?), without estimating the derivatives, by using theorem 1.2.3 of [11].

(ii) The main tools for the proof of both cases are, as for (i), the Taylor formula and the
nature of the regular spaces £,. Nonetheless, let us quote some differences: On the one



KERNEL THEOREMS 7

hand, both cases differ from (i) by the global estimates they need; On the other hand,
the construction of the accelerated -net is simpler. For the case of £ § *(R%), the detailed
proof can be found in [7]. For the case of £%¢(R?), note that the independence of g with
respect to the derivative index [ in the definition of £+ (R?) plays a big part in the result
(see (1)). m

REMARK 2.8. In addition, we have a quasi-uniqueness result in the following sense: For
every accelerated d-net (pca(-))e, one has p.a — & as e — 0. Thus, all the units defined
as above are associated. (This does not violate the usual uniqueness of units for internal
laws, since (f.a). does not belongs to 57 (R?).) The same holds for (pea). defined as
in (ii).

3. Kernel theorems

3.1. Generalized integral operators. From now on m and n are two strictly positive
integers.

DEFINITION 3.1. Let H be in G(R™*™) (resp. G, (R™*™)). The integral operator of kernel
H is the map H defined by

H:Go(R") — G(R™) (resp. Gs(R") — G (R™)), [ H(f) = /H(ny)f(y) dy.

The integral, in the previous definition, is well defined by means of representatives
(H.): and (f.). of H and f respectively [3]. Indeed, for the case of H € G(R™™) and
f € Gc(R™), we have

10 = |(e [ Har) dy)]

where W is an open neighborhood of supp f. (Note that, in [2] and [8], the generalized
function H has to be properly supported since H acts on G(R™).) For the case of H in
G, (R™*™), the net (y — H:(x,y)f-(y))e belongs to Es(R™) for all x in R™. Thus, the inte-
gral [H.(z,y)[-(y) dy exists for all € € (0, 1]. Moreover, the net (z — [H.(z,y)f-(y) dy)-
belongs to £, (R™) and its class defines the element H(f) of G,(R™).

In both cases, it can be easily seen that the map H is a linear map of ((Nj—modules,
continuous for the respective sharp topologies of the spaces under consideration. We
refer the reader to [17, 18] for the sharp topology and to [2] for additional comments on
continuity for integral operators acting on the usual Colombeau algebras. The map which
associates H to H is injective. Indeed, for the case of H € G(R™™) acting on G (R™),
one adapts the proofs given in [2] or [8] for the case of H € G(R™*") properly supported
acting on G(R™). The case of H € G,(R™"") is treated in [7].

3.2. Extension of linear maps. We turn to the definition and the properties of the
nets of linear maps used in the main theorems. We have to distinguish the two cases
under consideration. This is due, in particular, to the topological nature of D(R™). We
recall that D(Q) can be considered as the inductive limit of

D;(Q) = Dr;(Q) = {f € D(Q) | supp f C K},
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where (K) en is an increasing sequence of compact sets exhausting €2, with K; C IO( 1
and D,;(Q) is endowed with the topology given by the family of seminorms (p;;)ien
defined by p;i(f) = supyek,, jaj<i 0% f(@)]. (The topology on D(£2) does not depend on
the particular choice of the sequence (Kj;);en.)

DEFINITION 3.2 ([5]). Let (L.). € L(D(R™),C>(R™))! be a net of linear maps.
(i) We say that (L.). is continuously moderate (resp. negligible) if

VieN, VK CCR™, VieN, 3(C.). € Xy (Ry) (resp. N(Ry)), ()
A" eN, Vf e Dj(R™), pri(L:(f)) < Cepj(f), for € small enough.

(ii) Let (b,c) bein [0, +o0] x RT. We say that (L. ). is Ly c-strongly continuously moderate
if: Vj e N, VK CC R™,

3\ € NY with limsup(A(1)/1) < b, 3r € RY with limsup(r(1)/1) < e,

l—+o00 l—4o00

VieN, 3C e Ry, Vf € D;(R"), pra(L:(f)) < CE_T(l)pj,)\(l)(f), for € small enough.

DEFINITION 3.3 ([7]). Let (Lo). € L(S(R™), O3 (R™))H be a net of linear maps.
(i) We say that (L.). is moderate (resp. negligible) if

VIeN, 3(C.): € En(Ry) (resp. N(RL)), I(p,q,1') € N3, )
Ve SR, p_pi(Le(f)) < Ce pigu(f), for € small enough.

(ii) Let (b,c) be in [0,4+00] x Ry. We say that (L.). is Ly c-strongly moderate if
3X € N¥ with limsup(A(1)/1) < b, 3r € RY with lim sup(r(1)/1) < e,

l—+o0 —+00

VI €N, 3C € Ry, 3(p,q) € N%, Vf € SR™), p—pui(Le(f)) < Ce™ W pgnay(f),
for € small enough.

These nets give rise to linear maps acting between the respective generalized spaces.
More precisely, we get the:

PROPOSITION 3.4 ([5, 7]).
(i) Any continuously moderate net
(Le)- € L(DR™), C=(R™)OY (resp. L(S(R™), Opr(R™))M)

can be extended in a map L € L(Go(R™), G(R™)) (resp. L(Gs(R™), G-(R™))) defined
by L(f) = (Le(fe))e N (R™) (resp. N-(R™)) where (fc) is any representative of f.

(ii) The extension L depends only on the family (L) in the following sense: If (Ng)e
is a net of negligible maps, then the extensions of (Lc). and (Le + Ne)e are equal.
The extension L depends only on the family (L.) in the following sense: If (N¢). is
a net of negligible maps, then the extensions of (L¢)e and (Le + N¢)e are equal.

(iii) If the family (Lc)e is moderate, with the assumption that the net of constants (C¢).
in (8) (resp. (9)) satisfies C. = O(e~"W) with limsup,_, . (r(1)/1) < ¢, then
L(GX (R™)) (resp. L(GF(R™))) is included in G*<(R™) (resp. GE<(R™)).

(iv) Let (b,c) be in (RT)3 and suppose that the net (L.). is Ly .-strongly continu-
ously moderate. Then, for all a > 0, L(GE*(R™)) (resp. G5*(R™)) is included
in GLavte(R™) (resp. QTE“”C(R")).
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Moreover, L(GE®(R™)) (resp. L(GS°(R™))) is included in G~ (R™) (resp. GEe (R™)) for
any ¢ > ¢, even if b = +o0.

REMARK 3.5. Following [21], a linear map L : D(R") — G(R™) (which is a similar
situation to ours) is continuously moderate if, and only if, it is r-continuous and moderate
in the following sense: L admits a representative (L. : D(R™) — C*®°(R™)). formed by
continuous linear maps, which are moderate (that is: (L.(f))e € Epm(R™), for all f €
D(R™)). This, in some sense, justifies the definition given here of continuously moderate
nets.

3.3. Kernel theorems

THEOREM 3.6 (Schwartz kernel type theorem). Consider (b,c) € R2. Let (L.) €
L(D(R™), C>(R™)) O be a net of Ly, .-strongly continuously moderate linear maps and
L € L(Gco(R™),G(R™)) its canonical extension. For any a > 0, there exists Hy in
G 2tabre) (RMH™) such, that

Vfeget (R, L) = [HL(.v)f(y)dy.
THEOREM 3.7 (Nuclear kernel type theorem). Consider (b,c) € R%Z and (L.). €
L(S(R™), Opr(R™) O g net of Ly .-strongly moderate linear maps. Denote by L €
L(Gs(R™),G,(R™)) its canonical extension. For any a > 0, there exists Hp in

L
G 2 (R™H™) such that

Vi€ G5t (RY), L(f) = [Hi(,y)f(y)dy. (10)
These results have exactly the same structure. In fact, the difference between them
is somehow hidden but can be seen in the definition of moderate maps which takes into
account the specific topological structure of the starting spaces. (See Definitions 3.2 and
3.3.) In both results, the parameter a gives the size of the space on which the result holds,
the parameter b (resp. ¢) is related to the “regularity” of the net (L.)., with respect to
the derivative index [ in the family of semi-norms defining the topology (resp. to the
parameter €).
By using Proposition 3.4-(iii), we can obtain an analog of this result valid for more
irregular nets of maps. We give it for the case of nuclear kernel type theorem.

THEOREM 3.8. Let (L.). € L(S(R™), O (R™)O be a net of moderate linear maps
such that the net of constants (C.). in relation (9) satisfies C. = O(e~") with r € L.
(¢ > 0). Then, the extension of (Lc)e admits an integral representation such that relation
(10) holds for f in G (R™).

We turn now to the relationship with the classical isomorphism result: Consider
A € L(D(R™),D'(R™)) (resp. L(S(R™),S" (R™)))
and define a net of linear mappings (L.). by
Le : D(R") (resp. S(R™)) — C*(R™), fr— A(f) * ¢e,

where (p¢)e is constructed as (6:)c in (3). (For the resp. case, ¢ could be simply chosen
in D(R™) satisfying (2).)
We have:
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PROPOSITION 3.9.

(i) For alle € (0,1], L. is continuous for the usual topologies of D(R™) (resp. S(R™))
and C°(R™) (resp. Opr(R™)) and the net (L.). is (0, s)-strongly moderate for any
s> 1.

(ii) From (i), the extension La of the net (L:)e admits a kernel Hyp, of sublinear
asymptotic growth. Furthermore, for oll f € D(R™) (resp. S(R™)), t(A(f)) (resp.
1 (A(f))) is equal to HL(f).

From Proposition 3.9, we immediately get that the following diagram is commutative

A A

DR™ A DERw S®RM A SRy
lo - L resp. |l 0s - Lir (11)
glomy MIE gRrm) glomm)y “ZE g (R

This shows that in this case, we transpose the classical result to the generalized frame-
work. (See [2] for further remarks on this subject.) Note that Proposition 3.9 also implies
that A(f) and Hy, (f) are equal in the generalized distribution sense [13] that is, for all
p € N, and for the resp. case

Ve SE™)., (Afg) - [ ( / HLA,€<x,y>f<y>dy)g<x>dx=0<ap>,

where (Hp, ). is any representative of Hy,,. In particular, this result implies that A(f)
and Hp, (f) are associated or weakly equal, i.e.

(a: ~ [t e s) dy> — A(f) in S'(R™) as ¢ — 0.

Finally, let us mention that in [21], a kernel theorem is proved for r-continuous maps
L acting between D(R™) and G(R™) (see Remark 3.5). On the one hand, using the
continuous and moderate representative of L, the result is more closely related to the
classical one. For example, the proof can use the explicit form of the kernel of a continuous
linear map from D(R™) to D(R™), as given by the classical Schwartz kernel theorem.
We refer the reader to [21] for more details, and for additional properties of G®-type,
specially concerning uniqueness, which are allowed by this framework. On the other hand,
our results seem a little more general as they concern linear maps acting between spaces
of generalized functions (even if these maps are particular ones in the sense they are given
by representatives).

4. Proofs of the main results. We shall give the main ideas of the proof of Theorem
3.6. The proofs of Theorem 3.7 and 3.8 follow quite similar lines. In particular, Theorem
2.7 plays a major role, as seen at the end of the proof. To show different technics, we
shall give the proof of Proposition 3.9 for the temperate case.

4.1. Proof of Theorem 3.6. Let us fix a net of mollifiers (¢.:). € (D(R™))©! (resp.
(Yea)e € (D(R™))(01]) satisfying conditions (4), where t € R, will be fixed latter. Set

Yea,. : R" = DR"), y+— {v thea(y —v)}.



KERNEL THEOREMS 11

Consider
Hy .- R — C, (z,y)— La(waa,y) * pet (),

which is well defined since ¢.+ is compactly supported. Classical regularity results imply
that H. is of class C* for all ¢ € (0, 1]. A routine checking shows that (H.). € Ep (R™H™).
A closer inspection (left to the reader) leads to

(H.). € Exev+et (R™1), (12)

We shall now prove that the operator Hy of kernel [(Hy )] is the expected kernel
operator. We fix f € Gc(R") and one of its representatives (f:). such that all f. have
the same compact support. We have to show that L([(fe)e]) = [(He(fe))e]-

LEMMA 4.1. For all € € (0,1], we have
Era(fé)@) = (Le(ea * f2) x pet) ().

Proof. Fix € € (0,1] and z € R™. With the above notations, we have

() = | o ( / L Lelde)z = Dga ) dA) o) dy
- / /  Lelen)(o = e OV Ay

-/ ( [ et e =N Ltw) dy) per (V) AN,

the last two equalities being true by Fubini’s theorem, each integral being calculated on
a compact set. Then, it can be shown, using similar arguments as in ([12], Lemma 4.1.3)
that

[ e Onway - L. ( — [vety- v)fe(y)dy> (6) = Le(tee # £)(6).

(Essentially, the integrals under consideration in the above equalities are integrals of
continuous functions on compact sets and can be considered as limits of Riemann sums
allowing the interchange of the integral and the linear map L..) Thus

FL(1(@) = [ Lol £)(o = Vot ) A = (Lelthn * £2) ) @)
which completes the proof. m

We suppose, in addition, that (f.). is in £%¢(R™). According to Lemma 4.1, we have
for all € € (0,1],

ﬁe(fa) — Le(fe) = Le(ea * fe) * et — Le(fe)
L. (ql}aa * fe) * Pt — La(fe) * et +L€(f€) * Pt — La(fe)
Le(ea x fo — feo) % pet + Le(fe) * pet — Le(fe).

As (f.)e € EF(R™), we have (L.(f.)). € EFav+e(R™), because of the Ly -strongly con-
tinuously moderateness of (L.).. We take t = ab+c and obtain ( Lo (f:) *pet — Le(fe) )e €
N(R™). We also have (¢e * fe — fe)e € N(R™) by Theorem 2.7. Thus

(Le(Yea * fo — f2))e € N(Rm)-
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As (e x pet). € N(R™) for all (n:). € N(R™), we have L. (e * fo — fo) * pee € N(R™)
and, finally H.(f.) — L.(f.) € N(R™). Thus L([(f.):]) = H.([(f-):]) as expected. Due

to (12), we obtain that Hy € G2(@v+o (R™") ending the proof.
4.2. Proof of Proposition 3.9
Assertion (). For a fixed € € (0, 1], L. is obtained by composition of the continuous maps
A:S(R™) — S'(R™) and
S'(R™) — Oy (R™), T T * ..

Thus L. is continuous. We have now to show that the net (L.). € L(S(R™), Opr(R™)):1
is strongly moderate. We have

VfeSRY), Ve e R™, Va e N™, 9%(Lc(f))(x) = (A(f) * 9%¢:)(x)
= (M) Ay = 0%c(z —y)}).
The map
©:SR") x SR™), (f,¢) = (A(f): ¥),
is a bilinear map, separately continuous since A is continuous. As S(R™) and S(R™) are

Fréchet spaces, © is globally continuous. There exist C7 > 0, (q1,11,q2,l2) € N*, such
that

v(fv (P) € S(Rn) X S(Rm)7 |<A(f)’ <P>| <G Haqy,ly (f)/j“qz,b ((P)
In particular, for any | € N and « € N with |a|] <[, we have

vz € R™, |<A(f)7 8“905(95 - )>| <G Hai,l (f):u’qz,b (aa¢€($ - ))7

with
Ve € R™, g, 1,(0%pc(z =)= sup  (14[¢))2|0° oo (z —€)|
EER™ |BI<I2
= sup (14 |z —¢)®0* e (9
EeR™,|B|<I2

< (L [2))* gy 1ot lope -
Using the definition of (. )., we get Cy > 0 such that jig, 1, +1|pe| < Coe™(MFFD for ¢
small enough. Thus, there exists C' > 0 such that, for € small enough,
Vo € R™, (0% (Le(f))(@)] = [(A(f), 0%e(x = ))| < C(1+ [2]) gy 1, (f)emHHD.,
Finally
M—qz,l(La(f)) < C5_<m+l2+l)ﬂq1,l1 (f)
The sequence r(-) = {l — (m + Iy + 1)} satisfies lim;_,; (r(1)/l) = 1. Recalling that Iy

does not depend on [, we obtain our claim.

Assertion (ii). Consider the kernel Hp, associated to (L:(f))c by Theorem 3.7. As
0s(S(R™)) € GE°(R™), we have La(f) = [(L-(f))-]» = Hp,(f) by relation (10). On
the other hand, [(Le(f))elr = [(A(f) * pe)elr = t-(A(f)) by definition of (L.).. This
proves our assertion, the commutativity of diagram (11) and ends the proof of Proposi-
tion 3.9.
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