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Abstract

In analogy to the classical Schwartz kernel theorem, we show that a large class of linear
mappings admits integral kernels in the framework of Colombeau generalized functions.
To do this, we introduce new spaces of generalized functions with slow growth and the
corresponding adapted linear mappings. Finally, we show that, in some sense, Schwartz’
result is contained in our main theorem.
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1 Introduction

It is well known that the framework of Schwartz distributions is not suitable for posing and
solving many differential or integral problems with singular coefficients or data. A natural
approach to overcome this difficulty consists in replacing the given problem by a one-parameter
family of smooth problems. This is done in most theories of generalized functions and, for
example, in Colombeau simplified theory which we are going to use in the sequel. (For details,
see the monographs [2], [7], [13] and the references therein.)

In this paper, we continue the investigations in the field of generalized integral operators
initiated by the pioneering work of D. Scarpalezos [16], and carried on by J.-F. Colombeau
(personal communications and [1]) in view of applications to physics and by C. Garetto et alii
([5], [6]) with applications to pseudo differential operators theory and questions of regularity.

More precisely, the following results holds: Every H belonging to G (R™ x R™) defines a
linear operator from Go (R™) to G (R™) by the formula

6o @)= G®™, oAl = |(s— [Hieniw dy)j |

where (H.)_ (resp. (f:).) is any representative of H (resp. f) and [-] is the class of an element
in G (Rd). (For any d € N, G (Rd) denotes the usual quotient space of Colombeau simplified



generalized functions, while Go (Rd) is the subspace of elements of G (Rd) compactly supported:
See section 2 for the mathematical framework.)

Conversely, in the distributional case, the well known Schwartz kernel theorem asserts that
each linear map A from D (R™) to D' (R™) continuous for the strong topology of D’ can be
represented by a kernel K € D' (R™ x R™), that is

VfeD(R"), Yo e DR™), (A(f),p)= (K p®f).

Let us recall here that D (R™) is embedded in Go (R™) and D’ (R™) in G (R™). In the spirit
of Schwartz’ theorem, we prove that, in the framework of Colombeau generalized functions, any
net of linear maps (L. : D (R") — C* (R™))_, satisfying some growth properties with respect
to the parameter ¢, gives rise to a linear map L : Go (R™) — G (R™) which can be represented
as an integral operator. This means that there exists a generalized function Hy, € G (R™ x R™)
such that, for any f belonging to convenient subspaces of Go (R™) depending on the regularity
of the map (L.). with respect to €, we have

= (s— [ Hudaniw dyU |

where (Hp ). (resp. (f:).) is any representative of H (resp. f).

Moreover, this result is strongly related to the Schwartz kernel theorem in the following
sense. We can associate to each linear operator A : D (R") — D’ (R™), satisfying the above men-
tioned hypothesis, a strongly moderate map Ly and consequently a kernel Hy,, € G (R™ x R")
with the following equality property: For all f in D (R™), A(f) and Hp, A+ (f) are equal in the
generalized distribution sense [12], that is, for all £ € N and (H I AvE)E representative of Hrp,,,

Vo € D(R™), (A(f),®) — [ ([Hp,. (,9) f(y) dy) B () dx:O<5k> , for £ — 0.

The paper can be divided in two parts. The first part, formed by section 2 and section 3,
introduces all the material which is needed in the sequel. We mention here in particular the
notion of spaces of generalized functions with slow growth, which are subspaces of the usual space
g (Rd) with additional limited growth property with respect to the parameter . Lemma 17
shows one feature of those spaces (used for the proof of the main results): Convolution admits
some special d-nets as unit on them, whereas this result is false in G (]Rd). The second part,
consisting in the two last sections, is devoted to the definition of strongly moderate nets, the
statement of the main results and their proofs.

2 Colombeau type algebras

2.1 The sheaf of Colombeau simplified algebras

Let C* be the sheaf of complex valued smooth functions on R? (d € N) with the usual topology
of uniform convergence. For every open set € of R?, this topology can be described by the family
of seminorms (pK,l(f))K@Q JEN? with

pra(f) = sup [0°f (z).

zeK, |a|<l

(The notation K € €2 means that the set K is a compact set included in €2.)
Set
X (C(Q) = {(f). € C* (@K €Q, VIeN, g €N, py (fo) = O () fore — 0},

N (C®(Q)) = {(fg)g e 2 ()OO YK €, VIeN, VpeN, pry(f) = O(eP) fore — o} .



Lemma 1 ([10] and [11])
(i) The functor X : Q@ — X (C* (Q)) defines a sheaf of subalgebras of the sheaf (C°°) 1
(i4) The functor N : Q — N (C*® (Q)) defines a sheaf of ideals of the sheaf X .

The proof of this lemma is mainly based on the two following arguments:
(a) For each open subset € of X, we have

VIEN, VK €, 3C Ry, V(f.g) € (C® ) pri(f9) < Cpry(f)pri(9),

which asserts that the (pg ;) Keql cn-topology of C* (£2) is compatible with its algebraic struc-
ture.

(b) For two open subsets Q1 C Qs of R, the family of seminorms (py ;) related to €2 is included
in the family of seminorms related to (2o, and

VieN, VK € Y, VfeC® (), pri(fio,) =rra(f).
Definition 2 The sheaf of factor algebras
G=X(C*()/N(CZ())
is called the sheaf of Colombeau type algebras.

The sheaf G turns out to be a sheaf of differential algebras and a sheaf of modules on the
factor ring C = X (C) /N (C), with

X (K) = {(7"8)8 e KO |3q eN, |rs|=0 (6_’1) for e — 0} ,
N (K) = {(rg)g e KOU |vp e N, |re| = O (eP) fore — o},
where K=C or K=R, R..

Notation 3 In the sequel, we shall note, as usual, G () instead of G (C> (QQ)) the algebra of
generalized functions on Q2. For (f:). € X (C*(2)), [(f:).] will be its class in G (£2).
2.2 Generalized functions with compact supports

Let us mention here some remarks about generalized functions with compact supports, which
will be useful in the sequel.

As G is a sheaf, the notion of support of a section f € G (Q) (Q open subset of RY) makes
sense. The following definition will be sufficient for this paper.

Definition 4 The support of a generalized function f € G(Q2), denoted by supp f, is the com-
plement in Q of the largest open subset of @ on which f is null.

Notation 5 We denote by Go () the subset of G (Q) of elements with compact support.

Lemma 6 Every f € Go has a representative (f.). such that each f. has the same compact
support.

For our subject, there is a more convenient way to introduce generalized functions with
compact support. We start from the algebra D (§2) considered as the inductive limit of

D;j(Q) =Dk, (Q) ={f €D(Q) [supp f C Kj },
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where:

(1) (Kj);ey is an increasing sequence of relatively compact subsets exhausting , with Kj; C
[¢]

Kji1;

(77) Dj (2) is endowed with the family of seminorms (p;;),  defined by

leN

pi(f) = sup [0%f ().

z€Kj, |al<l

The topology on D (€2) does not depend on the particular choice of the sequence (K;) jeN-
Construction of spaces of generalized functions based on projective or inductive limits have
already been considered (see e.g. [3], [15]). We just recall it briefly here. Let (Kj), y be a fixed
sequence of compact sets satisfying (i) and set

X (D(2)) = Ujend; () (1)
with X; (Q) = {(f,g)a eD; () |V eN, 3geN, pj(f) =0 (c9) fore — o} ,

N (D () = UjenN; ()
with AV (Q) = {(fg)s eD; ()Y |VIeN, ¥peN, pj (f-) = O (e?) fore — o} .

With these definitions, we have:
Lemma 7 X (D (Q)) is a subalgebra of D () O and N (D (Q)) an ideal of X (D (2)).

The factor space Gp (Q) = X (D (2)) /N (D (R2)) appears to be a natural space of generalized
functions with compact support. The algebra Gp (€2) does not depend on the particular choice
of the sequence (Kj) jeN- Moreover, due to the properties of the family (p;;), we have:
Lemma 8 The spaces Gp (2) and Go () are isomorphic.

Proof. We use the following fundamental property: For all j € N and all (f.), € X; (2) we
have

VieN, Vi’ <j, ¥i" >34, ppi(fo) <p,, (fe) =pjmi(fe). (2)

The last equality holds since supp f C K; C Kj», for all 5/ > j.

Relation (2) implies that X (D (Q2)) € X (C*(Q)) and N (D (R2)) € N (C*(Q)). Let us
show the first inclusion. Consider (f;), in some X; (2). Then, for all [ € N, there exists ¢ € N
such that: p,, (fo) = O (e79) for ¢ — 0. It follows that VK € Q, p,., (f-) <p,, (fe) =0 (7).

These two inclusions imply that the map

v Gp (@) =G Q) (fo). + N (D(Q)) = (fo). + N (C™ ()

is well defined, with ¢ (Gp (2)) C Ge ().

It remains to show that the map ¢ is bijective. Indeed, if (f:). € N (C™ (Q)) with (f.), €
X (Q), we have (f:). € N;(Q) and (f.), € N (D(Q)). Injectivity follows. Conversely, take
g € Gc (). According to lemma 6, there exists a compact set K and a representative (g.). of
g such that supp g. C K, for all e. We observe that K is included in some K, and then, that

(92). € & (). Finally, ¢« ((g:). + M (D())) = g. =



2.3 Embeddings
The space C* (Rd) (d € N) is embedded in G (Rd) by the canonical map

o O™ (Rd> —>Q<Rd> Fio (f€)€+N<C°° <Rd>>, with f. = f for all £ € (0, 1],

which is an injective homomorphism of algebras.
Moreover, the construction of G (Rd) permits to embed the space D’ (]Rd) by means of
convolution with suitable mollifiers. We follow in this paper the ideas of [12].

Lemma 9 There exists a net of mollifiers (6:). € D (Rd) O such that for all k € N
/95 (z) dz = 1—|—O<6k) fore — 0, (3)
vm € N4\ {0}, /wmﬁa () dz =0 (5’“) fore — 0. (4)

Such a net is built in the following way: Consider p € S (]Rd) such that [p(z) dz = 1,
Ja™p(z) dz = 0 for all m € N\ {0} and & € D (R?) such that 0 < x <1, k =1 on [-1, 1)
and k£ = 0 on R%\ [=2,2]%. Then (0-), defined by

Ve e (0,1], Yz €RY, 6. (z)==p (g) K (z|lnel)

satisfies conditions of lemma 9.
Proposition 10 With notations of lemma 9, the map

D (RY) =G (RY) T (T6.), + N (0 (RY))
is an injective homomorphism of vector spaces. Moreover g (q) = 0.

This proposition asserts that the following diagram is commutative:

c* R — D'(R)
N O e
g (R)
2.4 Generalized integral operators

We collect here results about generalized integral operators. We refer the reader to [1] and [6]
for details.

Definition 11 Let H be in G(R™ x R™). The integral operator of kernel H is the map H
defined by

iGo®) 0@ [ =|(or [ Hlea)) dy)j |

where (H)_ (resp. (f:).) is any representative of H (resp. f) and W any relatively compact
open neighborhood of supp f.



Note that in the above mentioned references, the generalized function H satisfies some
addititional conditions such as being properly supported. This assumption is not needed in this
paper, since we consider operators on G¢o (R™): The integral in definition 11 is performed on a
relatively compact set and H (f) does not depend on the choice of such a set.

Proposition 12 With the notations of definition 11, the operator H defines a linear mapping
from Go (R™) to G (R™), continuous for the respective sharp topologies of Go (R™) and G (R™).
Moreover, the map

GR™ x R") - £ (G (R™),G (R™) ; H s 0

18 injective.
In other words, the map H is characterized by the kernel H:

H=0in£(Go (R"),G[R™) < H=0in GR™ x R").

3 Spaces of generalized functions with slow growth

In the sequel, we need to consider some subspaces of G (€2) (€ open subset of R?) with restrictive
conditions of growth with respect to 1/e when the [ index of the families of seminorms is
involved, that is the index related to derivatives. We show that these spaces give a good
framework for extension of linear maps and for convolution of generalized functions. These are
essential properties for our result.

3.1 Definitions
Set

X, (C°(Q)) = {( f2). € € (@)Y VK € Q, 3g € NV, with limy_ o (¢()/1) =0
VIeEN, pry(f) =0 (e71D) fore — 0},

and, for a € (0, +0o0],

Xz, (C®(Q)) = {( £o). € ¢ ()0 VK €, 3g € N, with limsup_,. (g(1)/1) < a

VIEN, pry(f)=0(e79D) fore —0}.
()

Lemma 13 For all a € (0,400], a net (f:). € X ()Y belongs to Xz, (C () iff for all
K € Q, there exists (a/,b) € (Ry)* with o’ < a such that

VIeN, pri(f)=0 (a*a’l*b) for & — 0.

The proof is straightforward and left to the reader. In other words, this lemma asserts
that the growth of the sequence ¢(I) which appears in (5) is at most linear.

Lemma 14 For all a € [0,400], Xz, (C*(R2)) is a subalgebra of X (C* (Q2)) over the ring
X (C).



Proof. We shall do the proof for a € (0,+400]. Take (f.), and (g:), in Xz, (C*(€)) and
K € Q. According to lemma 13, there exists (a/,b) € (Ry)? with o’ < a such that

VieN, pgi(hs) =0 <5_all_b> fore — 0 for he = f. and he = g..

We get immediately that pg; (fe +g:) = O <5_“’l_b) fore — 0, and that (f: + g-). € Xz, (C™(Q)).
For (c.). € X (C), there exists g. such that |c.| = O (¢7%) for ¢ — 0. Then pg;(ccfe) =

0) <5*a/l*b*q8) and (ccf:), € X, (C*(€)). It follows that X, (C*(€2)) is a submodule of

X (C*(Q)) over X (C).
Consider now | € N and o € N? with |a| = [. By the Leibniz formula, we have

Ve € (07 1] ) 0~ (faga) = Z Cg 87]06 80&779&7

<«

where Cf is the generalized binomial coefficient. Thus

sup (0% (fege) (0)] < 3 CApicyy (Jo) Prcja—sy (fe) = O (7 (lo=h=20) for = — 0,

<«

As v < a, we get |y| + | — | =|a| =1 and

sup |07 (fz9:) (z)] = O (es*al'a'*%) fore — 0.
reK

Thus, pk, (f-g:) = O (Efaqa‘*%) fore — 0, and (f: g:). € Xz, (C*(2)). m
Consequently, we can consider the subalgebras of G (2) defined by
G, () = X, (C*(Q) /N (C™(Q)).

Remark 15
(1) For a <b, we have X, C Xr, and thus G, (Q) C Gz, ().

(i) Some spaces with more restrictive conditions of growth with respect to the parameter € have
already been considered (see e.g. [13], [16]). Set

X% (C% (Q)) = {(fg)g e (@)U VK €, 3ge N, Vi€ N, pr, (f.) = O (¢77) fore — o} .
X (C*® () turns out to be a subalgebra of X, (C* (), for all a € [0, +0c]. Therefore
G (Q) = &% (C*(Q)) /N (C*(9))

is a subalgebra of Gz, (Q) and G (). For the local analysis or microlocal analysis of generalized
functions, G plays the role of C* in the case of distributions ([12], [14]). Our spaces G, (2)
give new types of reqularity for genmeralized functions. This will be studied in a forthcoming

paper.

Notation 16 We shall note G (2) (resp. Gr,.c (2)) the subspace of compactly supported
elements of G () (resp. Gr, (2)).



3.2 Fundamental lemma

Lemma 17 Let a be a real in [0,1], d be a positive integer and (). € D (Rd) O et of
mollifiers satisfying conditions (3) and (4). For any (g:). € Xz, (C* (RY)), we have

(gs * 0. — gs)g eN <Coo <Rd>> . (6)

Proof. We shall prove this lemma in the case d = 1, the general case only differs by more
complicated algebraic expressions. It suffices to treat the case a = 1, since Xy, C X, as
mentioned in remark 15.

Fix (g¢). € X, (COO (]Rd)), K a compact set of R and set A, = g. * 0. — g for ¢ € (0, 1].
Writing [ 0. (z) dz = 1+ A with (NZ), € N (R) we get

Ac(y) = / 0y — £)02(x) dz — g () = / (0:(y — ) — 9o (1)) 0-() o + Noge ().

The integration is performed on the compact set [—2/ |ln¢|,2/ |Ine|] which contains supp 6.
There exists a compact set K’ with [y —1,y+1] € K’ for all y € K, and a sequence
q:N— N with limsup, , (¢ (7) /i) < 1 such that

Vi e N, gseulr()’ ‘géi) (5)’ =0 <€_q(i)> for e — 0.

Let m be a positive integer. As limsup,_, o, (¢ (¢) /1) < 1, we get lim;_, o (¢ — ¢(i)) = +00 and
the existence of an integer k such that k — g(k) > m. Taylor’s formula gives

k—1 i k 1
_ (—=z)" (—x) B
9e(y — ) — g=(y) = ; - 9% (y) + = /0 o (g — uz) (1 — )" du,
and
= (=) |
Ady) =D 9 W) / 20, () do
i=1 '
PEZ’;y)
2/|Ing| <_QC)/<7 1 R () — ) (1 — 0¥ dub(2) da ®
+/—2/1na| (k_ 1)‘/0 9 (y )(1 ) d 05( )d +-/\/’€ga (y)

Re(k,y)

According to lemma 9, we have ([ z'0(z) d:U)€ € N (R) and consequently
Vie{0,...,k—1}, /xiQE(z) dz =0 (5m+q(i)) for e — 0.

We get

sup |P: (k,y)] = O (g™) fore — 0.
yeK

Using the definition of 6., we have

Re(hy) == [ //IH (;‘_xi! ( / g (g — ) (1— ) du) o (2) x @lnel) da.




Setting v = x /e, we get

ek 2/(g|lnel) 1
Relk) = 5y, | (o) ( [ ot =) =t du) o (v) x (<[] v) do.

—2/(e|lnel)

For (u,v) € [0,1]x[-2/ (¢ |ln€|),2/ (¢ |ln€])], we have y—euv € [y — 1,y + 1] for £ small enough.
Then, for y € K, y — euv lies in a compact set K’ for (u,v) in the domain of integration.
It follows

ek 2/(g|lnel) .
Be(k.y)] < sup 6@ [ ilp @l
(k—1)! 5er (ellnel)
ok
< ’/ v )| dv
o I ot o o)
§Csup‘g€ 5’5 (C>0).
ek’

The constant C' depends only on the integer k and on p. By assumption on k, we get

sup |R:(k,y)| = O (e™) for e — 0.
yeK

Summing up all results, we get sup,cx Ac(y) = O (e™) for e — 0.
As (A.), € X (C> (R%)) and sup e Ae(y) = O(e™) for e — 0, for all m > 0 and K &

R, we can conclude that (A.), € N (COO (Rd)), without estimating the derivatives by using
theorem 1.2.3 of [7]. m

Remark 18 Let us fix a net of mollifiers (6:)., satisfying conditions (3) and (4), to embed
D' (R?) in G (R). Relation (6) shows that [(0-).] plays the role of identity for convolution in
Gr., (]Rd), whereas this is not true for G (]Rd). This is an essential feature of these new spaces.
(See also example 25 below.)

4 Schwartz type theorem

4.1 Extension of linear maps

Nets of maps (L.). between two topological algebras having some good growth properties with
respect to the parameter e, can be extended to the respective Colombeau spaces based on
algebras, as it is shown in [4], [7] for example. We are going to introduce here new notions
adapted to our framework.

We use notations of 2.2, especially

Dj(R") = {f € D(R") |supp f C Kj},

where (K) jen Is a sequence of compact sets exhausting R™, and D; (R") is endowed with the
family of seminorms pj; (f) = sup,ek;, jaj<t 0% ()] -

Definition 19 Let j be an integer and (L.). € L(D; (R"),C>® (]Rm))(o A be a net of linear
maps.
(1) We say that (L)

. is continuously moderate (resp. negligible) if

VK eR™, VieN, 3(C.). € X (Ry) (resp. N (Ry)) (M)
' eN, VfeD;(R") pry(Le(f)) < Cepjp (f), for e small enough.

9



(1) Let (b, c) be in (R U {+o0})xRy. We say that (L¢), is Ly .-strongly continuously moderate
if
VK € R™, 3\ € NN with limsup (A(1)/1) < b, Ir € N¥ with limsup (r(1)/1) < ¢,

l—+o0 l——+00

VieN, 3C e Ry, VfeD; (R"), pri(Le(f)) < C’f-:*r(l)pj,A(l) (f), fore small enough.
(8)

For the strong moderation, more precise estimates are given for the constants which appear
in (7). As our main result is based on linear maps from D (R") to C* (R"™), we need one further
extension:

Definition 20 A net of maps (L.). € L (D (R™),C*® (R™))%1 s continuously moderate (resp.
negligible, £;, .-strongly continuously moderate) if for every j € N, the restriction (Lgmj (Rn)) €

L(Dj(R"),C*® (Rm))(o’l] is continuously moderate (resp. negligible, Ly .-strongly continuously
moderate) in the sense of definition 19.

Proposition 21
(1) Any continuously moderate net (L;)
L e L(Gc(R™),G(R™)) defined by

L(f) = (Le (f2): + N (C™ (R™)), 9)

where (f.), is any representative of f.

(ii) The extension L depends on the family (L) .
negligible net of maps, then the extensions of (L), and (Ls + N.), are equal.

(i33) Let (a,b,c) be in (Ry)>: If the net (Le), is Ly -strongly continuously moderate, then
L(Gc,c (R")) is included in Gr,,,. (R™). Moreover, L(Gr,c (R")) is included in G, (R™)
even if b = +o0.

e (£(D®R"),C>= R™)) O can be extended to a map

£

only in the following sense: If (Ng). is a

£

Proof. Assertion (i).- Fix K € R™, [ € N and let (f.). be in X (D (R")). There exists
J € N such that (f;). € &;(R") and, according to the definition of moderate nets, we get
(C:). € X (Ry) and I" € N such that

PK, (Le (fe)) < Capj,l’ (fe), for € small enough. (10)

Inequality (10) leads to (L. (f:)). € X (C* (R™)). Moreover, if (f.). belongs to N (D (R™)),
the same inequality implies that (L. (f)). € N (C* (R™)). These two properties show that L
is well defined by formula (9).

Assertion (ii).- The proof is straightforward, using arguments similar to those used for the first
assertion.

Assertion (iii).- We shall do the proof for a € (0,400). Suppose that (L), is Lp ~strongly
moderate and consider (f;), € Xz, (C* (R"))N&; (R™). Fix K € R™. There exists a sequence
A € NY with limsup;_, o (A(1)/1) < b, and a sequence r € NV, with limsup;_, , o (r(1)/1) < ¢,
such that

VieN, 3C e Ry, pri(L:(fe)) < Cefr(l)pp\(l) (fz) (for e small enough).

As (f:). is in X, (C* (R™)), there exists a sequence ¢ € NV, with limsup,_,, » (¢(A\)/\) < a,
such that
YAEN, pia(f)=0 (e*q“)) for & — 0.

10



We get that
VLEN, iy (Lo (f) = O (e70) fore =0, with g1 (1) = (1) + 4 (A1)

If A(1) is bounded, we have immediately that q; (1) /Il = O (r(1)/l) for | — +oo. If A(l) is not

bounded, for A(l) # 0,
g () )  qgA@)AD)
I * A1) T (11)

We have limsup;_, | o, (¢ (A(1)) /A(l)) < a and thus limsup,_, , Q()\)‘((ll))) @ < ab. This gives

limsup (q1(1)/1) < ab+ ¢
l—+o0
and (Le (f:)). € Xy, (C* (R™)), which shows the assertion.
Finally, if (f;), is in Xz, (C* (R™)), the sequence ¢ can be chosen such that limy_ o (¢ (A) /A) =
0. Then, for b = +o0, the sequence [ — A(l)/l is bounded. It follows that limsup;_,, o (¢1(1)/1) <
c.n

We can weaken the assumption on the family (L), if we accept that the result of assertion
(7i1) of proposition 21 holds in a smaller space. More precisely:

Proposition 22 With the notations of proposition 21, if the family (L.). is moderate, with the
assumption that the net of constants (C). in (7) satisfies Cc = O (€_T(1)) with im sup (r(1) /1) <

——+00
¢, then the extension L satisfies L (G (R™)) C G, (R™).

The proof is a simplification of the one of proposition 21, assertion (7).

4.2 Main theorem

Theorem 23 Consider (a,b,¢) € (Ry)> such that a < 1 and ab + ¢ < 1. Let (Le), €

E(D(R"),CC’O(RW))(O’” be a net of Ly c-strongly continuously moderate linear maps, and L €
L (Go(R™),G(R™)) its canonical extension. There exists Hy, € G (R™ x R™) such that

wmeWLm—W~jmmmmmu, (12)

where (Hpc),. (resp. (f:).) is any representative of Hy, (resp. f).

The parameters (a, b, c) can be interpreted in the following way: The parameters b and ¢
give the “regularity” of the net (L.)., with respect to the derivative index [ in the family of
seminorms (pg ;) K.l for b, and to the parameter ¢ for ¢. The more “irregular” the net of maps
(Le). is (that is: the bigger b is and the closer to 1 ¢ is ), the smaller is the space on which
equality (12) holds. The limit cases for ¢ are ¢ = 1 (for which a = 0 and (12) holds only on
Gr,.c (R")) and ¢ = 0 (the net of constants (C;), in relation (7) depends slowly on €) for which
the conditions on (a, b, ¢) are reduced to a < 1 and ab < 1. (Note that these limiting conditions
are induced by lemma 17.) By using proposition 22, we can give a version of theorem 23 valid
for more irregular nets of maps.

€ E(D(R”),C“’(Rm))(o’l} be a net of continuously moderate linear
. in relation (7) satisfies C. = O (6_T(l)) with
limsup (r({)/1) < 1
— 400
and L € L(Go(R™),G(R™)) its canonical extension. Then, the conclusion of theorem 23 holds
on G& (R™).

Theorem 24 Let (L),
maps such that the net of constants (C-)
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Example 25 Remark 18 and relation (6) show also that, for a € [0,1], the identity map of
Gr..c (R™)) admits as kernel

® = [((z,y) = ¢e (z —y)).] (13)

where (p¢) (0,1] s any net of mollifiers satisfying conditions (3) and (4) of lemma 9.

ee

This example shows also that, in general, we don’t have uniqueness in theorem 23, but a
so-called weak uniqueness. In our example, any net (p.). of mollifiers satisfying conditions (3)
and (4) verify also o — d in D’ for ¢ — 0. Thus, kernels of the form (13) are associated
in G (R™ x R™), or weakly equal, i.e. the difference of their representative tends to 0 in D’
for e — 0. (See [7], [11], [12] for further analysis of different associations in Colombeau type
spaces.)

4.3 Relationship with the classical Schwartz theorem: Equality in general-
ized distribution sense

Let A € L(D (R™),D’ (R™)) be continuous for the strong topology and consider the family of
linear mappings (L. ). defined by

L.:DR") — C*(R™) f+> A(f)*¢@es, (sreal parameter in (0,1))
where (¢¢). is a family of mollifiers satisfying conditions (3) and (4) of lemma 9. We have:

Proposition 26
(i) For all € € (0,1], L. is continuous for the usual topologies of D (R™) and C* (R™).
(i1) The net (L.). is (0,s)-strongly moderate.

Consequently, theorem 23 shows that the canonical extension L of the net (L), admits a
kernel Hjy,.

Proposition 27 For all f € D (R"™), A(f) is equal to Hy, (f) in the generalized distribution
sense, that is

VO € D(R™), (A(f),d) :<HL(f),<1>> inC.

In other words, this generalized distributional equality (introduced in [12]) means that, for
all k €N,

Vo € D (R™), <A<f),<1>>—/(/HL,g(x,y)f(y) dy)@(m) dsz(sk),forEHO, (14)

where (Hp ). is any representative of Hp.

In particular, this result implies that A (f) and Hp, (f) are associated or weakly equal, i.e.

(0 [ Hec @) 1) dn) — A(H) D or .

5 Proofs of theorem 23 and propositions 26 and 27

5.1 Proof of theorem 23

We shall only prove theorem 23, since the proof of theorem 24 follows the same lines. Let us
fix a net of mollifiers (¢¢). € (D (Rm))(o’” (resp. (ve). € (D (]Rm))(o’l]) satisfying conditions 3
and 4 of lemma 9. For all y € R", we define
e . :R" =D(R") y—they={v—=1:(y—v)}.
For all y € R™ and ¢ € (0, 1], we set W, ,, = L. (12 ).

12



Lemma 28 The map
U R" — Coo(Rm) Y= \Ile,y = L. (ws,y)
is of class C* for all € € (0,1].

Proof. The map (y,v) — 1. (y — v) from R?" to R is clearly of class C*. It follows that
the map 1) . : y — 1., considered as a map from R™ to C*(R"), is C*®. (See, for example,
theorem 2.2.2 of [7].) As each 1., is compactly supported, we can show that .. belongs in
fact to C*° (R", D (R™)) by using local arguments. Since L. is linear and continuous it follows
that U, is C*°. m

Let us define, for all € € (0,1] and (z,y) € R™ x R™

H. (,y) = (Vey * 02) () = / Le (o) (2 = \) = (V) d.

Note that this integral is performed on a fixed relatively compact set containing supp . for all
e € (0,1].

Lemma 29 For all ¢ € (0,1], H. is of class C* and (H:), € X (R™ x R").

Proof. First, the map g — g*¢. from C>®(R™) into itself is linear continuous and therefore
C*. Using lemma 28, we get that the map y — (V. * ¢.) = He (-, y) from R to C*(R™) is
C*. Using again theorem 2.2.2 of [7], we get that H. belongs to C*°(R™*").

Consider K and K’ two compact subsets of R™. Let us recall that the support of 1. is
compact and decreasing to {0}, when ¢ tends to 0. Then, there exists a compact set K, C R™
such that, for all € € (0,1}, suppt. C Ky and supp ., C y — Ky. Moreover, we can find a
compact set K; (notations are those of 4.1) such that

Vee (0,1], VyeK', t.,€D;(RY).

and p;;(Ye,y) = pKd“l(’l/Jg), for all € € (0,1].

Let us now consider (o, 8) € (N)? and 9 (resp. 9°) the a-partial derivative (resp. (-
partial derivative) with respect to the variable x (resp. y). Noticing that there exists a compact
set K, C R™ such that, for all € € (0, 1], supp -y C K, we get the existence of a constant C'
such that, for all € € (0, 1],

V(z,y) € K x K', |0°0°H (z,y)| <C sup |0”Le (1ey) ()] sup [0%. ()],
fex—K, €K,

< Cpk-K,, 5 (Le (Vey)) Pr, o) (Pe) -
The moderateness of (L.), implies the existence of I € N and (C), € X (Ry) such that, for all
e € (0,1],

V(z,y) € K x K',

aaaﬁHa (.’L‘, y)’ < Cé Pjil (¢E,y)pl{<p,\o¢| (()06) < Cé pK¢7l(wE)pK¢,|a| (()O&) :

The last inequality shows that (p K’|a|+|ﬁ|(H€))€ belongs to X' (R;), which concludes the
proof. m

For all (f:), in X (D (R")) (defined in (1)) we can consider

()@ = [ o = | ( JEACORICEPIEREY dA) f-(y) dy.

since for all € € (0, 1], f- is compactly supported.
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Lemma 30 For all (f:). in X (D (R"™)), we have

He (f2) () = (Le (e * f2) % ¢2) (),
Proof. Let (f.). bein X (D (R")). For all € € (0,1] and « € R™, we have

He (f2) () = /f ( / L) =) d/\> £(y) dy
- /supp o /suppf Le (Vey) (@ = A) e (V) fely) dA dy

_ / ( / Lo (o) (2 — V) £o(y) dy) e (A) dA,

the two last equalities being true by Fubini’s theorem, each integral being calculated on a
compact set.
For all € € (0, 1] and £ € R™, we have the following equality:

[ 1ot @ fway - L. < ~ [ ) fs(y)dy> ©
L. ( ~ [vew-v) fa(y)dy> ©).

Indeed, the integrals under consideration in the above equalities are integrals of continuous
functions on compact sets and can be considered as limits of Riemann sums in the spirit of [9]
(Lemma 4.1.3, p. 89):

V€ R, [ Lo(ey) (©) o) dy = Jim SR L (v (b~ ) (€) (k)
kEZ
Vo e R [ (g = 0) o)y = fimy YW (k= 0) £ (k).
keZ

Notice that, in both sums over Z, only a finite number of terms are non zero, since each f. is
compactly supported. Thus, as the mapping L. is linear, we have

(Zws (kh —v) fe kh) > fe(kh)Le (e (kh —v)).

kEZ kEZ

By continuity of L., we get

L </ Ve (y —v) fz—:(y)dy> (§) = Le (%{%Zhnws (kh —v) fe(kh)> €)

keZ

= lim (Z (k) Le (e (kh — ) <§>>

keZ
_ / Le () () f-(y) dy

Finally, we get, for all € € (0,1] and £ € R™,

[ 1) @ fway - L. ( [t fe(y)dy> ©
L (et £) (8,
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and

ﬁs (fe) (z) = /Ls (Ve * fo) (x = A) e (A) dA = (Le (Y * fe) * ) (). (15)

We now complete the proof of theorem 23. Set
Hp = (Ho.). + N (O™ (R™)) = ((2,9) = (Vey * @2) (), + N (O (R™7)) .

For all (f;). in Xz, (D (R™)), we have
H (). = (B () ]

by definition of the integral in G (R™). We have to compare <P~I «( f€)> and (L (fz)).. According
&

to lemma 30, we have for all € € (0, 1],

ﬁs (fs) — L. (fz—:) = (Ls (¢s * fz—:) * QOE) — L (fz—:)
=L ("/)8 * fs) * e — Le (fs) * 0z + Le (fs) * e — Le (fe)
:Le('@bs*fs_f&)*90€+L5(f5)*90€_L€(f€)-

Remarking that (f.), € &z, (C*(Q)) and (Le (f2)), € AL ., (C () C AL, (C*(Q2)), we
get (Le (f2) * e — Le (f2) ). € N (C® (R™)) and (e * f- — f=). € N (C* (R™)) by lemma 17.
This last property gives

(Le (Ve * fo — [fo) )5 eN(C®[R™)) and (Le (¢ * fo — fo) x @) € N(C™(R™)),
since (n: * c). € N (C® (R™)) for all (n.). € N (C>* (R™)). Finally

(H(52) | = (2= (5] = LD

this last equality by definition of the extension of a linear map.

5.2 Proof of proposition 26

Assertion (1).- We have only to prove continuity on 0. Let us fix ¢ € (0, 1]. Take (f;), € D (RN
a sequence converging to 0 in D (R™). Since A is continuous, the sequence (7%), = (A (fx))
tends to 0 in D' (R™) for the strong topology. Let us recall that [17]:

Lemma 31 A sequence (T}), tends to 0 in D' (R™) for the strong topology if and only if for
all 0 € D (R™) the sequence (T}, * 0), tends to 0, uniformly on every compact set.

For all o in N we take 0, = 0%p.s. Applying lemma 31, the sequences
(The % 0%pes)y, = (0% (T * pes))y,

tend to 0, uniformly on each compact set of R". Thus, L. is continuous.

Assertion (ii).- According to definition 20, we have to show that, for all j € N, the net
<L5\Dj> € (L(D; (R™),C> (Rm)))(o’” is strongly moderate. We have
€

Vf € D, (R"), Yz € R™, Ya € N™, 9° (La,pj (f)> (2) = (A(f) % 8%ps) (@)
=(A(f) {y = 0%es (z —y)}) .
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Consider K a compact subset of R™. As supp @.s decreases to {0} for ¢ — 0, there exists a
compact set K’ such that

Ve e K, Vee€ (0,1], supp(0”(y+— e (z—y))) C K.

The map

©:D; (R") X Dgr (R™),  (f,0) = (A(f),p(z—))
is a bilinear map, separately continuous since A is continuous. As D; (R™) and D (R™) are
Frechet spaces, © is globally continuous. There exists C' > 0, [; € N, [l € N such that

V(f,¢) € Dj (R") x Dgr (R™), [(A(f), ) < CPyay () Prcr gy (0 (2 = )

In particular, for [ € N and a € N™ with |a| < [, we have
{A(F), 0%e (2 = )| < CPjuy (F) Prer 1,(0%pes (2 = ), (16)

and Prr 1,(0%es (x — ) < Pt 1,41(0%pzs (z — +)).
Let us recall that

s (x—) =" {y— e Mo ((z —y) /e°) k (|lne| (x —y))} .

By induction on |a| and using the boundedness of ¢, k£ and their derivatives on R™, we can
show that there exists a constant C7, depending on ||, ¢ and & and their derivatives but not
on ¢, such that

sup |8a {y = (Dgs (:1; — y)}’ < Ci 875(m+|a|+1)'
yeK’

It follows that there exists a constant Cy (independent of €) such that
PK'7l2+l(905 (1' — )) < C’2 5—8(m+12+l+1)‘

Inserting this result into equation (16), we finally get the existence of a constant C'3 (independent
of €) such that

PiaLeip, () = _swp A (F), 0% (2 = )] < Cs es D By (1),
TEK, |a|<

The sequence r (+) = {l — s (m + Iy + | + 1)} satisfies lim;_,;  (7(1)/l) = s < 1. Recalling that
[1 does not depend on [, we obtain our claim. Hl

5.3 Proof of proposition 27
We first have the following;:

Lemma 32 For allT € D' (R™), [(T * ¢es).] is equal to T in the generalized distribution sense.

Proof. Take T' € D' (R™) and g € D(R™). Set, for ¢ € (0,1] and for K such that
suppg C K € R™,

A = /K (T % pes) (x) g (x) doz = /K (T, pes (x —)) g (2) da.
As supp pes decrease to {0} for ¢ — 0, there exists a relatively compact open subset 2 such
that
Ve e K, Vee (0,1], supp(y— ¢ (x —y)) C Q.
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There exists f continuous with compact support and o € N™ such that Tjq = 0%f. This
implies that (T, pes (x —-)) = (0%f, pes (x — -)) and

(T pes ) () = (0% f * pes) () = 0% (f * pes) (2) -

By integration by part (g is compactly supported), it follows that

Ao = [ 07 (75 0e) @) (@) do = (1)) [ (Fri) (@0)9 )
Consider now an integer k and 3 € N such that 8 = 51 + ... + B, with 3; > k, for

each j € {1,...,m}. We consider a function Fjg such that 85F5 = f, which exists since f is
continuous. This function is at least of class C¥. We have

Ao = (_1)|a|/ (0°Fy  per) (2) 0% (2) d
K
= (1) [ (Fype) (2) 0 (0) d
K
(T,g)=(0"f.9) = <3°‘+BFB,9> = (—1)leHA <F/3,3a+ﬁg>
= ()P [ () )9 (o) do
K
Then
(T pes, g) = (T, g) = (~1)* V7 /K ((Fp * per) (2) = (Fp) () 07 Py () da
An adaptation (and simplification) of the proof of lemma 17 shows that

(Fp * @es) (z) — (F3) () = O (5’“) for e — 0.

As ¢ is compactly supported, this last relation leads to

(T % pes,g) — (T, g) = O (5]“) for e — 0.
Since k is arbitrary, our claim follows. m

This lemma implies that for all f € D (R"), [(Le(f)).] = [(A(f) * pes).] is equal to A (f) in
the generalized distribution sense. On the other hand, according to theorem 23, [(L:(f)).] =
Hp, (f) where Hyp, is the integral operator associated to the canonical extension of (L.)_.. This
ends the proof of proposition 27.
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