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Abstract

We present some remarks about the embedding of spaces of Schwartz distri-
butions into spaces of Colombeau generalized functions. Following ideas of M.
Nedeljkov et alii, we recall how a good choice of compactly supported molli�ers
allows to perform globally the embedding of D0 (
) into G (
). We show that this
embedding is equal to the one obtained with local and sheaf arguments by M. Grosser
et alii, this giving various equivalent technics to embed D0 (
) into G (
) :

Mathematics Subject Classi�cation (2000): 46E10, 46E25, 46F05, 46F30

Keywords and phrases: Schwartz distributions, Colombeau generalized functions,
embedding.

1 Introduction

The question of embedding classical spaces such as C0 (
), C1 (
), D0 (
) (where 
 is
an open subset of Rd, d 2 N) into spaces of generalized functions arises naturally. The
main goal of this paper is to give a complete analysis of the various techniques used in
the literature to solve this question in the case of Colombeau simpli�ed algebra ([1], [2],
[5], [6]).

The embedding of C1 (
) into G (
) is classically done by the canonical map

� : C1 (
)! G (
) f ! [(f")"] with f" = f for " 2 (0; 1]

which is an injective homomorphism of algebras. ([(f")"] denotes the class of (f")" in
the factor algebra G (
): See section 2 for a short presentation of G (
) or [1], [2] for a
complete construction.)

For the embedding of D0 (
) into G (
) the following additional assumption is re-
quired: If �A is the expected embedding, one wants the following diagram to be commu-
tative:

(1)
C1 (
) �! D0 (
)

&� # �A
G (
)

;
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that is: �AjC1(
) = �. (It is well known that one could not expect such a commutative
diagram for bigger spaces containing C1 (
) such as C0 (
): See [2], [6].)

In [2], this program is ful�lled by using the sheaf properties of Colombeau algebras.
Let us quote the main step of the construction for the case of the simpli�ed model.
First, an embedding �0 of E 0

�
Rd
�
into G

�
Rd
�
is realized by convolution of compactly

supported distributions with suitable molli�ers (�")" belonging to S
�
Rd
�
. In fact, this

map �0 can be considered as an embedding of E 0
�
Rd
�
into GC

�
Rd
�
, the subalgebra of

G
�
Rd
�
of compactly supported generalized functions, since the support of T 2 E 0

�
Rd
�
is

equal to the support of its image by �0 (Proposition 1.2.12 of [2]). The following step of
the construction of �A is to consider for every open set 
 � Rd an open covering (
�)�
of 
 with relatively compact open sets and to embed D0 (
) into G (
�) with the help of
cuto¤ functions and �0. Using a partition of unity subordinate to (
�)�, �A is constructed
by �gluing the bits obtained before together�. Finally, it is shown that the embedding �A
does not depend on the choice of (
�)� and other material of the construction, excepted
the net (�")".

On one hand, the molli�ers that render the diagram (1) commutative in a straight-
forward way are not compactly supported. On the other hand, �" cannot be convoluted
with elements of D0 (
) unrestrictedly, obliging to consider �rst compactly supported
distributions, and then sheaf arguments.

In [5], the authors give an other construction which avoids this drawback. The main
idea is to use compactly supported molli�ers close enough to the ad hoc molli�ers (�")"
of [2]. This is done by a regular cuto¤ of (�")", this cuto¤ being de�ned with an other
rate of growth than the net (�")", let us say in jln "j, whereas the scale of growth of (�")"
is in 1=". This permits to keep the good properties of the embedding, in particular the
commutativity of the diagram (1). We present this construction in details in section 3
for the case 
 = Rd.

In section 4, we show that these embeddings are in fact equal, consequently only
depending on the choice of the molli�ers (�")". (This dependence is well known for the
simpli�ed Colombeau algebra.) We �nally turn to the case of the embedding of D0 (
)
into the simpli�ed Colombeau Algebra G (
) where 
 is an arbitrary open subset of Rd
(section 5). We show that for the global construction of [5] an additional cuto¤, applied
to the elements of D0 (
), is needed. We also give a local version (with no cuto¤ on the
distribution) of the construction of [5].

Acknowledgements. This work originates from a workshop in Paris 7 and seminars
of the team AANL of the laboratory AOC held in June and September 2003. I deeply
think D. Scarpalezos, S. Pilipovíc, J.-A. Marti, M. Hasler for discussions about these
constructions.

2 Preliminaries

2.1 The sheaf of Colombeau simpli�ed algebras

Let C1 be the sheaf of complex valued smooth functions on Rd (d 2 N); with the
usual topology of uniform convergence. For every open set 
 of Rd, this topology can be
described by the family of semi norms

pK;l(f) = sup
j�j�l;Kb


j@�f (x)j ;

where the notation K b 
 means that the set K is a compact set included in 
.
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Let us set

F (C1 (
))

=
n
(f")" 2 C

1 (
)(0;1]
�� 8l 2 N; 8K b 
; 9q 2 N; pK;l (f") = o

�
"�q
�
for "! 0

o
;

N (C1 (
))

=
n
(f")" 2 C

1 (
)(0;1] j 8l 2 N; 8K b 
; 8p 2 N; pK;l (f") = o ("p) for "! 0
o
:

Lemma 1 [3] and [4]
i. The functor F : 
! F (C1 (
)) de�nes a sheaf of subalgebras of the sheaf (C1)(0;1] :
ii. The functor N : 
! N (C1 (
)) de�nes a sheaf of ideals of the sheaf F .

We shall note prove in detail this lemma but quote the two mains arguments:
i. For each open subset 
 of X, the family of seminorms (pK;l) related to 
 is compatible
with the algebraic structure of C1 (
) ; In particular:

8l 2 N; 8K b 
; 9C 2 R�+; 8 (f; g) 2 (C1 (
))2 pK;l (fg) � CpK;l (f) pK;l (g) ;

ii. For two open subsets 
1 � 
2 of Rd, the family of seminorms (pK;l) related to 
1 is
included in the family of seminorms related to 
2 and

8l 2 N; 8K b 
1; 8f 2 C1 (
2) ; pK;l
�
fj
1

�
= pK;l (f) :

De�nition 2 The sheaf of factor algebras

G (C1 (�)) = F (C1 (�)) =N (C1 (�))

is called the sheaf of Colombeau simpli�ed algebras.

The sheaf G turns to be a sheaf of di¤erential algebras and a sheaf of modules on the
factor ring C = F (C) =N (C) with

F (K) =
n
(r")" 2 K

(0;1]
�� 9q 2 N; jr"j = o �"�q� for "! 0

o
;

N (K) =
n
(r")" 2 K

(0;1] j 8p 2 N; jr"j = o ("p) for "! 0
o
;

with K = C or K = R; R+.

Notation 3 In the sequel we shall note, as usual, G (
) instead of G (C1 (
)) the algebra
of generalized functions on 
.

2.2 Local structure of distributions

To �x notations, we recall here two classical results on the local structure of distributions,
which are going to be used in the sequel. We refer the reader to [7] chapter 3, specially
theorems XXI and XXVI, for proofs and details. Let 
 be an open subset of Rd (d 2 N).

Theorem 4 For all T 2 D0 (
) and all 
0 open subset of Rd with 
0 b 
, there exists
f 2 C0

�
Rd
�
whose support is contained in an arbitrary neighborhood of 
0, � 2 Nd such

that Tj
0 = @�f:

Theorem 5 For all T 2 E 0 (
), there exists an integer r � 0, a �nite family (f�)0�j�j�r
(� 2 Nd) with each f� 2 C0

�
Rd
�
having its support contained in the same arbitrary

neighborhood of the support of T , such that T =
P
0�j�j�r @

�f�:
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3 Embedding of D0
�
Rd
�
into G

�
Rd
�

3.1 Construction of the molli�ers

Take � 2 S
�
Rd
�
even such that

(2)
Z
� (x) dx = 1;

Z
xm� (x) dx = 0 for all m 2 Ndn f0g ;

and � 2 D
�
Rd
�
such that 0 � � � 1, � � 1 on B(0; 1) and � � 0 on RdnB(0; 2). De�ne

8" 2 (0; 1] ; 8x 2 Rd; �" (x) =
1

"d
�
�x
"

�
;

and
8" 2 (0; 1) ; 8x 2 Rd; �" (x) = �" (x)� (jln "jx) ; �1 (x) = 1.

Remark 6 The nets (�")" and (�")" de�ned above belong to F
�
C1

�
Rd
��
.

Let us verify this result for (�")" and d = 1. Fixing � 2 N, we have

8x 2 R; @��" (x) =

�X
�=0

C��@
��" (x) @

��� (� (x jln "j))

=
�X
�=0

C��"
�1�� jln "j��� �(�)

�x
"

�
�(���) (x jln "j) :

For all � 2 f0; : : : ; �g, we have "�1�� jln "j��� = o
�
"�2��

�
for " ! 0. As �(n) and �(n)

are bounded, there exists C(�) such that

8x 2 R; j@� (�" (x))j � C(�) "�2��:

Our claim follows from this last inequality.

Lemma 7 With the previous notations, the following properties holds

(�")" � (�")" 2 N
�
C1

�
Rd
��

;(3)

8k 2 N;
Z
�" (x) dx = 1 + o

�
"k
�
for "! 0;(4)

8k 2 N; 8m 2 Ndn f0g ;
Z
xm�" (x) dx = o

�
"k
�
for "! 0:(5)

In other words, we have�Z
�" (x) dx� 1

�
"

2 N (R) 8m 2 Ndn f0g ;
�Z

xm�" (x) dx

�
"

2 N (R) :

Proof. We consider the case d = 1 in order to simplify notations.
First assertion.- We have, for all x 2 R and " 2 (0; 1),

(6) j�" (x)� �" (x)j �
1

"

�����x
"

���� (1� � (x jln "j)) � 1

"

�����x
"

���� :
4



Since � belongs to S (R), for all integers k > 0 there exists a constant C(k) such that

8x 2 R; j� (x)j � C(k)

(1 + jxj)k
.

Then, for all x 2 R with jxj � 1= jln "j ;

(7)
1

"

�����x
"

���� � C(k)

("+ jxj)k
"k�1 � C(k) jln "jk "k�1 = o

�
"k�2

�
:

According to remark 6, (�" � �")" 2 F (C1 (R)). Then we can conclude, without esti-
mating the derivatives, that (�" � �")" 2 N (C1 (R)) by using theorem 1.2.3. of [2].

Second and third assertions.- According to the de�nition of �, we �nd thatZ
�" (x) dx = 1 ; 8m 2 Nn f0g ;

Z
xm�" (x) dx = 0:

So, it su¢ ces to show that, for all m 2 N and k 2 N,

�m;" (x) =

Z
xm (�" (x)� �" (x)) dx = o

�
"k
�
for "! 0;

to complete our proof. Let �x m 2 N. We have

�m;" (x) =

Z 1=jln "j

�1
xm (�" (x)� �" (x)) dx| {z }

(�)

+

Z +1

1=jln "j
xm (�" (x)� �" (x)) dx| {z }

(��)

:

Let us �nd an estimate of (��). We have, according to relations (6) and (7),

8x > 0; 8k 2 N; xm j�" (x)� �" (x)j �
1

"
xm
�����x

"

���� � C(k) "k�1xm�k:

Therefore, by choosing k � m+ 2,�����
Z +1

1=jln "j
xm (�" (x)� �" (x)) dx

����� � C(k) "k�1
Z +1

1=jln "j
xm�k dx

� C(k)

k � 1�m"k�1 jln "jk�m�1 = o
�
"k�2

�
; for "! 0:

With a similar estimate for (�), we obtain our claim.

3.2 Construction of the embedding �S

Proposition 8 With notations of lemma 7, the map

�S : D0
�
Rd
�
! G

�
Rd
�

T 7! (T � �")" +N
�
C1

�
Rd
��

is an injective homomorphism of vector spaces. Moreover �SjC1(Rd) = �.
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Proof. We have �rst to show that for all T 2 D0
�
Rd
�
, (T � �")" 2 F (C1 (
)). (This

allows to de�ne the map �S .) Let us �x a compact set K. Consider 
 open subset of Rd
such that K � 
 � 
 b Rd. Let us recall that

8y 2 Rd; T � �"(y) = hT; fx 7! �" (y � x)gi

For y 2 K and x 2 Rd, we have

(8) �" (y � x) 6= 0) y � x 2 B(0; 2

jln "j)) x 2 B(y; 2

jln "j)) x 2 
;

for " small enough.
Then, the function x 7! �" (y � x) belongs to D (
) and

hT; �" (y � �)i =


Tj
 ; �" (y � �)

�
:

Using theorem 4, we can write Tj
 = @�x f where f is a compactly supported continuous
function. Then T � �" = f � @��" and

8y 2 K; (T � �") (y) =
Z


f (y � x) @��" (x) dx:

According to remark 6, there exists m (�) 2 N such that

8x 2 Rd; j@��" (x)j � C"�m(�):

We get
8y 2 K; j(T � �") (y)j � C sup

�2

jf (�)j vol

�


�
"�m(�);

and supy2K j(T � �") (y)j = O
�
"�m(�)

�
for "! 0.

Since @� (f � @��") = f � @�+��", the same arguments apply to derivatives and the
claim follows.

Let us now prove that � is injective, i.e.

(T � �")" 2 N
�
C1

�
Rd
��
) T = 0.

Indeed, taking ' 2 D
�
Rd
�
we have hT � �"; 'i ! hT; 'i, since T � �" ! T in D0. But,

T � �" ! 0 uniformly on supp' since T � �" 2 N
�
C1

�
Rd
��
. Then hT � �"; 'i ! 0 and

hT; 'i = 0.

We shall prove the last assertion in the case d = 1, the general case only di¤ers by
more complicate algebraic expressions.

Let f be in C1 (R) and set � = �S (f)� � (f) : One representative of � is given by

�" : R! F (C1 (R)) y 7! (f � �") (y)� f(y) =
Z
f(y � x)�"(x) dx� f(y):

Fix K a compact set of R. Writing
R
�" (x) dx = 1 +N" with (N")" 2 N (R), we get

�"(y) =

Z
(f(y � x)� f(y)) �"(x) dx+N" f(y):

The integration is performed on the compact set supp �" � [�2= jln "j ; 2= jln "j].
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Let k be a positive integer. Taylor�s formula gives

f(y � x)� f(y) =
kX
i=1

(�x)i

i!
f (i) (y) +

(�x)k

k!

Z 1

0
f (k+1) (y � ux) (1� u)k du

and

�"(y) =
kX
i=1

(�1)i

i!
f (i) (y)

Z 2=jln "j

�2=jln "j
xi �"(x) dx| {z }

P"(k;y)

+

Z 2=jln "j

�2=jln "j

(�x)k

k!

Z 1

0
f (k+1) (y � ux) (1� u)k du �"(x) dx| {z }

R"(k;y)

+N"f(y):

According to lemma 7, we have
�R
xi�"(x) dx

�
"
2 N (R) and consequently

(P" (k; y))" 2 N (R) :

Using the de�nition of �", we have

R"(k; y) =
1

"

Z 2=jln "j

�2=jln "j

(�x)k

k!

Z 1

0
f (k+1) (y � ux) (1� u)k du �

�x
"

�
� (x jln "j) dx:

Setting v = x=", we get

R"(k; y) = "k+1
Z 2=("jln "j)

�2=("jln "j)

(�v)k

k!

Z 1

0
f (k+1) (y � "uv) (1� u)k du � (v)� (" jln "j v) dv:

For (u; v) 2 [0; 1]� [�2= (" jln "j) ; 2= (" jln "j)], we have y�"uv 2 [y � 1; y + 1] for " small
enough. Then, for y 2 K, y � "uv lies in a compact set K 0 for (u; v) in the domain of
integration.

It follows

jR"(k; y)j �
"k

k!
sup
�2K0

���f (k+1) (�)��� Z 2=("jln "j)

�2=("jln "j)
jvjk+1 j� (v)jdv

� "k

k!
sup
�2K0

���f (k+1) (�)��� Z +1

�1
jvjk+1 j� (v)jdv � C"k (C > 0):

The constant C depends only on the integer k, the compact sets K and K 0, � and f .
Finally, for all k > 0

sup
y2K

�"(y) = o
�
"k
�
for "! 0:

As (�")" 2 F
�
C1

�
Rd
��
and supy2K �"(y) = o

�
"k
�
for all k > 0 and K b R, we

can conclude without estimating the derivatives that (�")" 2 N
�
C1

�
Rd
��
by using

theorem 1.2.3. of [2].
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4 Comparison between iA and iS

As mentioned in the introduction, the embedding �A : D0
�
Rd
�
! G

�
Rd
�
constructed in

[2] depends on the choice of the chosen net � 2 S
�
Rd
�
. This dependence is a well known

fact for the simpli�ed Colombeau algebra. Of course, �S depends also on the choice of
� 2 S

�
Rd
�
, but not on the choice of �. Moreover:

Proposition 9 For the same choice of �, we have: �A = �S.

The proof is carried out in the two following subsections.

4.1 Embedding of E 0
�
Rd
�
into G

�
Rd
�

In [2], the embedding of E 0
�
Rd
�
into G

�
Rd
�
is realized with the map

�0 : E 0
�
Rd
�
! G

�
Rd
�

T 7! (T � �")" +N
�
C1

�
Rd
��

:

We compare here with �SjE 0(Rd) . Let us �x T 2 E
0 �Rd�. We have to estimate (T � �")"�

(T � �")".
Using theorem 5, we can write T =

P
finite @

�f�, each f� having a compact support.
We only need to obtain estimation for one summand, and we shall consider that T = @�f .
Setting �" = T � �" � T � �" we have

8y 2 Rd; �" (y) =

Z
f(y � x) (@��" (x)� @��" (x)) dx:

Then

j�" (y)j � C

Z
j@��" (x)� @��" (x)j dx with C = sup

�2Rd
jf (�)j

� C

Z
RdnB(0;1=jln "j)

j@��" (x)� @��" (x)j dx;

since @��" = @��" on B(0; 1= jln "j).
To simplify notations, we suppose d = 1 and � = 1. We have

�0" (x)� �0" (x) = "�1 jln "j�0 (x jln "j) �
�
"�1x

�
+ "�2�0

�
"�1x

�
(� (x jln "j)� 1) :

Since � 2 S (R), for all k 2 N, with k � 2, there exists C(k) 2 R+ such that����(i) (x)��� � C(k)

1 + jxjk
(for i = 0 and i = 1).

Then, for all x with jxj � 1= jln "j, we get����(i) �"�1x���� � C(k) "k
1

"k + jxjk
� C(k) "k jxj�k :

Since jln "j � "�1 for " 2 (0; 1] and j� (x jln "j)� 1j � 1 for all x 2 R, we get

���0" (x)� �0" (x)�� � jxj�k
 
"k�1 jln "j sup

�2R

���0 (�)�� jxj�k C(k) jxj�k + "k�2C(k) jxj�k!

� "k�2C(k)

 
sup
�2R

���0 (�)��+ 1! jxj�k :
8



Then, we get a constant C 0 = C 0 (k; �; f) > 0 such that

j�" (y)j � 2 "k�2C 0
Z +1

1=jln "j
jxj�k dx = 2C 0

k � 1"
k�2 jln "jk�1 :

Finally, we have supy2R j�" (y)j = o
�
"k
�
for all k 2 N.

As (�")" 2 F
�
C1

�
Rd
��
, we �nally conclude that (�")" 2 N

�
C1

�
Rd
��
by using

theorem 1.2.3. of [2]. Then:

Lemma 10 For the same choice of �, we have: �0 = �SjE 0(Rd) .

4.2 Embedding of D0
�
Rd
�
into G

�
Rd
�

Notation 11 In this subsection we shall note Nm = f1; : : : ;mg for all m 2 Nn f0g :

Let us recall brie�y the construction of [2]. Fix some locally �nite open covering
(
�)�2� with 
� b Rd and a family ( �)�2� 2 D

�
Rd
��
with 0 �  � � 1 and  � � 1 on

a neighborhood of 
�. For each � de�ne

�� : D0
�
Rd
�
! G (
�) T 7! �� (T ) = �0 ( �T )j
� =

�
( �T � �")j
�

�
"
+N (C1 (
�)) :

The family (��)�2� is coherent and, by sheaf arguments, there exists a unique �A :
D0
�
Rd
�
! G

�
Rd
�
such that

8� 2 �; �Aj
� = ��:

Moreover, an explicit expression of �A can be given: Let (�j)j2N be a smooth partition
of unity subordinate to (
�)�2�. We have

8T 2 D0
�
Rd
�
; �A (T ) =

�X+1

j=1
�j
��
 �(j)T

�
� �"

��
"
+N

�
C1

�
Rd
��

:

Let us compare �A and �S . Using sheaf properties, we only need to verify that

8� 2 �; �s j
� = �A j
� (= ��) :

For a �xed � 2 � and T 2 D0
�
Rd
�
, we have �� (T ) = �0 ( �T )j
� and

�A j
� � �s j
� (T ) = �0 ( �T )� �s ( �T ) + �s ( �T )� �s (T ) :

(We omit the restriction symbol in the right hand side.)

As  �T 2 E 0
�
Rd
�
, we have �0 ( �T ) = �s ( �T ) according to lemma 10. It remains

to show that �s ( �T ) = �s (T ), that is to compare (( �T ) � �")" and (T � �")". Let us
recall that

8y 2 
�; (( �T ) � �")" (y)� (T � �")" (y) = h �T � T; fx 7! �" (y � x)gi ;

for " small enough.
Let us consider K a compact set included in 
�. According to relation (8), we have

supp �" (y � �) � B(y; 2= jln "j). Using the fact that 
� is open, we obtain that

8y 2 K; 9"y 2 (0; 1] ; B(y; 2= jln "j) � 
�:

9



The family (B(y; 1= jln "yj))y2K is an open covering of K from which we can extract a
�nite one, (B(yl; 1= jln "lj))1�l�n (with "l = "yl). Put

"K = min
1�l�n

"l:

For y 2 K, there exists l 2 Nn such that y 2 B(yl; 1= jln "lj). Then, for " � "2K , we have

supp �" (y � �) � B(y; 2= jln "j) � B(y; 1= jln "K j) � B(yl; 2= jln "lj) � 
�;

since d (y; yl) < 1= jln "lj.
For all y 2 K, �" (y � �) 2 D (
�) for " 2

�
0; "2K

�
. Since Tj
� = ( �T )j
� , we �nally

obtain
8y 2 K; 8" 2

�
0; "2K

�
; h �T � T; fx 7! �" (y � x)gi = 0;

showing that (( �T � T ) � �") lies in N
�
C1

�
Rd
��
.

5 Embedding of D0 (
) into G (
)
All embeddings of D0 (
) into G (
) considered in the literature are based on convolution
of distributions by C1 functions. This product is possible under additional assumptions
in particular about supports. Let consider both constructions compared in this paper.

For the construction of [2], the local construction with cuto¤ techniques applied to
the elements of D0 (
) is needed to obtain a well de�ned product of convolution between
elements of E 0

�
Rd
�
and S

�
Rd
�
. Note that the cuto¤ is �xed once for all, and in particular

does not depend on ".
The construction of [5] allows a �global�embedding of D0

�
Rd
�
into G

�
Rd
�
since the

convolution of elements of D0
�
Rd
�
with (�")" 2

�
D
�
Rd
��(0;1]

is well de�ned. But, for the
case of an open subset 
  Rd, previous arguments show that for y 2 
, the functions
fx 7! �" (y � x)g belongs to D (
) for " smaller than some "y depending on y. This does
not allow the de�nition of the net (T � �")" for T 2 D0 (
) not compactly supported. To
overcome this di¢ culty, a net of cuto¤s (�") 2

�
D
�
Rd
��(0;1]

such that �"T ! T in D0 (
)
is considered, giving a well de�ned convolution of elements of E 0

�
Rd
�
with elements of

D
�
Rd
�
. We present this construction below with small changes and another construction

mixing local techniques and compactly supported molli�ers of [5].

5.1 Embedding using cuto¤ arguments

Let us �x 
 � Rd an open subset and set, for all " 2 (0; 1],

K" =
n
x 2 


��� d(x;Rdn
) � " and d(x; 0) � 1="
o
:

Consider (�") 2
�
D
�
Rd
��(0;1]

such that

8" 2 (0; 1] ; 0 � �" � 1; �" � 1 on K":

(Such a net (�")" is obtained, for example, by convolution of the characteristic function

of K"=2 with a net of molli�ers ('") 2
�
D
�
Rd
��(0;1]

with support decreasing rapidly
enough to f0g.)
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Proposition 12 With notations of lemma 7, the map

(9) �S : D0 (
)! G (
) T 7! ((�"T ) � �")" +N (C1 (
))

is an injective homomorphism of vector spaces. Moreover �SjC1(Rd) = �.

We shall not give a complete proof since it is a slight adaptation of the proof of
proposition 8. We just quote here the main point. As seen above, many estimates have
to be done on compact sets. Let K be a compact set included in 
 and 
0 an open set
such that K � 
0 � 
0 b 
. There exists "0 2 (0; 1] such that

8" 2 (0; "0] ; 
0 � K":

On one hand this implies that we have (�"T )j
0 = (�"0T )j
0 = Tj
0 , for all T 2 D0 (
)
and " 2 (0; "0]. On the other hand, we already noticed that for y 2 K, the functions
fx 7! �" (y � x)g belongs to D0 (
0) for all " 2

�
0; "2K

�
, "K only depending on K.

Thus a representative of �S (T ) is given, for all y 2 K, by the convolution of an element
of E 0

�
Rd
�
with an element of D (
), this being valid for " smaller than min

�
"0; "

2
K

�
only

depending on K. Proof of propositions 8 and 9 can now be adapted using this remark.

Remark 13 For the presentation of the construction of [5] we chose to consider �rst
the case 
 = Rd. In fact, we can unify the construction and consider for all 
 (included
in Rd) the embedding de�ned by (9). In the case 
 = Rd, the cuto¤ functions �" are
equal to one on the closed ball B (0; 1=").

5.2 Embedding using local arguments

Let us �x 
 an open subset of Rd. Recall that relation (8) implies that

8y 2 
; 9"y 2 (0; 1] ; 8" 2 (0; "y] ; supp �" (y � �) � B(y; 2= jln "j) � 
;

and consequently that �" (y � �) 2 D (
) for " 2 (0; "y]. We consider here a local con-
struction to overcome the fact that "y depends on y.

Let 
0 be an open relatively compact subset of 
. As in subsection 4.2, there exists
"
0 such that, for all " � "2
0 and y 2 
, supp �" (y � �) � 
 and �" (y � �) 2 D (
). For
T 2 D0 (
), de�ne, for all y 2 
0,

(10) T" (y) = hT; �" (y � �)i for " 2
�
0; "2
0

�
; T" (y) = T"2


0
(y) for " 2

�
"2
0 ; 1

�
:

Lemma 14 The map

�
0 : D0 (
)! G
�

0
�

T 7! T" (y) +N
�
C1

�

0
��

is an injective homomorphism of vector spaces.

The proof is very similar to proposition 8�s one.

Consider now a locally �nite open covering of (
�)�2� with 
� b 
 and set �� = �
�
for � 2 �.

Lemma 15 The family (��)�2� is coherent.
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Proof. Let us take (�; �) 2 �2 with 
� \ 
� 6= ?. We have

�� j
�\
� = �� j
�\
�

since, for all T in D0 (
), representatives of �� (T ) and �� (T ), written in the form (10),

are equal for " � min
�
"2
� ; "

2

�

�
.

By sheaf properties of G (
) there exists a unique �0S : D0 (
) ! G (
) such that
�0S j
� = �� for all � 2 �. Moreover, we can give an explicit formula: If (	�)�2� is a
partition of unity subordinate to (
�)�2�, we have

8T 2 D0 (
) ; �0S (T ) =
P
�2�	��� (T ) :

This map �0S realizes an embedding which does not depend on the particular choice of
(
�)�2�, the proof thereof is left to the reader.

Remark 16 One may think that it is regrettable to come back here to local arguments,
whereas they are avoided with cuto¤ technique. This is partially true but the advantage of
compactly supported molli�ers remains: The convolution with any distribution is possible.
This renders the local arguments very simple.

5.3 Final remarks

Let 
 be an open subset of Rd.

Proposition 17 For the same choice of �, we have: �A = �S = �0S.

With notations of previous sections, we only have to prove the equality on each open
set 
�, where (
�)�2� is a covering of 
 with relatively compact open sets. As seen
before, we shall have (�"T )j
0� = Tj
0� and �" (y � �) 2 D (


0
�), for all y 2 
� and "

small enough. (
0� is an open subset relatively compact such that 
� � 
0� � 
�.) This
remark leads to our result, since we obtain for T 2 D (
0) representatives for �S(T ) and
�0S(T ) equal for " small enough.

Remark 18
i: Let B1

�
Rd
�
be the subset of elements of S1

�
Rd
�
satisfying (2). We saw that there

exists fundamentally one class of embeddings (��)�2B1(Rd) of D
0 (
) into G (
) which

renders the diagram (1) commutative. For a �xed � 2 B1
�
Rd
�
, �� can be described

globally using technics of [5] or locally using either technics of [2] or of subsection 5.2
of this paper. This enlarges the possibilities when questions of embeddings arise in a
mathematical problem.

ii: As mentioned in the introduction, �0 can be considered as an embedding of E 0
�
Rd
�

into GC
�
Rd
�
. One has the following commutative diagram

D c�! E 0 �0=�S�! GC
#c #c #i

E = C1 (
) c�! D0
�A=�S=�

0
S�! G

where c�! denotes the classical continuous embeddings, and i the canonical embedding
of GC into G.

12



References

[1] Colombeau J.-F., New Generalized Functions and Multiplication of Distributions.
Amsterdam, Oxford, New-York: North-Holland 1984.

[2] Grosser M., Kunzinger M., Oberguggenberger M., Steinbauer R., Geometric Theory
of Generalized Functions with Applications to General Relativity. Kluwer Academic
Press 2001.

[3] Marti J.-A., Fundamental structures and asymptotic microlocalization in sheaves of
generalized functions. Integral Transforms Spec. Funct. 6(1-4) (1998), 223-228.

[4] Marti J.-A., Non linear algebraic analysis of delta shock wave to Burgers�equation.
Paci�c J. Math. 210(1) (2003), 165-187.

[5] Nedeljkov M., Pilipovíc S., Scarpalezos D., The linear theory of Colombeau general-
ized functions. Pitman Research Notes in Mathematics Series 385. Longman 1998.

[6] Oberguggenberger M., Multiplication of Distributions and Applications to Partial
Di¤erential Equations. Longman Scienti�c & Technical 1992.

[7] Schwartz L., Théorie des Distributions. Hermann 1966.

13


