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Abstract

A voting rule is said to be stable if it always elects a fixed-size subset of candidates such that
there is no outside candidate who is majority preferred to any candidate in this set whenever
such a set exists. Such a set is called a Weak Condorcet Committee (WCC). Four stable rules
have been proposed in the literature. In this paper, we propose two new stable rules. Since
nothing is known about the properties of the stable rules, we evaluate all the identified stable
rules on the basis of some appealing properties of voting rules. We show that they all satisfy
the Pareto criterion and they are not monotonic. More, we show that every stable rule fails the
reinforcement requirement.

Keywords: Committee, Condorcet, Stable rule, Reinforcement axiom, Pareto criterion.
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1. Introduction

Modern democracies use different voting rules (systems) for electing parliaments or groups
(committees) of representatives. The most popular voting rules are, among others, the Plurality
rule (used in India, in Great Britain, etc.), the Proportional system (used in Germany, Lebanon,
etc). A committee or a group of representatives is a fixed-size set of alternatives (candidates)
chosen from a larger set of contenders. Committees are chosen to fulfill a given purpose and
their composition can be subject to some constraints or prerequisites: gender equity, minority
representation, quotas and so on. Though a committee meets the prerequisites, it may happen
that one wonders about the real legitimacy of this committee since different voting rules may
lead to different outcomes. As the legitimacy of a committee does not depend only on its com-
position but also on the voting rule used, this gives rise to a couple of questions. What is a good
committee? Does such a committee exist? What should be a good voting rule for selecting com-
mittees? Since the seminal works of Sterne (1871) and Dodgson (1885a,b, 1884, 1876), many
political scientists and social choice theorists have tried to suggest how voting rules can be de-
signed or used for selecting committees. See among others the works of Brams (2008), Brams
et al (2005), Chamberlin and Courant (1983), Dummett (1984), Good and Tideman (1976), Hill
(1988), Kilgour et al. (2006), Monroe (1995), Tullock (1967). A recent paper of Elkind et al.
(2014) examined the properties of some voting rules in multi-winners context.
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According to Gerhlein (1985), one of the prerequisites that can be imposed for committee
selection is the fulfillment of the Condorcet criterion1 (Condorcet, 1785). For committee elec-
tions to be in line with the Condorcet criterion, Gerhlein (1985) suggested the selection, when it
exists, of the fixed-size subset of candidates such that every member majority dominates every
non-member: the Condorcet committee (à la Gerhlein). Such a set does not always exist in gen-
eral (Gerhlein, 1985); when it exists it is unique (Good, 1971, Miller, 1980). Gerhlein (1985)
computed the likelihood of such a set to exist using monte-carlo simulations. He found that with
four contenders there is a 73.6% chance to end with a Condorcet committee of two members
and 82.4% for a three-member committee; with seven contenders, there is a 35% chance to get a
Condorcet committee of three members and 31.2% for a four-member committee. The likelihood
of a Condorcet committee tends to decrease with the number of contenders and the size of the
committee to be elected. Gerhlein (1985) concluded that almost all the well-known voting rules
do not always select the Condorcet committee à la Gerhlein when it exists. Up to our knowl-
edge, there are only two voting rules that have been suggested as always selecting the Condorcet
committee (à la Gerhlein) when it exists. These rules suggested by Ratliff (2003) are:

• The Kemeny-Ratliff rule (KR), which is an adaptation of the Kemeny rule2, selects the
subset of g candidates with the smallest total margin of loss in pairwise comparisons versus
the m − g remaining candidates.

• The Dodgson-Ratliff rule (DR) is an adaptation of the Dodgson rule3. It selects the sub-
set of g candidates that requires the fewest number of adjacency switches to become a
Condorcet committee à la Gerhlein.

Many recent papers have focused on the conditions that guarantee the existence of the Condorcet
committee. See among others the works of Darmann (2013), Elkind et al. (2011, 2015a), Kamwa
and Merlin (2013), Kaymak and Sanver (2003). What comes out from the results of these authors
is that the Condorcet committee seems to be more restrictive as it is hard to get or to find4. There
is a version of the Condorcet committee that is less demanding and more likely to exist: the
weak Condorcet Committee (WCC). A WCC is a fixed-size subset of candidates such that none
of its members is defeated in pairwise comparisons by an outside candidate. It is obvious that a
Condorcet committee (à la Gerhlein) is also a WCC; but a WCC is not necessarily a Condorcet
committee (à la Gerhlein)5. Given that g is the size of the committee to be elected, the WCC does
not exist for some voting profiles while there may exist more than one WCC for some voting
profiles.

1In one winner-election, this criterion requires that a candidate should be declared as the winner if he defeats each of
the other candidates in pairwise comparisons; such a candidate is called the Condorcet winner.

2Given a preference profile with at least three candidates, the Kemeny rule (Kemeny, 1959, Kemeny and Snell, 1960)
operates by computing distances from a given linear order to all the linear orders of the preference profile. The Kemeny
ranking is the linear order that minimizes the total distance to the whole profile; the Kemeny winner is the candidate at
the top of this ranking.

3The Dodgson rule (Dodgson, 1876) elects the candidate who requires the fewest number of switches (or adjacent
switches of candidates) in voters’ preferences in order to become the Condorcet winner. By an adjacent switch of x and
y we mean swapping them in the given linear order. As shown by Bartholdi et al. (1989), Hemaspaandra et al. (1997),
computing the Dodgson-scores is computationally intractable.

4Please refer to the work of Darmann (2013).
5There is also another definition of the Condorcet committee suggested by Fishburn (1981); please see the works of

Kamwa and Merlin (2013), Kaymak and Sanver (2003) for the connections between the Fishburn’s and the Gerhlein’s
definitions.
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According to Coelho (2004)6 a voting rule is said to be stable if it always selects a WCC when
it exists. Coelho (2004) showed that almost all the well-known voting rules in the social choice
literature and even those in use in the real life (such as the Plurality rule and the Borda rule) are
not stable. Coelho (2004) concluded that the Kemeny-Ratliff rule and the Dodgson-Ratliff rule
are also stable if they are used for the selection of WCC7. Coelho (2004) also suggested two
other stable rules:

• The Minimal Number of External Defeats rule (NED) which selects the committee(s) of
size g for which the number of pairwise comparisons lost by its members is minimal.

• The Minimal Size of External Opposition rule (SEO) which is clearly an adaptation of the
Maximin rule8 to committee elections. Given a committee of size g, its margin of loss is
the highest margin of lost of a candidate in this committee against an outside candidate.
The SEO rule elects the committee(s) with the smallest margin of loss.

Coelho (2004) argued that the Kemeny rule, the Dodgson rule and the Maximin rule are not
stable when selecting committees by just appointing the best g candidates of these rules. Kamwa
(2014) came to a similar conclusion about the Young rule9. In this paper, we suggest two new
stable rules:

• The Young-Condorcet rule (YC) which is adapted from the Young rule for committee
elections. Given g as the size of the committee to be elected, the YC rule will select the
set of g candidates that need the fewest number of deletions of voters to become a WCC.

• The Minimal Deletion of Candidates rule (MDC) which selects the set of g candidates that
need the fewest number of deletions of candidates to become a WCC.

We have to point out that if we want to select one-member committees with an odd number
of voters, the KR rule is equivalent to the Kemeny rule, the DR rule to the Dodgson rule, the
SEO rule to the Maximin rule and the YC rule to the Young rule. So, in this paper, our concern
will be on committees of at least two members.

Even though four of the stable rules we focus on are adapted from well-known voting rules,
nothing is known about their normative properties. Barberà and Coelho (2008) have shown that
stability is incompatible with the property of enlargement consistency. Enlargement consistency
requires that whenever a candidate is included in the chosen committee of size g, he must also
be in the chosen committee of size g + 1. As a first step toward a characterization of the whole
family of stable rules, we evaluate our stable rules on the basis of some appealing properties of
voting rules: the Condorcet winner criterion, the Condorcet loser criterion, the Pareto criterion,

6See also the paper of Barberà and Coelho (2008).
7The original KR rule is roughly applied; the DR rule will select the subset of g candidates that requires the fewest

number of adjacency switches to make this subset become a WCC.
8Given a voting situation, the Maximin rule (also called the Simpson-Kramer rule (Kramer, 1977, Simpson, 1969) or

the Minimax rule (Young, 1977)), first determines the support received by each candidate in every pairwise comparison;
the candidate with the greatest minimum support received is the winner. This rule can be traced back to Condorcet (1785)
(see also the book of Black, 1958).

9Suggested by Young (1977), this rule proceeds by deletions of voters. The Young rule elects the candidate(s)
who needs the fewest number of deletions of voters to become the Condorcet winner. Computing the Young-scores is
computationally intractable: see among others the works of Rothe et al. (2003), Betzler et al. (2010) and Caragiannis et
al. (1998).
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the monotonicity criterion, the homogeneity criterion and the reinforcement criterion. All these
criteria are defined later.

The rest of the paper is structured as follows: Section 2 sets the framework with basic def-
initions. The formal definitions of the stable rules are provided in Section 3. In Section 4, we
proceed to the evaluation of our stable rules. Section 5 concludes.

2. Binary relations and preferences

Let N be the set of n voters (n ≥ 2) and A the set of m candidates (m ≥ 3). A binary relation
R over A is a subset of the cartesian product A× A. For a, b ∈ A, if {a, b} ∈ R, we note aRb to say
“a is at least as good as b”. ¬aRb is the negation of aRb. If we have aRb and ¬bRa, we will say
“a is better or strictly preferred to b”. In this case, we write aPb with P denoting the asymmetric
component of R. The symmetric component of R, I, is defined by aIb denoting an indifference
between a and b, i.e, aRb and bRa. The preference profile π = (P1, P2, ..., Pi, ..., Pn) gives all the
linear orders10 of all the n voters on A, where Pi is the strict ranking of a given voter i. The set of
all the preference profiles of size n on A is denoted by P(A)n. In the sequel, we will simply write,
abc to denote that candidate a is ranked before candidate b who is ranked before c. A voting
situation ñ = (n1, n2, ..., nt, ..., nm!) indicates the number of voters for each linear order such that∑m!

t=1 nt = n.
For a given profile π, when the number of voters who rank a before b (denoted by nab) is

greater than that of those who rank b before a (denoted by nba), a is said to be majority preferred
to b. This can graphically be represented by an arrow going from a to b. We denote this by
aM(π)b or simply aMb when there is no ambiguity. For aMb, we say that candidate b loses
the majority contest by a margin equal to nab − nba. If nab = nba, we say that a and b tie and
we denote it by aT (π)b or simply aTb. Graphically, there will be no arrow between a and b
when aTb. Given π, candidate a is the Condorcet winner if we have aM(π)b for all b ∈ A \ {a}.
Candidate a is the Condorcet loser if we have bM(π)a for all b ∈ A \ {a}.

Definition 1. (Majority cycle). Let B be a nonempty subset of A such that B = {a1, ..., a j, ....al}

with 3 ≤ l ≤ m. Given the profile π, the majority relation M is cyclic on B if a jMa j+1 ∀ j =

1, 2, ..., l − 1 and alMa1; l is the length of the cycle.

Assume that we want to elect a committee of size g (1 ≤ g ≤ m−1). We denote byAg the set
of all possible committees of size g. A Weak Condorcet Committee (WCC) is a fixed size subset
of candidates such that no candidate in this subset is defeated in pairwise comparisons by any
outside candidate. Throughout the paper, we adopt the notation {a, b} to refer to the committee
made of candidates a and b.

Definition 2. (Weak Condorcet Committee) With |A| = m, C ∈ Ag is a WCC if and only if
∀x ∈ C and ∀y ∈ A \C we do not have yMx.

Given a voting situation, a WCC may not exist for a given g (see Example 1). For some
voting situations, we can have one or more WCC given g (see Example 2). We denote by Cg(π)
the set of all the WCC of size g given the profile π.

10A linear order is a binary relation that is transitive, reflexive, complete and antisymmetric. A binary relation R on A
is transitive if for a, b, c ∈ A, if aRb and bRc then aRc. R is reflexive if for all a ∈ A, one can write aRa. R is complete if
and only if for all a, b ∈ A, we have aRb or bRa. R is antisymmetric if for all a, b ∈ A, aRb⇒ ¬bRa.
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Example 1. Consider the following preference profile π1 with 3 voters on A = {a, b, c, d}.

profile π1

1 : acbd 1 : bdca 1 : dcba

a

d

b

c

1

1

1
1

1

1

It comes that bM(π1)a, cM(π1)b, bM(π1)d, dM(π1)a, dM(π1)c and cM(π1)a. So, C2(π1) = ∅

while C3(π1) = {b, c, d}.

Example 2. Consider the following preference profile π2 with 6 voters on A = {a, b, c, d}.

profile π2

1 : bcda 1 : cabd 3 : adbc 1 : bacd

a

d

b

c

4
2

2

4

With this profile, we have aM(π2)b, aM(π2)c, aM(π2)d, bM(π2)c, bT (π2)d and cT (π2)d. So, for
g = 2 we get C2(π2) = {{a, b}, {a, d}}; for g = 3 we get C3(π2) = {{a, b, c}, {a, b, d}}.

Let us now define each of the stable rules we focus on.

3. The stable rules

In this section, we first provide a formal definition of each of the stable rules we focus on;
then, we apply these rules to a voting profile (in Example 3). Given a profile π with |A| = m ≥ 3,
Ag the set of all possible committees of size g and a committee C ∈ Ag,

• The Kemeny-Ratliff rule (KR) selects the subset of g candidates with the smallest total
margin of loss in pairwise comparisons versus the m − g remaining candidates. The KR-
score of a committee C denoted KR(π,C) is given by : KR(π,C) =

∑
x∈C,y∈A\C

max{0, nyx −

nxy} and the KR outcome set, KRg(π) is defined as follows: KRg(π) = {C ∈ Ag :
KR(π,C) ≤ KR(π,C′) ∀C′ ∈ Ag \ {C}}.

• The Dodgson-Ratliff rule (DR) chooses the subset(s) of g candidates that requires the
fewest number of adjacency switches to make this subset become a weak Condorcet com-
mittee à la Gerhlein (WCC). The number of switches needed to become a WCC defines
the DR-score of committee C denoted DR(π,C). The DR outcome set, denoted DRg(π),
isDRg(π) = {C ∈ Ag : DR(π,C) ≤ DR(π,C′) ∀C′ ∈ Ag \ {C}}.

• The Minimal Size of External Opposition rule (SEO) elects the committee(s) with the
smallest margin of loss of its members. The SEO-score of committee C, denoted SEO(π,C),
is given by : SEO(π,C) = max

x∈C,y∈A\C
nyx. The SEO outcome set, SEOg(π) is : SEOg(π) =

{C ∈ Ag : SEO(π,C) ≤ SEO(π,C′) ∀C′ ∈ Ag \ {C}}
5



• The Minimal Number of External Defeats Rule (NED) selects the committee(s) of size g
for which the number of pairwise comparisons lost by its members is minimal. The NED-
score of committee C, denoted NED(π,C), is given by : NED(π,C) =

∑
x∈C
|{y ∈ A\C : nxy <

nyx}|. The NED outcome set, denoted NEDg(π), is NEDg(π) = {C ∈ Ag : NED(π,C) ≤
NED(π,C′) ∀C′ ∈ Ag \ {C}}.

• The Young-Condorcet rule (YC) selects the set of g candidates that need the fewest number
of deletions of voters to become a WCC. Let πS be the profile obtained after the deletion
of a subset S of voters (S ⊆ N). The YC-score of a committee C is given by : YC(π,C) =

min
S∈∆(π,C)

|S |; with ∆(π,C) = {S ⊆ N : C ∈ Cg(πS )}. The YC outcome set, denoted YCg(π),

is defined as follows : YCg(π) = {C ∈ Ag : YC(π,C) ≤ YC(π,C′) ∀C′ ∈ Ag \ {C}}.

• The Minimal number of Deletion of Candidates (MDC) elects the set of g candidates that
need the fewest number of deletions of candidates to become a WCC. Given B a subset
of A, let πB be a voting profile obtained after the deletion of a subset B of candidates.
The MDC-score of a committee C ∈ Ag is given by : MDC(π,C) = min

B∈Ω(π,C)
|B|; with

Ω(π,C) = {B ⊆ A : C ∈ Cg(πB)}. The MDC outcome set,MDCg(π), is defined as follows
: MDCg(π) = {C ∈ Ag : MDC(π,C) ≤ MDC(π,C′) ∀C′ ∈ Ag \ {C}}.

In order to illustrate our stable rules, let us consider a voting profile drawn from Ratliff (2003,
p.436).

Example 3. Consider a profile with A = {a, b, c, d} and N = 33.

preferences
6 : abcd 10 : cdba
5 : bcda 1 : bacd
10 : adbc 1 : dcab

a

d

b

c

1
9

1

1

11

11

Pairwise comparisons

vs a b c d
a − 17 17 17
b 16 − 22 12
c 16 11 − 22
d 16 21 11 −

After all computations, we report the scores for g = 2 and g = 3 as it follows:

Scores for g = 2
committees KR DR SEO NED YC MDC
{a, b} 9 5 21 1 9 1
{a, c} 11 6 22 1 11 1
{a, d} 11 6 22 1 11 1
{b, c} 11 7 21 3 9 2
{b, d} 13 7 22 3 11 2
{c, d} 13 7 22 3 11 2

Scores for g = 3
committees KR DR SEO NED YC MDC
{a, b, c} 9 5 21 1 9 1
{a, b, d} 11 6 22 1 11 1
{a, c, d} 11 6 22 1 11 1
{b, c, d} 3 3 17 3 1 1

• For g = 2, we get KR2(π) = DR2(π) = {a, b}, SEO2(π) = YC2(π) = {{a, b}, {b, c}} and
NED2(π) =MDC2(π) = {{a, b}, {a, c}, {a, d}}.
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• For g = 3, we get KR3(π) = DR3(π) = SEO3(π) = YC3(π) = {b, c, d}, NED3(π) =

{{a, b, c}, {a, b, d}, {a, c, d}} andMDC3(π) = {{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}.

We admit that aside from the six stable rules analyzed in this paper, there may exist other
stable rules. To all intents and purposes, note that we are not concerned here by the complexity
of these rules since this question is out of our field of competence. Notice that the NED rule has
a Copeland-like flavor. According to Coelho (2004) and Kamwa (2014), the rule that chooses
the best g Copeland winners and all the Copeland-like flavor’s rules that iteratively selects a
Copeland winner until g candidates have been selected are not stable. We know from Ratliff
(2003) that a committee selected by the KR rule (resp. the DR rule) is not always made of the
top g candidates of the Kemeny (resp. the Dodgson) ranking. This is also the case concerning
the YC rule and the Young ranking, the SEO rule and the Maximin ranking. Therefore there
is no formal connection between a stable rule and the classical rule it is derived from. Kamwa
(2016, 2014) showed that in three-candidate elections and two-member committees, the outcome
set of the KR rule, the DR rule, the YC rule and the SEO rule is always the same while the NED
rule and the MDC rule select the whole set of two-member committees. Let us now check some
properties of our stable rules.

4. Some properties of the stable rules

We have mentioned that the KR rule, the DR rule, the SEO rule and the YC rule are adapted
from well-known voting rules. While many things are known regarding the properties11 of the
Kemeny rule, the Dodgson rule, the Maximin rule and the Young rule almost nothing is known
concerning the corresponding stable rules. From Barberà and Coelho (2008), we know that
there is no stable rule satisfying enlargement consistency. Recall that a voting rule satisfies
enlargement consistency whenever a candidate who is included in an elected committee of size
g must also be in the elected committee of size12 g + 1. What we want to do in this section is to
evaluate our stable rules on the basis of six important criteria13: the Condorcet winner criterion,
the Condorcet loser criterion, the Pareto criterion, the monotonicity criterion, the reinforcement
criterion and the homogeneity criterion. We will redefine some of these properties in order to
suit to the framework of committee elections.

4.1. The Condorcet criterion
As noticed, the notion of “Condorcet committee” is built on the Condorcet winner criterion.

It seems natural to check how our stable rules behave when there is a Condorcet winner or a
Condorcet loser.

A Condorcet winner is a candidate who defeats each of the other ones in pairwise contests. In
a one-winner election, a voting rule is said to be Condorcet consistent or to satisfy the Condorcet
winner criterion if it always elects the Condorcet winner when he exists. It is known that the
Kemeny rule, the Dodgson rule, the Maximin rule and the Young rule all satisfy the Condorcet

11See the works of Fishburn (1977), Nurmi (1987), Richelson (1979, 1981), Tideman (1987), Young and Levenglick
(1978).

12When a voting rule fails to meet the enlargement consistency, this defines what Staring (1986) called the increasing
committee size paradox. Kamwa (2013b), Mitchell and Trumbull (1992) focused on the likelihood of this paradox. This
condition of enlargement consistency is called “Committee monotonicity” in Elkind et al. (2014).

13Elkind et al. (2014) performed a remarkable evaluation of many other voting rules for committee elections.
7



winner criterion. If this criterion is applied to committee elections it will require that when there
is a Condorcet winner, he must belong to the elected committee. We know that the Condorcet
winner when he exists always belongs to the WCC if there is one. To know if our stable rules
satisfy the Condorcet winner criterion, we have to check how they behave when there is a Con-
dorcet winner and no WCC. Lemma 1 tells us that when there is no WCC and that there is a
Condorcet winner, the elected committee under the NED rule and the MDC rule always contains
the Condorcet winner.

Lemma 1. Consider a profile π with m ≥ 3 and 2 ≤ g ≤ m − 1 such that Cg = ∅ and there
is Condorcet winner. The NED-score and the MDC-score are always minimized by a committee
that contains the Condorcet winner.

Proof. Consider a profile π with m ≥ 3 and given 2 ≤ g ≤ m − 1 such that Cg = ∅. Assume in
this profile that there is a Condorcet winner x ∈ A and that there is a committee C ∈ NEDg(π)
such that x < C. Given y ∈ C we define a committee C′ = C \ {y} ∪ {x}. Let us define Z = C ∩C′

and Q = A \ {C ∪C′}.
We denote by def(y/Q) the total number of defeats of candidate y versus candidates in Q.

Similarly, we define def(Z/Q) the total number of defeats of candidates in Z versus those in Q.
In the same manner we define def(y/x) and def(Z/y). Then, we get

NED(π,C) = def(y/x) + def(Z/x) + def(y/Q) + def(Z/Q)
NED(π,C′) = def(Z/y) + def(Z/Q)

By definition, def(y/x) + def(Z/x) = g. It follows that NED(π,C)−NED(π,C′) = g + def(y/Q)−
def(Z/y). Since 0 ≤ def(Z/y) ≤ g−1, it comes that NED(π,C)−NED(π,C′) > 0 ⇔ NED(π,C) >
NED(π,C′). So, the NED-score is always minimized by a committee that contains the Condorcet
winner.

Let us assume that C ∈ MDCg(π). As x is the Condorcet winner, he certainly belongs to the
subset of candidates to be deleted in order to get C ∈ MDCg(π). For simplicity, we denote by
B(Q/Z) the subset of candidates in Q that defeat some candidates in Z and by B(Q/y) the subset
of candidates in Q that defeat y. It follows that for committee C we get MDC(π,C) = |B(Q/Z) ∪
B(Q/y)∪ {x}|; for committee C′ we get MDC(π,C′) = |B(Q/Z)| or MDC(π,C′) = |B(Q/Z)∪ {y}|.
As there is no WCC, it comes that MDC(π,C) ≥ MDC(π,C′). Therefore the MDC rule meets
the Condorcet winner criterion.

In Example 3, candidate a is the Condorcet winner but he is not in {b, c, d} which is the
elected committee (for g = 3) for the DR rule, the KR rule, the SEO rule and the YC rule.
Therefore these rules do not meet the Condorcet winner criterion. Theorem 1 states that if there
is a Condorcet winner, among our six stable rules, only the NED rule and the MDC rule always
satisfy the Condorcet winner criterion no matter the size of the committee to be elected.

Theorem 1. Given m ≥ 3 and 2 ≤ g ≤ m − 1, the NED rule and the MDC rule always select
committees that contain the Condorcet winner.

The proof of Theorem 1 follows directly from Lemma 1.
A Condorcet loser is a candidate who is defeated in all pairwise contests. In one-winner elec-

tions, a voting rule is said to meet the Condorcet loser criterion if it never elects the Condorcet
loser when he exists. Obviously, when a Condorcet loser exists he does not belong to the WCC
if there is one. In committee elections, we say that a voting rule satisfies the Condorcet loser
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criterion if when there is Condorcet loser, this candidate cannot belong to an elected committee.
Theorem 2 tells us that among the stable rules analyzed here only the NED and the MDC rules
satisfy the Condorcet loser criterion.

Theorem 2. With m ≥ 3 candidates and 2 ≤ g ≤ m − 1, among the stable rules in concern here
only the NED and the MDC rules always prevent the election of the Condorcet loser when he
exists.

Proof. To check how our stable rules behave in the presence of a Condorcet loser, we suppose
that there is no WCC for a given g. Let us use a profile to show that the KR rule, the DR rule, the
SEO rule and the YC rule fail the Condorcet loser criterion. Consider the following profile with
21 voters and 5 candidates.

rankings
7 : aedbc
3 : aecdb
7 : bcdea
4 : cdbea

Pairwise comparisons

vs a b c d e
a − 10 10 10 10
b 11 − 14 7 11
c 11 7 − 14 11
d 11 14 7 − 11
e 11 10 10 10 −

a b

ce

d

1

11

1

1

1

7

7

7
1 1

1

In this profile, candidate a is the Condorcet loser. After all computations, we get KR2(π) =

DR2(π) = YC2(π) = SEO2(π) = {a, e}. We see that candidate a belongs to the elected commit-
tee. We then conclude that the KR rule, the DR rule, the SEO rule and the YC rule do not meet
the Condorcet loser criterion.

Now, let us prove that a committee that contains the Condorcet loser is never included in the
NED set. Consider a profile π with m ≥ 3 and 2 ≤ g ≤ m − 1 such that Cg = ∅. Assume in this
profile that there is a Condorcet loser x ∈ A and that there is a committee C ∈ NEDg(π) such
that x ∈ C. We define a committee C′ = C \ {x} ∪ {y} with y ∈ A \ C. Let us take Z = C ∩ C′

and Q = A \ {C ∪ C′}. We denote by def(y/Q) the total number of defeats of candidate y versus
candidates in Q. Similarly, we define def(Z/Q) the total number of defeats of candidates in Z
versus those in Q. If in the same manner we define def(x/y) and def(Z/y). We get

NED(π,C) = def(x/y) + def(x/Q) + def(Z/y) + def(Z/Q)
NED(π,C′) = def(y/Q) + def(Z/Q)

By definition def(x/y) = 1 and we get NED(π,C)−NED(π,C′) = 1 + def(Z/y) + |Q| − def(y/Q).
Since 0 ≤ def(y/Q) ≤ |Q|, it comes that NED(π,C) − NED(π,C′) > 0 ⇔ NED(π,C) >
NED(π,C′). This contradicts that C ∈ NEDg(π).

Concerning the MDC rule, it is obvious that MDC(π,C) = m− g while MDC(π,C′) < m− g;
this contradicts that C ∈ MDCg(π). Therefore the MDC rule meets the Condorcet loser criterion.

4.2. The Pareto criterion
A voting procedure is said to satisfy the Pareto criterion if it never elects a candidate x while

there is a candidate y that all the voters rank before x. According to Felsenthal (2012), there
9



seems to be a wide consensus that a voting procedure that may lead to a Pareto-dominated candi-
date should be disqualified regardless of how often this can happen. In our context of committee
elections, the Pareto criterion will require that if there are two candidates x and y such that x is
always ranked ahead of y, then if there is a winning committee that includes y, then there is also
one that includes x.

assume that there is candidate y that Pareto-dominates x; a selection rule will meet the Pareto
criterion if when x belongs to a selected committee this is also the case for y.

Theorem 3. Given m ≥ 3 and 1 ≤ g ≤ m− 1, KR rule, the DR rule, the MDC rule, the SEO rule,
the NED rule and the YC rule meet the Pareto criterion.

Proof. See Appendix.

4.3. Monotonicity
In one-winner elections, a voting rule is said to be monotonic if when some voters decide to

lift up a winning candidate x in their rankings without changing anything else, this would not
harm candidate x.

For committee elections, many definitions of the monotonicity are possible. One can con-
ceive monotonicity in the sense that lifting up a candidate (member of an elected committee) will
not push this candidate out of the set of the elected candidates no matter what is the new set of
elected committees. We call this, the Candidate Monotonicity criterion. Another possible def-
inition will say that a stable rule satisfies the Membership Monotonicity criterion if when some
voters decide to lift up a candidate (member of an elected committee) in their rankings, without
changing anything else, this would not be harmful to the committee to which this candidate be-
longs to i.e the considered elected committee could not be pushed out of the set of the elected
committees after the lifting up.

In this paper, we only deal with the Candidate Monotonicity criterion and the Membership
Monotonicity criterion as defined above.

Theorem 4. The KR rule, the DR rule, the MDC rule, the SEO rule, the NED rule and the YC
rule satisfy the Candidate Monotonicity criterion14. With at least three voters and at least three
candidates, all these stable rules fail the Membership Monotonicity criterion.

See Appendix for the proof of Theorem 4. At this stage of the analysis, we are not able to say
whether the violation of the Membership Monotonicity criterion is just a rare oddity or betray a
more generalized behavior. One way to do this is to follow the common approach in the social
choice literature through probability computations.

4.4. Homogeneity
A voting rule is homogeneous if given a preference profile and the corresponding outcome,

replicating this profile λ times (λ > 1, λ ∈ N) does not change the outcome. According to Nurmi
(2004, p.12) “inhomogeneous systems pose a major challenge to representative arrangements
since the outcomes ensuing from the representative body depend not only on the correspondence
between the voters’ and their representatives’ views but also on the size of the representative
body”. In our framework, we will say that a stable rule is homogeneous if whenever we replicate
λ times the original profile, the outcome set remains unchanged.

14This criterion is due to Elkind et al. (2014).
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Definition 3. (Homogeneity) Given that g is the size of the committee to be elected and V a
stable rule. For Vg(π) the set of the elected committees with the profile π, the stable rule V is
homogeneous if and only if

Vg(λπ) = Vg(π) ∀λ > 1, λ ∈ N

Theorem 5. Given m ≥ 4 and 1 ≤ g ≤ m − 1, the KR rule, the SEO rule, the NED rule and the
MDC rule are homogeneous while the YC rule and the DR rule are not.

Proof. Given a profile π and a committee C, for λ > 1 we have by definition

KR(λπ,C) =
∑

x∈C,y∈A\C

max{0, λnyx − λnxy} = λ
∑

x∈C,y∈A\C

max{0, nyx − nxy} = λKR(π,C)

So, the KR rule is homogeneous. Similarly we get SEO(λπ,C) = λSEO(π,C): the SEO rule
is homogeneous. By duplicating the electorate, this does not alter the number of defeats of
a candidates; we get NED(λπ,C) = NED(π,C): so, the NED rule is homogeneous. When
we replicate the electorate, the number of deletions of candidates in order to transform a given
candidate into a WCC does not change; then we get MDC(λπ,C) = MDC(π,C). So, the MDC
rule is homogeneous.

Let us now show that the DR rule is not homogeneous. Consider the following profile with
five candidates A = {a, b, c, d, e} and 15 voters.

rankings
3 : eabcd 1 : eabdc
4 : ecadb 1 : ecdab
4 : ebdca 1 : edbca
1 : edabc

Pairwise comparisons

vs a b c d e
a − 10 5 8 0
b 5 − 10 8 0
c 10 5 − 8 0
d 7 7 7 − 0
e 15 15 15 15 −

The reader can check that with this profile we get DR2(π) = {{a, e}, {b, e}, {c, e}, {d, e}}. If we
replicate the electorate 2 times, we get DR2(2π) = {d, e}; committees {a, e}, {b, e} and {c, e} are
no more appointed. Therefore the DR rule is not homogeneous.

In order to show that the YC rule is not homogeneous15, let us consider the following profile
adapted from Young (1977) with seven candidates A = {a, b, c, d, e, f , g} and 9 voters.

rankings
1 : geabcd f 1 : gabce f d
1 : gabec f d 1 : gdabec f
1 : gdaeb f c 1 : gcdaeb f
1 : gcdea f b 1 : gbcdea f
1 : gbced f a

Pairwise comparisons

vs a b c d e f g
a − 7 5 3 5 8 0
b 2 − 7 5 5 8 0
c 4 2 − 7 5 8 0
d 6 4 2 − 5 7 0
e 4 4 4 4 − 9 0
f 1 1 1 2 0 − 0
g 9 9 9 9 9 9 −

The reader can check that YC2(π) = {{a, g}, {e, g}}. When we replicate the electorate 2 times, we
getYC2(2π) = {e, g}; committee {a, g} is no more elected. Thus, the YC rule is not homogeneous.

15Thanks to an anonymous referee for pointing this out.
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4.5. The reinforcement requirement
Introduced by Smith (1973), the reinforcement axiom16 requires that when an electorate is

divided in two groups of voters and that the voting outcome is the same for both groups, this
outcome will remain unchanged when both groups of voters are merged.

Assume that the set of voters N is divided in two disjoints groups N1 and N2 (N1 ∩ N2 = ∅

and N1 ∪ N2 = N). We denote by πi the preference profile associated with group Ni (i = 1, 2)
such that π1 ∪ π2 = π. Given that g is the size of the committee to be elected and V a stable
rule, we denote byVg(πi) andVg(π) the set of the elected committees with the profiles πi and π
respectively.

Definition 4. (Reinforcement criterion) The stable rule V satisfies the reinforcement axiom if
and only if

Vg(π1) ∩Vg(π2) , ∅ ⇒ Vg(π) = Vg(π1) ∩Vg(π2)

Definition 5. (Weak reinforcement criterion) The voting rule V satisfies the weak reinforcement
axiom if and only if

∀C ∈ Vg(π1) ∩Vg(π2) ⇒ C ∈ Vg(π)

We know from the results of Young (1975) and Moulin (1988) that no Condorcet consistent
rules satisfies reinforcement17. As a corollary, Theorem 6 tells us that every stable rule fails the
reinforcement criterion and give more precisions on the stable rules analyzed in this paper.

Theorem 6. Every stable rule fails the reinforcement criterion. More, with at least five voters
and at least three candidates, the KR rule, the DR rule, the MDC rule, the SEO rule, the NED
rule and the YC rule fail the reinforcement criterion.

The proofs of Theorem 6 is provided in Appendix.
In Table 1, we report the results of our evaluation of the six stable rules analyzed here; in this

table, a “yes” means that the voting rule meets the supposed property and a “no” if it does not.

Table 1: Stable rules and their properties

Criteria
Condorcet Condorcet Candidate Membership Reinforcement Homogeneity Paretowinner loser Monotonicity Monotonicity

Rules

KR no no yes no no yes yes
DR no no yes no no no yes

SEO no no yes no no yes yes
YC no no yes no no no yes

MDC yes yes yes no no yes yes
NED yes yes yes no no yes yes

KR=Kemeny-Ratliff rule; DR=Dodgson-Ratliff rule; SEO=Minimal Size of External Opposition rule; YC=Young Condorcet rule;

MDC=Minimal Deletion of Candidates rule; NED=Minimal Number of External Defeats rule.

It comes that the KR rule, the DR rule, the SEO rule and the YC rule do not behave as the
voting rules they are derived from. It comes from Table 1 that apart from the fact that the NED

16This criterion is called the Separability axiom in Smith (1973), Consistency axiom in Young (1975), Reinforcement
axiom in Myerson (1995), etc.

17Courtin et al. (2012, 2014) suggested a slightly different version of this result; they found that with at least seven
voters and at least 3 candidates, all the Condorcet consistent rules they focused on do not meet the reinforcement criterion.

12



and the MDC rules violate the reinforcement criterion and the monotonicity criterion, they tend
to stand out from the others rules: they satisfy more criteria than the others and they are the only
rules that meet both the Condorcet Winner and the Condorcet Loser criteria.

5. Concluding remarks

In this paper, we have proposed two new voting rules for electing the Weak Condorcet Com-
mittee (WCC) when it exists. The first one, the YC (Young-Condorcet) rule is derived from the
Young rule; it selects the fixed-size committee(s) that need(s) the fewest number of deletions of
voters to become a WCC. The other new stable rule we proposed, the MDC (Minimal number
of Deletion of Candidates) rule selects the fixed-size committee(s) that need(s) the fewest num-
ber of deletions of candidates to become a WCC. These new stable rules are added to the four
other rules already suggested in the literature by Ratliff (2003) and Coelho (2004): the KR rule
(derived from the Kemeny rule), the DR rule (adapted from the Dodgson rule), the SEO rule
(adapted from the Maximin rule) and the NED rule.

We have pointed out that there is no formal connection between the stable rules we analyzed
and the classical rules they are adapted from: one cannot find a generic way to transform a single-
winner rule to a committee rule such that when applying this transformation to the Kemeny
rule, the Dodgson rule and so on, we get the corresponding stable rule. What we know is that
it is only for voting situations with three candidates and for two-member committees that the
outcome sets of the stable rules always have at least one committee in common. As nothing
is known in the literature about the properties of all the stable rules proposed, we have tried to
evaluate our stable rules on the basis of some appealing properties of voting rules: the Condorcet
winner criterion, the Condorcet loser criterion, the Pareto criterion, the homogeneity criterion,
the monotonicity criterion and the reinforcement requirement. We showed that they all fail the
property of reinforcement and they are non-monotonic. Among our stable rules, only the NED
and the MDC rules always elect the Condorcet winner when he exists and they always prevent
the election of the Condorcet loser when he exists. The NED and the MDC rules tend to stand
out from the others. Nonetheless, we admit that the criteria used here to evaluate the stable rules
are not enough to draw an hierarchy of the stable rules. We need a larger range of criteria to make
accurate conclusions. A possibility of making the results more general would be to show that
certain properties hold for whole classes of committee voting rules as in Elkind et al. (2015b)
since some of our rules have a flavor of distance-rationalization. A general results about the
properties of such rules would be arguably more interesting than checking properties ad hoc rule
by rule.

Appendices : remaining proofs

Appendix 1: Proof of Theorem 3
Consider a profile π with m ≥ 3 and 1 ≤ g ≤ m − 1 such that Cg = ∅. Assume that for

x, y ∈ A, x Pareto-dominates y and that there is a committee C ∈ NEDg(π) such that y ∈ C and
x < C . We define a committee C′ = C \ {y} ∪ {x}. We also define two subsets Z = C ∩ C′ and
Q = A \ {C ∪C′}.

We denote by def(y/Q) the total number of defeats of candidate y versus candidates in Q.
Similarly, we define def(Z/Q) the total number of defeats of candidates in Z versus those in Q.

13



In the same manner we define def(x/y) and def(Z/y). We get

NED(π,C) = def(y/x) + def(y/Q) + def(Z/x) + def(Z/Q)
NED(π,C′) = def(x/Q) + def(Z/Q) + def(Z/y)

By definition, def(y/x) = 1 and we get

NED(π,C) − NED(π,C′) = 1 + def(y/Q) − def(x/Q) + def(Z/x) − def(Z/y)

Notice that as x Pareto-dominates y, yM(π)z ⇒ xM(π)z for all z ∈ Z and qM(π)x ⇒ qM(π)y
for all q ∈ Q; so, def(Z/x) − def(Z/y) ≥ 0 and def(y/Q) − def(x/Q) ≥ 0. It follows that
NED(π,C) > NED(π,C′) and this contradicts that C is elected.

As x Pareto-dominates y, it is obvious that SEO(π,C) = YC(π,C) = n. Assume there is a
committee C” consisting of top g candidates of some voters for which SEO(π,C”) ≤ n − 1 and
YC(π,C”) ≤ n − 1. So, SEO(π,C) > SEO(π,C”) and YC(π,C) > YC(π,C”) : the committee C
is not elected with the SEO rule nor with the YC rule.

Let us assume that C ∈ MDCg(π). We denote by Qx a subset of Q such that Qx = {q ∈ Q :
qM(π)x}. Similarly, we define Qy = {q ∈ Q : qM(π)y} and Qz = {q ∈ Q : qM(π)z, z ∈ Z}. The
MDC-scores are as follows:

MDC(π,C) = |Qy ∪ Qz| + 1

MDC(π,C′) =

{
|Qx ∪ Qz| + 1 if y defeats some z in Z
|Qx ∪ Qz| if y defeats no z in Z

As x Pareto-dominates y, we get Qx ⊆ Qy and |Qx ∪ Qz| − |Qy ∪ Qz| ≤ 0. So, in all cases, we get
MDC(π,C) −MDC(π,C′) ≥ 0. This contradicts that C is elected while this is not also the case
for C′.

With the KR rule, the scores for committees C and C′ are:

KR(π,C) = n +
∑
z∈Z

max{0, nxz − nzx} +
∑

q∈Q, z∈Z

max{0, nqz − nzq} +
∑
q∈Q

max{0, nqy − nyq}

KR(π,C′) =
∑
q∈Q

max{0, nqx − nxq} +
∑

q∈Q, z∈Z

max{0, nqz − nzq} +
∑
z∈Z

max{0, nyz − nzy}

Then we get

KR(π,C)−KR(π,C′) = n+
∑
z∈Z

max{0, nxz−nzx}+
∑
q∈Q

max{0, nqy−nyq}−
∑
q∈Q

max{0, nqx−nxq}−
∑
z∈Z

max{0, nyz−nzy}

As x Pareto-dominates y, we end with
∑

q∈Q
max{0, nqy − nyq} ≥

∑
q∈Q

max{0, nqx − nxq} and also∑
z∈Z

max{0, nxz − nzx} ≥
∑
z∈Z

max{0, nyz − nzy}; it follows that KR(π,C) > KR(π,C′). So, the KR

rule satisfies the Pareto condition.
Let us now prove that the DR rule meets the Pareto criterion. Assume that committee C is

elected while this is not the case for committee C′. Given xM(π)y we denote by Nyx the smallest
number of adjacent swaps we need in the individual rankings to get yM(π)x or xT (π)y. In the
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same way we define Nzx and Nzy for z ∈ Z; NxQ, NyQ and NzQ for q ∈ Q. When computing the
DR-scores for committees C and C′ we get

DR(π,C) = Nyx +
∑
z∈Z

Nzx +
∑
q∈Q

Nyq +
∑

q∈Q, z∈Z

Nzq

DR(π,C′) =
∑
z∈Z

Nzy +
∑
q∈Q

Nxq +
∑

q∈Q, z∈Z

Nzq

It follows that DR(π,C) − DR(π,C′) = Nyx +
∑
z∈Z

Nzx +
∑

q∈Q
Nyq −

∑
z∈Z

Nzy −
∑

q∈Q
Nxq.

As x Pareto-dominates y, it comes that
∑
z∈Z

Nzx ≥
∑
z∈Z

Nzy and that
∑

q∈Q
Nyq ≥

∑
q∈Q

Nxq. So, we

get DR(π,C) − DR(π,C′) > 0 ⇒ DR(π,C) > DR(π,C′). This contradicts that committee C is
elected: the DR rule satisfies the Pareto criterion.

Appendix 2: Proof of Theorem 4
Consider a profile π with at least three candidates. For simplicity, let us denote by V any of

our stable rules, by V(π,C) the score of a committee C under V and by Vg(π) the set of elected
committees.

• Our stable rules meet the Candidate monotonicity criterion.

Let us denote by Cx the set of committees containing x. Assume that some voters lift up candidate
x in their rankings without changing anything else. It is obvious that for y , x, we get nyx(π′ ≤
nyx(π) and nxy(π′) ≥ nxy(π) in the new profile π′. Also, we get (i) V(π′,C) ≤ V(π,C) for all
C ∈ Cx and (ii) V(π′,C) ≥ V(π,C) for all C < Cx. Let us take a given committee C ∈ Cx such
that C ∈ Vg(π). Assume that V does not meet the Candidate monotonicity criterion. This means
that no committee in Cx is elected after the lifting-up: there is a committee C′ < Cx such that
V(π′,C′) < V(π′,C). By (i) and (ii), we end with

V(π,C′) ≤ V(π′,C′) < V(π′,C) ≤ V(π,C) ⇒ V(π,C′) < V(π,C) : this contradicts C ∈ Vg(π)

For all C ∈ Cx, there is an incompatibility between C ∈ Vg(π) and the violation of the Candidate
monotonicity criterion. Thus, our stable rules meet the Candidate monotonicity criterion.

• Our stable rules do not meet the Membership Monotonicity criterion.

Notice that in case of the existence of a WCC, a lifting up of one of its member cannot be
harmful. So, for the proof we only need to consider the cases where there is no WCC. For the
sake of simplicity, we first focus on the cases where m = 3 and g = 2. We consider the following
profile with three candidates {a, b, c} and 3k + 2p voters; k is an integer greater or equal to 1 and
p is a nonnegative integer18.

k + p : abc k : cab p : cba k : bca

a b

c

k

kk

18With n = 3k + 2p, we cover the cases with odd and even sizes of the electorate.
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The reader can check that each of our stable rules will select {{a, b}, {a, c}, {b, c}} for g = 2.
Assume that the k voters with bca change to cba; this leads to what follows

k + p : abc k : cab p : cba k : cba

a b

c

k

k
k

The committee {a, c} becomes a WCC and is chosen by each of our stable rules. Candidate c
belongs to committee {b, c} and he has benefited from a lifting up that has pushed committee
{b, c} out of the original set of winners. So, none of our stable rules meets the Membership
Monotonicity criterion. To extend the proof to voting situations with more than three candidates,
we just need to reconsider our original profile with {a, b, c} and to add new candidates all ranked
under candidates a, b and c.

Appendix 3: Proof of Theorem 6
Let us consider a situation with three candidates19 A = {a, b, c}. Let us assume that the size

of the electorate is n = 3p + 2k with p and k two positive integers (p ≥ 1, k ≥ 1). This electorate
is divided into two groups as follows.

π1

k : abc k : acb
π2

p : acb p : bac p : cba

The reader can check that, each of our stable rules V leads to the same outcome. For each of
the groups of the electorate, we get the corresponding outcomes sets:

V2(π1) = {{a, b} , {a, c}} , V2(π2) = {{a, b} , {a, c} , {b, c}} andV(π) = {a, c}

We notice that it is always possible to find k and p such thatV2(π1) ∩V2(π2) , ∅ but when
the two groups merge, committee {a, b} is no longer appointed. So, when the number of voters is
at least equal to five, all our stable rules fail the reinforcement condition.

We have to point that with n = 3p+2k (p ≥ 1, k ≥ 1), the case where n = 6 is not covered. For
n = 6, we have used a complete enumeration procedure and we found that with three candidates
it is only possible for the NED rule and the MDC rule to construct two profiles (π1 and π2) such
that when we merge the groups they fail the reinforcement criterion while this is not possible for
the KR rule, the DR rule, the SEO rule and the YC rule. But for n = 6 and four candidates, it is
possible to construct profiles (π1 and π2) such that when we merge the groups, the KR rule, the
DR rule, the SEO rule and the YC rule fail the reinforcement criterion.
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