, Thanks also to Reiko Gotoh and the members of the Institute of Economic Research-Hitotsubashi University (Japan) for their remarks and suggestions. Thanks to all the participants to the session, the Maastricht university under the STSM COST Action IC1205

, European Public Choice Society meetings in

S. Barberà and D. Coelho, How to choose a non-controversial list with k names, Social Choice and Welfare, vol.31, pp.79-96, 2008.

J. Bartholdi, C. A. Tovey, and M. A. Trick, Voting schemes for which it can be difficult to tell who won the election, Social Choice and Welfare, vol.6, issue.3, pp.157-165, 1989.

N. Betzler, J. Guo, and R. Niedermeier, Parameterized computational complexity of Dodgson and Young elections, Information and Computation, vol.208, issue.2, pp.165-177, 2010.

D. Black, The Theory of Committees and Elections, 1958.

S. Brams, Mathematics and Democracy : Designing Better Voting and Fair-Division Procedures, 2008.

S. J. Brams, D. Kilgour, and M. R. Sanver, A minimax procedure for electing committees, Public Choice, vol.132, issue.34, pp.401-420, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00119026

I. Caragiannis, J. Covey, M. Feldman, M. Christopher, C. Homan et al., On the Approximability of Dodgson and Young Elections, Artificial Intelligence, vol.187, pp.31-51, 2012.

J. R. Chamberlin and P. N. Courant, Representative Deliberations and Representative Decisions : Proportional Representation and the Borda Rule, American Political Science Review, vol.77, issue.3, pp.718-733, 1983.

D. Coelho, Understanding, evaluating and selecting voting rules through games and axioms, 2004.

C. Marquis-de, Essai sur l'Application de l'Analyseà la Probabilité des Décisions Renduesà la Pluralité des Voix, 1785.

S. Courtin, B. Mbih, and I. Moyouwou, Are Condorcet procedures so bad according to the reinforcement axiom? Thema Working, pp.2012-2049, 2012.

S. Courtin, B. Mbih, and I. Moyouwou, Are Condorcet procedures so bad according to the reinforcement axiom?, Social Choice and Welfare, vol.42, pp.927-940, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00914870

A. Darmann, How hard is it to tell which is a Condorcet committee?, Mathematical Social Sciences, vol.66, issue.3, pp.282-292, 2013.

C. Dodgson, L (1885a) The principles of parliamentary representation: Postscript to Supplement

C. Dodgson, L (1885b) The principles of parliamentary representation: Supplement, E

C. Dodgson, L (1884) The principles of parliamentary representation, Dummett M. (1984) Voting Procedures

E. Elkind, J. Lang, and A. Saffidine, Choosing collectively optimal sets of alternatives based on the Condorcet criterion, IJCAI11 pp, pp.186-191, 2011.

E. Elkind, P. Faliszewski, P. Skowron, and A. Slinko, Properties of multiwinner voting rules, Proc. of the 13th AAMAS Conference, pp.53-60, 2014.

E. Elkind, J. Lang, and A. Saffidine, Condorcet winning sets, Social Choice and Welfare, vol.44, issue.3, pp.493-517, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01509956

E. Elkind, P. Faliszewski, and A. Slinko, Distance rationalization of voting rules, Social Choice and Welfare, vol.45, issue.2, pp.345-377, 2015.

D. S. Felsenthal, Review of Paradoxes Afflicting Procedures for Electing a Single Candidate in Electoral Systems : Paradoxes, Assumptions, and Procedures, Studies in Choice and Welfare, 2012.

P. Fishburn, An analysis of simple voting systems for electing committees, SIAM Journal on Applied Mathematics, vol.41, pp.499-502, 1981.

P. C. Fishburn, Condorcet social choice functions, SIAM Journal on Applied Mathematics, vol.33, pp.469-489, 1977.

W. V. Gerhlein and P. C. Fishburn, The probability of the paradox of voting: A computable solution, Journal of Economic Theory, vol.13, pp.14-25, 1976.

W. V. Gerhlein, The Condorcet criterion and committee selection, Mathematical Social Sciences, vol.10, issue.1, pp.97-101, 1971.

I. Good and T. T. , A principle for selecting a representative committee. Mimeo, 1976.

E. Hemaspaandra, L. Hemaspaandra, and J. Rothe, Exact analysis of Dodgson elections: Lewis Carroll's 1876 voting system is complete for parallel access to NP, Journal of the ACM, vol.44, issue.6, pp.806-825, 1997.

I. Hill, Some aspects of elections: To fill one seat or many, Journal of the Royal Statistical Society, vol.151, pp.243-275, 1988.

E. Kamwa, Stable Rules for Electing Committees and Divergence on Outcomes, Group Decision and Negotiation, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01631174

E. Kamwa, Essais sur les modes de scrutins et la sélection des comités, 2014.

E. Kamwa, The Kemeny rule and committee elections, Economics Bulletin, vol.33, issue.1, pp.648-654, 2013.

E. Kamwa, The increasing committee size paradox with a small number of candidates, Economics Bulletin, vol.33, issue.2, pp.967-972, 2013.

E. Kamwa and V. Merlin, Coincidence of Condorcet committees. Mimeo CREM Working Paper, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01631176

B. Kaymak and M. R. Sanver, Sets of alternatives as Condorcet winners, Social Choice and Welfare, vol.20, pp.477-494, 2003.

J. Kemeny, Mathematics without numbers, Daedalus, vol.88, pp.571-591, 1959.

J. Kemeny and I. Snell, Mathematical Models in the Social Sciences, 1960.

D. M. Kilgour, S. Brams, and M. Sanver, How to elect a representative committee using approval balloting, Mathematics and Democracy : Recent Advances in Voting Systems and Collective Choice, 2006.

G. H. Kramer, A dynamical model of political equilibrium, Journal of Economic Theory, vol.16, pp.310-334, 1977.

N. R. Miller, A New Solution Set for Tournaments and Majority Voting: Further Graph-Theoretical Approaches to the Theory of Voting, American Journal of Political Science, vol.24, issue.1, pp.68-96, 1980.

D. W. Mitchell and W. N. Trumbull, Frequency of paradox in a common Nwinner voting scheme, Public Choice, vol.73, issue.1, pp.55-69, 1992.

B. Monroe, L (1995) Fully proportional representation, American Political Science Review, vol.89, issue.4, pp.925-940

H. Moulin, Axioms of cooperative decision making, 1988.

R. B. Myerson, Axiomatic derivation of scoring rules without the ordering assumption, Social Choice and Welfare, vol.12, pp.59-74, 1995.

H. Nurmi, A comparison of some distance-based choice rules in ranking environments, Theory and Decision, vol.57, pp.5-24, 2004.

H. Nurmi, Comparing Voting Systems D, 1987.

T. C. Ratliff, Some startling inconsistencies when electing committees, Social Choice and Welfare, vol.21, pp.433-454, 2003.

J. T. Richelson, A comparative-analysis of social choice functions, I, II, III : A summary, Systems Research, vol.24, p.355, 1979.

J. T. Richelson, A comparative analysis of social choice functions IV, Systems Research, vol.26, pp.346-353, 1981.

J. Rothe, H. Spakowski, and J. Vogel, Exact complexity of the winner problem for young elections, Theory of Computing Systems, vol.36, pp.375-386, 2003.

P. Simpson, On defining areas of voter choice, Quarterly Journal of Economics, vol.83, pp.478-490, 1969.

J. H. Smith, Aggregation of preferences with variable electorate, Econometrica, vol.41, pp.1027-1041, 1973.

M. Staring, Two paradoxes of committee elections, Mathematics Magazine, vol.59, issue.3, pp.158-159, 1986.

S. S. , On representative government and personal reprsentation, Philadelphia: J.B. Lippincott, 1871.

T. N. Tideman, Independence of clones as a criterion for voting rules, Social Choice and Welfare, vol.4, pp.185-206, 1987.

G. Tullock, Toward a mathematics of politics, 1967.

H. P. Young, Social Choice scoring functions, SIAM Journal of Applied Mathematics, vol.28, pp.824-838, 1975.

H. P. Young, Extending Condorcet's rule, Journal of Economic Theory, vol.16, pp.335-353, 1977.

H. Young and A. Levenglick, A consistent extension of Condorcet's election principle, SIAM Journal of Applied Mathematics, vol.35, pp.285-300, 1978.