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Strong Borda Paradox revisited∗
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Abstract

For a given voting situation, the Strong Borda Paradox occurs when a Condorcet
loser exists and is elected. A Condorcet loser is a candidate that loses all his pairwise
comparisons. In three-candidate elections, we use an analytical approach to �nd out
the range of all the scoring rules that can exhibit the Strong Borda Paradox under
some well-known preference restrictions and we describe all the scenarios with respect
to the rank of the Condorcet loser in the collective rankings. Using the parameterized
Barvinok's algorithm, we provide a simpli�ed representation of the likelihood of the
Strong Borda Paradox for the Plurality rule and the Antiplurality rule (given the
size of the electorate) with the impartial and anonymous culture condition for each
type of restriction.
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Règles de scores et restrictions de préférences: le

Paradoxe Fort de Borda revisité

Résumé

Pour une situation de vote, le paradoxe fort de Borda se produit lorsqu'il existe un
perdant de Condorcet et que ce dernier est élu. Un perdant de Condorcet est un can-
didat battu dans chacun de ses duels majoritaires. Pour des situations de vote avec
trois candidats, nous utilisons une approche analytique pour déterminer l'ensemble
de toutes les règles de scores vulnérables au paradoxe fort de Borda ceci sous cer-
taines restrictions préférences; aussi, nous décrivons tous les scénarios concernant le
rang du perdant de Condorcet dans le classement collectif. A partir de l'algorithme
paramétré de Barvinok et sous l'hypothèse de culture neutre et anonyme, nous pro-
posons pour chaque type de restriction des préférences, une représentation simpli�ée
des probabilités du paradoxe fort de Borda pour les règles de la Pluralité simple et
de l'Antipluralité.

Mots-clés: Règles de score - Condorcet - Restriction des préférences - Paradoxe fort
de Borda - Culture neutre et anonyme.

JEL Classi�cation: D70, D71

1 Introduction

Majority cycles are troublesome things that can occur under preferences aggrega-
tion. Nonetheless, they could be avoided if some restrictions are made over the
preferences (Black, 1958). With restrictions, voters are only allowed to have some
particular or prede�ned types of preferences over the set of alternatives (candidates).
Therefore, the choice set is no longer the universal domain but a restricted one. In
the social choice literature, there are three well-known restrictions that prevent cy-
cles. The most known is the Black's single-peakedness (Black, 1958) also called the
Never Bottom-Ranked restriction (NBR) (see Saari and Valognes, 1999). The NBR
requires that there are some candidates who are never ranked last by the voters. The
Never Middle-Ranked restriction (NMR) (Ward, 1965) requires that there are some
candidates never middle-ranked by the voters1. The Never Top-Ranked restriction
(NTR) (Vickery, 1960) imposes that there are some candidates that no voter ranks

1Preferences are also said to be separable (Sen, 1966).
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at the top of her ranking2. These restrictions can be used to de�ne measures of
homogeneity of preferences which is the proximity of a voting situation to meet the
condition of single-peakedness with the NBR, of single-dippedness with the NTR, of
perfect polarization with the NMR3.

The NBR describes situations where it is appropriate to represent policy options
on a one-dimensional axis such as the ideological positions or the possible values of
a tax rate on the Left-Right axis. On this axis, a voter will be inclined to vote for
an option if it is closer to his preferred position (his bliss point). The NBR is used
in one of the main theoretical results that underpin much of the analysis of the new
Political Economy: the median voter theorem (Black, 1958). According to Gehrlein
(2004), a never bottom-ranked candidate appears as a positively unifying candidate
since no voter is against her possible election.

The never top-ranked candidate is a negatively unifying candidate since none of
the voters think that his election is the best possible outcome. The NTR naturally
arises in the presence of a public bad (a facility whose neighborhood is undesirable).
For example, assume that voters have to decide on where to locate three projects:
a garden, a nuclear plant and a stadium; it is natural to think that for each voter,
the locations become better as the worse project (here, the nuclear plant) is further
away of his home. So, as to locate the good close to their houses, no voter ranks the
nuclear plant at the top.

Notice that even if the NBR and the NTR refer to a form of consistency of
preferences, this is less obvious for the NMR which is characterized by the existence of
a cleaving option (a perfectly polarizing candidate). A good illustration of a cleaving
option can be drawn from the U.S political arena where Republicans and Democrats
are opposed. Assume that voters have to decide on three bills to enact: one on
renewable energies, one on lowering taxes and one on security and armament. It
is clear that the bill on renewable energies will appear as the cleaving option since
Republicans are �climate skeptics4� while the Democrats will more promote ecology
than armament and taxes lowering.

Thereby, the NBR, the NMR and the NTR do not only have a theoretical scope
but they help in explaining how people may behave in certain situations. Although

2With three candidates, preferences are also said to be Single-Dipped (Sen, 1966). Sen (1966)
showed that with three candidates, if preferences are either Single-peaked, Single-Dipped or Sepa-

rable, there always exists a Condorcet winner. A Condorcet winner is a candidate that beats each
of the other candidates in pairwise contests.

3We refer to Gehrlein and Lepelley (2010a) for more on this.
4During the 2016 Republican presidential primaries, all the candidates agreed to go back on

the commitments made by Obama regarding the reduction of greenhouse gases, even those taken
during the COP21.
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these restrictions are helpful in avoiding cycles, Saari and Valognes (1999) used an
example to show that unfortunately, for some voting rules, they do not prevent the
election of a candidate that loses all his pairwise comparisons viz. the Condorcet
loser. Notice that under our restrictions, the Condorcet loser always exists at least
for an odd number of voters; for an even number of voters, the probability of a tie
quickly becomes close to 0 as the size of the electorate grows. Almost all the social
choice theorists agree that the election of such a candidate when she exists is an
unacceptable voting outcome. A voting rule that can elect a Condorcet loser is said
to be vulnerable to the Strong Borda Paradox (SgBP). Among the scoring rules5, it
is known that when no restriction is made on the preferences, only the Borda rule6

is immune to the SgBP7.
In three-candidate elections, when the NBR is assumed, Lepelley (1993) showed

that the Antiplurality rule8 never elects the Condorcet loser. According to Lepelley
(1996), under the NBR there may exist other scoring rules immune to the SgBP
under certain conditions (see Lepelley (1996, Theorem 1)). When we restrict the
framework of Lepelley (1996) to voting situations with three candidates, only the
Borda rule and the Antiplurality rule are immune to the SgBP (see also Gehrlein and
Lepelley (2010a)). For three-candidate elections, Lepelley et al. (2000b), Gehrlein
and Lepelley (2010a) provided a representation of the limiting probability (with an
in�nite number of voters) of the SgBP for all the scoring rules given the NBR. They
concluded that: in three-candidate elections, the Strong Borda Paradox never occurs
for all the scoring rules located between the Borda rule and the Antiplurality rule. So,
with three candidates, the Plurality rule is one of the scoring rules that are vulnerable
to the SgBP when preferences are restricted according to the NBR. Under the NBR,
Lepelley (1993) has computed the likelihood of the SgBP for the Plurality rule given
the number of voters. He found that the probability grows from 1.90% with nine
voters to 2.78% when the electorate tends to in�nity. Gehrlein and Lepelley (2010b)
have provided a general formula but not too easy to handle. We enrich the results
of Lepelley (1993) by showing that: with three candidates and preferences consistent
with the NBR, there is no scoring rule such that the Condorcet loser scores better than
the never bottom-ranked candidate; moreover, it is only under the Antiplurality rule

5Scoring rules are voting systems that give points to candidates according to the position they
have in voters' rankings. The winner is the candidate with the highest total of points received.

6With m candidates, the Borda rule is a scoring rule that gives m − 1 points to a candidate
when she is ranked �rst, m−2 when she is ranked second, so and so, and 0 when she is ranked last.

7See Saari (1995), Tataru and Merlin (1997), Lepelley et al. (2000a), Gehrlein (2002), Gehrlein
and Lepelley (2010a), Diss and Gehrlein (2012) for more on this.

8The Antiplurality rule or Negative Plurality elects the candidate with the fewest number of last
positions.
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that the Condorcet loser always scores the worst. We also provide a more tractable
formula of the likelihood of the SgBP for any number of voters.

Under the NTR, Lepelley et al. (2000b), Gehrlein and Lepelley (2010b) analyzed
the SgBP by focusing on the following scoring rules : the Borda rule, the Plurality
rule and the Antiplurality rule. It came out that the SgBP never occurs with the
Plurality rule and the Borda rule. In this paper, we supplement this result. We
use an analytical approach to show that with three candidates, the Strong Borda
Paradox never occurs with the NTR for all the scoring rules located between the
Plurality rule and the Borda rule. Gehrlein and Lepelley (2010b) provided a formula
for the likelihood of the SgBP under Antiplurality rule for a various number of voters
under the NTR. This formula is a bit hard to deal with. Here, we provide a more
attractive formula. We also show that i)if the Condorcet loser is not the never top-
ranked candidate, the Antiplurality rule is the only scoring rule that always ranks
this candidate last ; ii)if the Condorcet loser is the never top-ranked candidate, she is
always ranked last for all the scoring rules located between the Plurality rule and the
Borda rule.

Only a little attention has been paid to the NMR when analyzing the Strong
Borda Paradox9. In this paper, we use an analytical approach to �nd out all the
scoring rules that are vulnerable to the Strong Borda Paradox under the NMR. We
�nd that in three-candidate elections, if there is a Condorcet loser, except for the
Borda rule, all the scoring rules are vulnerable to the Strong Borda Paradox. We
Compute, given the number of voters, the likelihood of the Strong Borda Paradox
for the Plurality rule and the Antiplurality rule under this restriction. We also show
that if the Condorcet loser is not the never middle-ranked candidate, the Borda rule
is the only scoring rule that always ranks this candidate last ; if the Condorcet loser
is the never middle-ranked candidate, the Antiplurality rule is the only scoring rule
that always ranks her last.

The rest of the paper is organized as follows: Section 2 is devoted to the basic
notation and the de�nitions. Section 3 presents our results derived from the analyt-
ical approach. Even if the NBR, NTR and the NMR guarantee the existence of a
Condorcet winner, it is not clear a priori that such restrictions are likely to reduce
the likelihood of voting paradoxes. The probability computations of Section 4 will
tell us more on this. Section 5 concludes.

9Concerning the NMR, Gehrlein (2006) focused on the probability of accordance between the
majority rule and a scoring rule given that there is a Condorcet winner.
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2 Basic Framework

2.1 Preferences

Let N be the set of n voters, n ≥ 2 and A the set of m ≥ 3 candidates. A binary
relation R on A is a subset of the cartesian product A×A. For a, b ∈ A, if (a, b) ∈ R,
we note aRb10 to say that �a is at least as good as b�. ¬aRb is the negation of aRb.
If we have aRb and ¬bRa, then we say that �a is better than or strictly preferred
to b�. In that case, we note aPb with P the asymmetric component of R. I the
symmetric component of R, is de�ned by aIb translating an indi�erence between a
and b i.e ¬aRb and ¬bRa. The preference pro�le π = (π1, π2, ..., πi, ..., πn) gives the
linear orders11 of the n voters on A where πi is the strict ranking of voter i. The set
of all preference pro�les on A is P (A)n. In our framework, voters are supposed to
have strict rankings only.

With nt and pt =
nt

n
respectively the number and the proportion of voters with

type t, a voting situation is de�ned by ñ = (n1, ..., nt, ..., nm!) such that
∑m!

t=1 nt = n.
With vector the p = (p1, ..., pt, ..., pm!) (p ∈ Rm!), the domain of the voting rules can
be represented by the points of the unit simplex S(m!) de�ned by:

S(m!) =
{
p ∈ Rm! :

∑m!
t=1 pt = 1, pt ≥ 0

}
Table 1 lists the six strict rankings or possible types of strict preferences on A =
{a, b, c}.

Table 1: Possible preferences types on A = {a, b, c}

type t preferences type t preferences
1 aPbPc 4 cPbPa
2 aPcPb 5 bPcPa
3 cPaPb 6 bPaPc

10When the binary relation R is used for a particular voter, we write aRib to say that voter i
�nds �a at least as good as b�. If there is no particular mark under R, it means that R is a collective
preference ranking. This will remain valid for relations P and I.

11A linear order is a binary relation that is transitive, complete and antisymmetric. The binary
relation R on A is transitive if for a, b, c ∈ A, if aRb and bRc then aRc. R is antisymmetric if for
all for a 6= b, aRb⇒ ¬bRa; if we have aRb and bRa, then a = b. R is complete if and only if for all
a, b ∈ A, we have aRb or bRa.
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2.2 Scoring rules

Scoring rules are voting systems that give points to candidates according to the
position they have in voters' ranking. In general, withm ≥ 3 and strict rankings, w =
(w1, w2, ..., wk, ..., wm) is a vector in Rm, such that wk points (wk is a real number)
are given to a candidate when she appears ranked k-th in a voter's preference; with
wj ≥ wk (j ≤ k) and w1 > wm. The score of a candidate is the total number of
points awarded by the voters to this candidate. The winner is the one with the
highest score.

In the unit simplex S(m!), a normalized scoring vector can be used. With three
candidates, a normalized scoring vector for the family of simple positional rules in
S(3!) is wλ = (1, λ, 0) with 0 ≤ λ ≤ 1. If λ = 0, the voting rule is the simple Plurality
rule. For λ = 1, we have the Antiplurality rule and for λ = 1

2
, we have the Borda

rule. Without ambiguity, we denote by wλ(a) the score of candidate a given λ. Table
2 gives the scores of candidates on A = {a, b, c} using the labels of Table 1.

Table 2: Candidates' scores on A = {a, b, c}

wλ(a) = n1 + n2 + λ(n3 + n6)
wλ(b) = n5 + n6 + λ(n1 + n4)
wλ(c) = n3 + n4 + λ(n2 + n5)

2.3 Preference restrictions

When dealing with each of our restrictions, it is no longer possible to treat the can-
didates symmetrically as in the universal domain. By de�nition, the never bottom-
ranked candidate seems to have an advantage while the never top-ranked candidate
is disadvantaged in a certain way. In the sequel, for each of our restrictions, we will
just assume a candidate on whom the supposed restriction is ful�lled. The reasoning
on the other candidates follows a similar scheme.

With the well-known NBR, there is a candidate that is never bottom ranked by
any voter. Let us assume on A = {a, b, c} that this is candidate c; this leads to the
deletion of types 1 and 6 in Table 1. We end up with the voting situation described
in Table 3.

As the NMR requires that there is a candidate (assume c) that never appears
middle ranked, this leads to the deletion of types 2 and 5 and we end up with Table
4.
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Table 3: Possible preference types on A = {a, b, c} with respect to the NBR

type t preferences
2 aPcPb Scores
3 cPaPb wλ(a) = n2 + λn3

4 cPbPa wλ(b) = n5 + λn4

5 bPcPa wλ(c) = n3 + n4 + λ(n2 + n5)

Table 4: Possible preference types on A = {a, b, c} with respect to the NMR

type t preferences
1 aPbPc Scores
3 cPaPb wλ(a) = n1 + λ(n3 + n6)
4 cPbPa wλ(b) = n6 + λ(n1 + n4)
6 bPaPc wλ(c) = n3 + n4

In such a case, candidate c appears as a polarizing candidate because she cuts
the electorate into two contrasting positions (Gehrlein, 2006).

The NTR requires that there is a candidate (assume c) that no voter ranks at the
top of his ranking. This implies the deletion of types 3 and 4 and we end up with
Table 5.

Table 5: Possible preference types on A = {a, b, c} with respect to the NTR

type t preferences
1 aPbPc Scores
2 aPcPb wλ(a) = n1 + n2 + λn6

5 bPcPa wλ(b) = n5 + n6 + λn1

6 bPaPc wλ(c) = λ(n2 + n5)

8



2.4 The pairwise comparisons

If the number of voters who rank candidate a before candidate b is greater than that
of those who rank candidate b before candidate a, then candidate a is said to be
majority preferred to candidate b. If candidate a is majority preferred to any other
candidate in A, a is called the Condorcet winner. If each candidate in A \ {a} is
majority preferred to a, then candidate a is the Condorcet loser.

Suppose that a is the Condorcet loser for each of the restrictions. Formally, we
get Equation (2.1) with the NBR, Equation (2.2) with the NMR and Equation (2.3)
for the NTR. {

n4 + n5 > n2 + n3

n3 + n4 + n5 > n2

(2.1)

{
n4 + n6 > n1 + n3

n3 + n4 > n1 + n6

(2.2)

{
n5 + n6 > n1 + n2

n5 > n1 + n2 + n6

(2.3)

One can notice in Equation 2.1 that the �rst inequality implies the second one; in
Equation 2.3, the second inequality implies the �rst one second. Due to the fact that
candidates cannot be treated symmetrically, if b or c is assumed to be the Condorcet
loser, one will get inequalities totally di�erent from those we get by assuming that a
is the Condorcet loser12.

Recall that the aim of this paper is to �nd out all the scoring rules that can elect
the Condorcet loser for each kind of preference restrictions.

3 Preference restrictions, scoring rules and the elec-

tion of the Condorcet loser

This section will let us know for each of our preference restrictions, which scoring
rules are vulnerable to the strong Borda Paradox in three-candidate elections. For
the NBR, we �rst recall the already known results on the issue and then, we analyze
the other scenarios.

Again, we will denote by c the candidate on whom the restriction is satis�ed and
by a the candidate on whom it is not. For our analysis, we will distinguish the voting

12The reader can easily get these inequalities.
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situations where the Condorcet loser is candidate a from those she is candidate c.
Such a distinction cannot be made with three candidates under the NBR restriction
since the never bottom-ranked candidate cannot be a Condorcet loser.

3.1 The NBR and the Strong Borda Paradox

In three-candidate elections, Lepelley (1993) showed that the Antiplurality rule never
elects the Condorcet loser under the NBR restriction. Lepelley et al. (2000b) (see
also Gehrlein and Lepelley (2010a)) computed the likelihood of the SgBP for all the
scoring rules under this restriction. From their computations, one can derive what
follows.

Theorem 1. (Lepelley et al., 2000b)In three-candidate elections, the Condorcet loser
can be elected for all λ ∈ [0 1

2
[ under the NBR restriction. This is never the case for

all λ ∈ [1
2
1].

According to Theorem 1, with three candidates, the SgBP never occurs with all
the scoring rules located between the Antiplurality rule and the Borda rule. Lemma
1 tells us that in three-candidate elections, it is only under the Antiplurality rule
that this candidate always performs the worst.

Lemma 1. Consider a voting situation with three candidates where preferences are
consistent with the NBR restriction. For λ ∈ [0 1], the Condorcet loser never scores
better than the never bottom-ranked candidate. Except for the Antiplurality rule,
there is no other scoring rule under which the Condorcet loser always gets the lowest
score.

Proof. As we know that with three candidates, the never bottom-ranked candidate
cannot be a Condorcet loser under the NBR restriction, let us assume that candidate
a is the Condorcet loser. By Theorem 1, this candidate can be ranked �rst for
λ ∈ [0 1

2
[ but never for λ ∈ [1

2
1]. So, for the proof of the lemma, we only need to

consider λ ∈ [1
2
1]. Without loss of generality, let us consider λ = 1. It follows that

w1(a)− w1(b) = n2 + n3 − n4 − n5 and w1(a)− w1(c) = −n4 − n5

It comes that w1(a) − w1(b) < 0 and w1(a) − w1(c) < 0 : so, candidate a is always
ranked last. Let us now consider λ ∈ [1

2
1[. Suppose that wλ(a) > wλ(c). So we

have,
(i) wλ(a)− wλ(c) = (λ− 1)n2 + (1− λ)n3 + n4 + λn5 < 0

(ii) n2 − n4 − n5 < 0 by Equation (2.1)

10



We get by (i)+ (ii) ⇔ λn2+(1−λ)n3+λn5 < 0 : contradiction. So, for λ ∈ [1
2
1],

we never have wλ(a) > wλ(c). It follows that our proof will then consist in showing
that there is always a pro�le and a λ ∈ [1

2
1[ such that candidate a can do better

than candidate b. For λ ∈ [1
2
1[, let us take n2 = 3, n3 = 0, n4 = 2 and n5 = 2.

The reader can easily check that candidate a is the Condorcet loser. Also, we have
wλ(a)−wλ(b) = 1−λ > 0. So, the Condorcet loser a performs better than candidate
b for λ ∈ [1

2
1[. Thus, with the NBR restriction, it is only under the Antiplurality

rule that the Condorcet loser performs the worst.

3.2 The NTR and the Strong Borda Paradox

Under the NTR restriction, Theorem 2 tell us that in three-candidate elections, the
Condorcet loser is can be elected for all the scoring rules located between the Borda
rule and the Antiplurality rule.

Theorem 2. With three candidates, a Condorcet loser can be elected for λ ∈]1
2
1]

under the NTR restriction; this is never the case for λ ∈ [0 1
2
].

The proof of Theorem 2 comes as a conclusion from Lemmata 2 and 3.

Lemma 2. Let A = {a, b, c} and the NTR restriction made with respect to candidate
c. If one candidate in A\{c} is the Condorcet loser, she is never elected for no scoring
rule. Except for the Antiplurality rule, there is no other scoring rule that always ranks
this candidate last.

Proof. Let us consider a voting situation with A = {a, b, c} and the NTR with respect
to candidate c. Without loss of generality, suppose that a is the Condorcet loser. So,
Equation (2.3) holds. We have

wλ(a)− wλ(b) = (1− λ)n1 + n2 − n5 + (λ− 1)n6

By Equation (2.3), n5 > n1 + n2 ⇒ n5 > (1 − λ)n1 + n2. Since (λ − 1)n6 ≤ 0 for
all λ ∈ [0 1], it comes that wλ(a) < wλ(b) for all λ ∈ [0 1]. So, candidate b always
scores better than candidate a: with the NTR, if one candidate in A \ {c} is the
Condorcet loser, she is never elected for no scoring rule. Now, let us show that the
Antiplurality rule is the only rule that always ranks this candidate last. For this, it
needs to show that except for the Antiplurality rule, it is always possible to exhibit
a pro�le under which the Condorcet loser candidate a can do better than the never
top-ranked candidate c. First, for λ = 1, we have w1(a)−w1(c) = n1 + n6 − n5 < 0;
thus w1(a) < w1(c) : candidate a is ranked last for the Antiplurality rule. For

11



λ ∈ [0 1[ assume a pro�le where n1 = z− 1, n2 = n6 = 0 and n5 = z with z > 1. We
have, wλ(a)−wλ(c) = (1− λ)z − 1 > 0. It follows that given λ, it is always possible
to �nd z > d 1

1−λe such that wλ(a) > wλ(c). So, it is always possible to get a pro�le
such that candidate a scores better than candidate c. Thus, with the NTR, except
for λ = 1, there is no other λ such that a Condorcet loser in A \ {c} always scores
the worst.

Lemma 3. Let A = {a, b, c} and the NTR restriction made with respect to candidate
c. If candidate c is the Condorcet loser, she can be elected for λ ∈]1

2
1]. For λ ∈ [0 1

2
],

she is never elected and is always ranked last.

Proof. Consider a three-candidate voting situation under the NTR. Suppose that
candidate c is the Condorcet loser; this means that n1 + n2 + n6 > n5 (i) and
n1 + n5 + n6 > n2 (ii). We get

wλ(b)− wλ(c) = n5 + n6 + λn1 − λn2 − λn5 = λn1 − λn2 + (1− λ)n5 + n6

For λ ∈ [0 1
2
], it is obvious that λn1−λn2+(1−λ)n5+n6 > λ(n1−n2+n5+n6) > 0

(by (ii)); then, wλ(b) > wλ(c). Moreover,

wλ(a)− wλ(c) = n1 + n2 + λn6 − λn2 − λn5 = n1 + (1− λ)n2 − λn5 + λn6

For λ ∈ [0 1
2
], it is obvious that n1+(1−λ)n2−λn5+λn6 > λ(n1+n2−n5+n6) > 0

(by (i)); then, wλ(a) > wλ(c). Thus, candidate c is never elected and is always
ranked last for λ ∈ [0 1

2
]. To show that candidate c can be elected for λ ∈]1

2
1], we

just consider a pro�le with n1 = n6 = 1 and n2 = n5 = z such that z = d 1+λ
2λ−1e; such

a z always exists given λ ∈]1
2
1].

Thus, under the NTR, the Strong Borda Paradox can occur for all the scoring
rules such that λ ∈]1

2
1].

3.3 The NMR and the Strong Borda Paradox

According to Theorem 3 that follows, Borda rule is the only scoring rule that is
free from the Strong Borda Paradox in three-candidate elections when preferences
satis�ed the NMR.

Theorem 3. With three candidates and the NMR restriction, except for the Borda
rule there is no other scoring rule that prevents the election of the Condorcet loser.

The proof of Theorem 3 comes from a juxtaposition of Lemmata 4 and 5 that
follow.
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Lemma 4. Let A = {a, b, c} and the NMR restriction is made with respect to can-
didate c. If a candidate in A \ {c} is the Condorcet loser, she can be elected for
λ ∈]1

2
1]. Except for the Borda rule, no other scoring rule ensures that she is always

ranked last.

Proof. Consider a three-candidate elections under NMR and suppose that candidate
a is the Condorcet loser. Assume λ = 1

2
− ε such that 0 < ε ≤ 1

2
. We have

wλ(a)− wλ(c) = n1 + (
1

2
− ε)(n3 + n6)− (n3 + n4)

=
1

2
(n1 − n4)︸ ︷︷ ︸

<0 by Equation (2.1)

+
1

2
(n1 − n3 − n4 + n6)︸ ︷︷ ︸
<0 by Equation (2.2)

−ε(n3 + n6)︸ ︷︷ ︸
<0

Then, for λ ∈ [0 1
2
], we always have wλ(a) < wλ(c) : the Condorcet loser,

candidate a, is never elected since she always scores less than the never middle-
ranked candidate c. Let us show that over this range, the Condorcet loser is always
ranked last only with the Borda rule (λ = 1

2
). For λ = 1

2
,

wλ(a)− wλ(b) =
1

2
(n1 + n3 − n4 − n6) < 0 by Equation (2.2)

wλ(a)− wλ(c) =
1

2
(n1 − n4) +

1

2
(n1 − n3 − n4 + n6) < 0 by Equation (2.2)

So, for λ = 1
2
, we always have wλ(a) < wλ(b) and wλ(a) < wλ(c) : the Condorcet

loser is always ranked last. As we have just shown that candidate a always scores
less than candidate c for all λ ∈ [0 1

2
], let us take λ ∈ [0 1

2
[ and show that we can

�nd a pro�le such that wλ(a) > wλ(b). For this, consider the following pro�le :
n1 = n4 = 3, n3 = 2 and n6 = 1; it is clear that candidate a is the Condorcet loser
in this pro�le. The scores are wλ(a) = 3(1 + λ), wλ(b) = 1 + 6λ and wλ(c) = 5.
We can easily check that wλ(a) − wλ(b) = 2 − 3λ > 0 for all λ ∈ [0 1

2
[. To show

that candidate a can be elected for λ ∈]1
2
1], just assume a pro�le such that n1 = 1,

n3 = n6 = z and n4 = 2 with z = d 1
2λ−1e.

Lemma 5. Let assume on A = {a, b, c}, the NMR restriction with respect to candi-
date c. If candidate c is the Condorcet loser, she can be elected for λ ∈ [0 1

2
[. Except

for the Antiplurality rule, no other scoring rule ensures that she always scores the
worst.

Proof. Consider a three-candidate election under NMR and suppose that c is the
Condorcet loser. This means that n1 + n6 > n3 + n4. As we know that the Borda

13



rule never elects the Condorcet loser, we have w 1
2
(a)−w 1

2
(c) > 0 or w 1

2
(b)−w 1

2
(c) > 0

for a given pro�le. Let us assume λ = 1
2
+ ε with 0 < ε ≤ 1

2
. In such a case, we have

w 1
2
+ε(a) = w 1

2
(a) + ε(n3 + n6) > w 1

2
(a)

w 1
2
+ε(b) = w 1

2
(b) + ε(n1 + n4) > w 1

2
(b)

w 1
2
+ε(c) = w 1

2
(c)

(3.1)

Since candidate c is not elected for λ = 1
2
, according to Equation (3.1), she is still

not elected for λ = 1
2
+ ε. Thus, the Condorcet loser is never elected for λ ∈ [1

2
1].

We are going now to show over the range λ ∈ [1
2

1] that only the Antiplurality
ensures that the Condorcet loser is always ranked last. For λ = 1, we have w1(a) =
n1 + n3 + n6, w1(a) = n1 + n4 + n6 and w1(c) = n3 + n4. Since n1 + n6 > n3 + n4,
it follows that w1(a) > w1(c) and w1(b) > w1(c) : the Condorcet loser c scores the
worst under the Antiplurality. Now, suppose λ 6= 1; for λ ∈ [1

2
1[, assume a pro�le

such that n1 = z + 1, n3 = z, n4 = 1 and n6 = 1 with z = d 2
1−λe. It is easy to check

that with this pro�le, candidate c is the Condorcet loser and that wλ(a) > wλ(c) and
wλ(b) < wλ(c). Thus, for λ ∈ [1

2
1[, it is always possible to �nd a pro�le such that

the Condorcet loser is not ranked last. It is always possible, for λ ∈ [0 1
2
[, to �nd a

pro�le under which the Condorcet loser can be the winner.

Table 6: Preference restrictions and Scoring rules that can elect the Condorcet loser
in three-candidate elections

Preference restrictions
NBR∗ NMR NTR

λ ∈ [0 1
2
[ λ ∈]0 1

2
[∪]1

2
1] λ ∈]1

2
1]

∗ From Lepelley et al. (2000b)

Tables 6 and 7 summarize all the above results. Table 7 lists for each of our
restrictions, the scoring rules under which the Condorcet loser always scores less
than the two other candidates. Table 6 gives all the scoring rules that are vulnerable
to the Strong Borda Paradox for each of our restrictions. It is well-known that the
Borda rule is immune to the Strong Borda Paradox; for the other values of λ one
can �nd a situation under which the paradox occurs. For example, we have learnt
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Table 7: Preference restrictions and Scoring rules that always rank the Condorcet
loser last in three-candidate elections

Preference restrictions
Condorcet loser NBR NMR NTR

candidate a λ = 1 λ = 1
2

λ = 1

candidate c - λ = 1
2

λ ∈ [0 1
2
]

that the Plurality rule is vulnerable to the Strong Borda Paradox under the NBR
and the Antiplurality rule is vulnerable under the NMR and the NTR.

Even if the NBR, the NTR and the NMR guarantee the existence of a Condorcet
winner, it is not clear if such restrictions are likely to reduce the likelihood of voting
paradoxes. Probability computations will allow us to know more on this.

4 The preference restrictions and the probability of

electing the Condorcet loser

Gehrlein and Lepelley (2010b) have provided a more general formula but not too easy
to handle. This is also the case for the formula of the likelihood of the SgBP under the
NTR they suggested. Here, we will focus on the Plurality rule and the Antiplurality
rule and provide more tractable formulas of the likelihood of the SgBP for all number
of voters. We perform our computations under the Impartial Anonymous Culture
(IAC). The IAC is one of the most used probability assumptions in the social choice
literature when computing the likelihood of voting events. This assumption was �rst
introduced by Gehrlein and Fishburn (1976). Under IAC, each voting situation is
equally likely. The likelihood of a given event X is calculated in respect with the
following ratio:

P (X) =
Number of voting situations in which event X occurs

Total number of possible voting situations

There are many algorithms or techniques in the literature that enable the calcu-
lation of the number of voting situations in which an event X occur. Without been
exhaustive, we can list among others, Barvinok (1994), Bruynooghe et al. (2005),
Clauss and Loechner (1998), Barvinok and Pommersheim (1999), Gehrlein and Fish-
burn (1976), Huang and Chua (2000), Lepelley et al. (2008), Wilson and Pritchard
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(2007). In this paper, we use the parameterized Barvinok's algorithm developed
by Verdoolaege et al. (2004). This algorithm proceeds by the enumeration of the
Ehrhart's polynomials (Ehrhart, 1962, 1967). For more on the Ehrhart's theory, the
reader can refer to Ehrhart (1962, 1967), Barvinok (1994), Barvinok and Pommer-
sheim (1999), Bruynooghe et al. (2005), Clauss and Loechner (1998), Verdoolaege et
al. (2004).

So, given n the size of the electorate, we compute PPR
NBR(3, n, IAC), P

APR
NTR (3, n, IAC),

PPR
NMR(3, n, IAC) and PAPR

NMR(3, n, IAC) the likelihood of the Strong Borda Paradox
under each of the restrictions for the Plurality rule (PR) and the Antiplurality rule
(APR). We report all the formulas of these probabilities in the Appendix (see For-
mulas 1 to 4).

In Table 8, we report some values of the likelihood of the Strong Borda Paradox
under each of our restrictions for the Plurality rule and the Antiplurality rule. We
also report the likelihood of the Strong Borda Paradox without restrictions under
the Plurality rule (PPR(3, n, IAC)) and the Antiplurality rule (PAPR(3, n, IAC)).

Table 8: Preference restrictions and probability of the Strong Borda Paradox

n PPR
NBR

(3, n, IAC) PAPR
NTR

(3, n, IAC) PPR
NMR

(3, n, IAC) PAPR
NMR

(3, n, IAC) PPR(3, n, IAC)∗ PAPR(3, n, IAC)∗

5 0.0400 0.0400 0.0091 0.0199
6 0 0 0.0113 0.0200
7 0.0093 0.0179 0.0357 0.0179 0.0128 0.0203
8 0.0038 0.0192 0 0.0128 0.0140 0.0206
9 0.0198 0.0381 0.0476 0.0381 0.0149 0.0209
10 0.0038 0.0109 0.0182 0.0073 0.0158 0.0213
11 0.0206 0.0341 0.0511 0.0341 0.0165 0.0217
12 0.0094 0.0249 0.0271 0.0181 0.0171 0.0220
15 0.0227 0.0375 0.0675 0.0375 0.0186 0.0229
20 0.0148 0.0326 0.0497 0.0263 0.0203 0.0241
33 0.0254 0.0376 0.0886 0.0326 0.0226 0.0258
50 0.0218 0.0412 0.0826 0.0375 0.0242 0.0269
81 0.0267 0.0465 0.1013 0.0465 0.0254 0.0278
100 0.0246 0.0449 0.0962 0.0427 0.0258 0.0281
117 0.0271 0.0471 0.1042 0.0471 0.0261 0.0283
305 0.0275 0.0480 0.1084 0.0480 0.0271 0.0290
∞ 0.0278 0.0486 0.1111 0.0486 0.0278 0.0295

∗ From Lepelley (1993).

It comes from Table 8 that the vulnerability of the Antiplurality to the Strong
Borda Paradox tends to be the same for some values of n under the NTR and the
NMR. For example, this is the case for n = 5, n = 6, n = 9 and when the electorate
is in�nite. We also notice that for the Plurality rule, the Strong Borda Paradox tends
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to be more likely under the NMR; for the Antiplurality rule, it is under the NTR.
For each restriction, the probabilities tend to increase with the number of voters as
it is the case when no restriction is assumed.

The interesting question is the following: when a restriction does not prevent
the paradox to happen, can we at least expect a reduction in the probability of
this paradox? Concerning the Plurality rule and the Antiplurality rule, the answer
follows.

• With the Plurality rule : we have to compare PPR
NBR(3, n, IAC) and P

PR
NMR(3, n, IAC)

to PPR(3, n, IAC). We clearly notice that the NMR does not reduce the likeli-
hood of the Strong Borda Paradox; with more than 8 voters, the probability of
the paradox under the NMR given n is almost 2 to 5 times greater than that
with no restriction. Concerning the impact of the NBR, nothing a priori can be
said as the dominance between PPR

NBR(3, n, IAC) and P
PR(3, n, IAC) alternates

with a value of n to another. However, we note that the probability is the same
when the electorate is in�nite.

• With the Antiplurality rule. By comparing PAPR
NTR (3, n, IAC) and P

APR
NMR(3, n, IAC)

to PAPR(3, n, IAC), it seems clear that neither the NTR nor the NMR reduce
the probability of the Strong Borda Paradox. When the electorate is in�nite,
the probability is 0, 0486 both under the NTR and the NMR while it is 0, 0295
when there is no restriction.

Table 9: Limiting probabilities of the Strong Borda Paradox

λ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PNBR(3, λ,∞)* 0.0278 0.0176 0.0094 0.0036 0.0006 0 0 0 0 0 0
PNMR(3, λ,∞) 0.1111 0.0809 0.0525 0.0273 0.0081 0 0.0049 0.0152 0.0268 0.0383 0.0486
PNTR(3, λ,∞) 0 0 0 0 0 0 0.0014 0.0078 0.0187 0.0328 0.0486

∗ From Lepelley et al. (2000b).

Table 9 reports the limiting probabilities (when n → ∞) of the strong Borda
paradox given λ ∈ [0, 1] and given the restriction. We notice what follows: under
the NBR, the Plurality rule (λ = 0) exhibits the highest limiting probability of the
Strong Borda Paradox and that this probability tends to decrease as λ grows. The
Plurality rule (λ = 0) also exhibits the highest limiting probability under the NMR;
under this restriction, the limiting probability tends to decrease with λ ∈ [0 1

2
[,
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then it increases with λ ∈]1
2
1]. Under the NTR, we notice that the limit probability

tends to increase with λ ∈]1
2
1] and the Antiplurality rule (λ = 1) exhibits the highest

limiting probability of the Strong Borda Paradox.

5 Conclusion

The aim of this paper was to �nd out under three well-known preference restrictions
(NBR, NMR and NTR), the range of all the scoring rules that exhibit the Strong
Borda Paradox. In our analysis, we proceeded by an analytical approach in order
to reach the same results obtained in the literature by probability computations. In
the social choice literature, Gehrlein and Lepelley (2010b,a) have provided for the
Plurality, Antiplurality and the Borda rules, formulas of the Strong Borda Paradox's
likelihood given each of the restrictions. These formulas are somewhat hard to handle.
In this paper, we have provided a more attractive formula using the Barvinok's
algorithm. Our probabilities under the NBR and the NTR are in line with those of
Lepelley (1993), Lepelley et al. (2000b), Gehrlein and Lepelley (2010b,a). It came
from our results that among the scoring rules, the Plurality rule tends to be more
sensitive to the Strong Borda Paradox when preferences are restricted consistently
the NBR or the NMR restriction; under the NTR restriction, it is the Antiplurality
rule. It could be interesting to look at the probability representation or a formula
that gives the limiting probabilities under the NMR given λ as it has been done
for the NBR by Lepelley et al. (2000b) and for the NTR by Gehrlein and Lepelley
(2010b,a). It would also be interesting to extend the framework to more than three
candidates as it has be done in Lepelley (1996) for the NBR.

Notice that one can easily generalize the NBR and the NTR restrictions to voting
situations with more than three candidates; this is also the case for the NMR restric-
tion when the number of candidates is odd. With an even number of candidates,
the generalization of the NMR restriction will require a rede�nition of what is the
�middle�. In such a case, several scenarios are possible and may open the path to
further research.
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Appendix: Simpli�ed representations for the likeli-

hood of the Strong Borda Paradox

Formula 1. In a three-candidate election with single-peaked preferences, the likeli-
hood of the Strong Borda Paradox for the Plurality rule is given by

PPR
NBR

(3, n, IAC) =



n3−6n2+32
36n(n+1)(n+5)

for n ≡ 0[6]

n2+2n−35
36n(n+5)

for n ≡ 1[6]

n(n−6)
36(n+1)(n+5)

for n ≡ 2[6]

(n−1)2
36n(n+1)

for n ≡ 3[6]

n3−6n2−24n+64
36n(n+1)(n+5)

for n ≡ 4[6]

n3+3n2−9n−27
36n(n+1)(n+5)

for n ≡ 5[6]

1
36

for n→∞

for n ≥ 7

Formula 2. The likelihood of the Strong Borda Paradox for the Antiplurality rule in
three-candidate elections with preferences satisfying the NTR restriction is given by

PAPR
NTR

(3, n, IAC) =



7n3−12n2−144n+864
144n(n+1)(n+5)

for n ≡ 0[12]

n7n3+152−51n+29
144n(n+1)(n+5)

for n ≡ 1[12]

7n3−12n2−252n+496
144n(n+1)(n+5)

for n ≡ 2[12]

7n3+152−63n−135
144n(n+1)(n+5)

for n ≡ 3[12]

7n3−12n2−240n+704
144n(n+1)(n+5)

for n ≡ 4[12]

7n3+152+45n+253
144n(n+1)(n+5)

for n ≡ 5[12]

7n3−12n2−252n+432
144n(n+1)(n+5)

for n ≡ 6[12]

7n2−20n−59
144n(n+1)

for n ≡ 7[12]

7n3−12n2−144n+928
144n(n+1)(n+5)

for n ≡ 8[12]

7n3+152+45n+189
144n(n+1)(n+5)

for n ≡ 9[12]

7n3−12n2−348n+272
144n(n+1)(n+5)

for n ≡ 10[12]

7n2+8n−71
144n(n+5)

for n ≡ 11[12]

7
144

for n→∞

for n ≥ 5

19



Formula 3. The likelihood of the Strong Borda Paradox for the Plurality rule in
three-candidate elections with preferences satisfying the NMR restriction is given by

PPR
NMR

(3, n, IAC) =



4n3−33n2+18n+216
36(n+1)(n+5)

for n ≡ 0[6]

2n3−3n2−18n+19
18n(n+1)(n+5)

for n ≡ 1[6]

4n3−33n2−6n+112
36n(n+1)(n+5)

for n ≡ 2[6]

2n3−3n2−18n+27
18n(n+1)(n+5)

for n ≡ 3[6]

4n3−33n2+18n+200
36n(n+1)(n+5)

for n ≡ 4[6]

2n2−5n−25
18n(n+5)

for n ≡ 5[6]

1
9

for n→∞

for n ≥ 7

Formula 4. Given n the number of voters, the likelihood of the Strong Borda Paradox
for the Antiplurality rule in three-candidate elections with preferences satisfying the
NMR restriction is given by

PAPR
NMR

(3, n, IAC) =



7n2−48n+144
144(n+1)(n+5)

for n ≡ 0[12]

7n3+15n2−51n+29
144n(n+1)(n+5)

for n ≡ 1[12]

7n3−48n2+36n+64
144n(n+1)(n+5)

for n ≡ 2[12]

7n3+15n2−63n−135
144n(n+1)(n+5)

for n ≡ 3[12]

7n3−48n2+48n+128
144n(n+1)(n+5)

for n ≡ 4[12]

7n3+15n2+45n+253
144n(n+1)(n+5)

for n ≡ 5[12]

7n2−48n+36
144(n+1)(n+5)

for n ≡ 6[12]

7n2−20n−59
144n(n+1)

for n ≡ 7[12]

7n3−48n2+144n+64
144n(n+1)(n+5)

for n ≡ 8[12]

7n3+15n2+45n+189
144n(n+1)(n+5)

for n ≡ 9[12]

7n3−48n2−60n+128
144n(n+1)(n+5)

for n ≡ 10[12]

7n2+8n−71
144n(n+5)

for n ≡ 11[12]

7
144

for n→∞

for n ≥ 5

20



References

Barvinok A., 1994. Polynomial time algorithm for counting integral points in polyhe-
dra when the dimension is �xed. Mathematics of Operations Research 19, 769-779.

Barvinok A., Pommersheim J., 1999. An algorithmic theory of lattice points in poly-
hedra. In: New Perspectives in Algebraic Combinatorics, Berkeley, CA, 1996-1997.
Math. Sci. Res. Inst. Publ. 38, 91-147.

Berg S., Lepelley D., 1994. On probability models in voting theory. Statistica Neer-
landica 48, 133-146.

Black D., 1958. The Theory of Committees and Elections. Cambridge University
Press, Cambridge.

Bruynooghe M., Cools R., Verdoolaege S., Woods K. 2005. Computation and manip-
ulation of enumerators of integer projections of parametric polytopes. Technical
Report CW 392. Katholieke Universiteit Leuven, Department of Computer Sci-
ences.

Clauss P., Loechner V., 1998. Parametric analysis of polyhedral iteration spaces.
Journal of VLSI Signal Processing 2(19), 179-194.

Diss M., Gehrlein W.V., 2012. Borda's paradox with weighted scoring rules. Social
Choice and Welfare 38, 121-136.

Ehrhart E., 1962. Sur les polyèdres rationnels homothétiques à n dimensions.
Comptes Rendus de l'Academie des Sciences Paris 254, 616-618.

Ehrhart E., 1967. Sur un problème de géométrie diophantienne linéaire. Ph.D. Thesis.
Journal für die Reine und Angewandte Mathematik. 226, 1-49.

Gehrlein W.V., Fishburn P.C., 1976. The probability of the paradox of voting: A
computable solution. Journal of Economic Theory 13: 14-25.

Gehrlein WV., 2006. Condorcet's Paradoxes. Springer Publishing, Berlin.

Gehrlein WV., 2004. Consistency in measures of social homogeneity : A connection
with proximity to single peaked preferences. Quality and Quantity 38: 147-171.

Gehrlein WV., 2002. Obtaining representations for probabilities of voting outcomes
with e�ectively unlimited precision integer arithmetic. Social Choice and Welfare
19: 503-512.

21



Gehrlein W.V., Lepelley D., 2010a. Voting Paradoxes and Group Coherence.
Springer.

Gehrlein WV., Lepelley D., 2010b. On the probability of observing Borda's Paradox.
Social Choice and Welfare 35: 1-23.

Huang H.C, Chua V.C., 2000. Analytical representation of probabilities under IAC
condition. Social Choice and Welfare 17: 143-155.

Lepelley D., 1996. Constant Scoring rules, Condorcet criteria and Single-peaked pref-
erences. Economic Theory 7(3): 491-500.

Lepelley D., 1993. On the probability of electing the Condorcet loser. Mathematical
social Sciences 25: 105-116.

Lepelley D., Louichi A., Smaoui H., 2008. On Ehrhart polynomials and probability
calculations in voting theory. Social Choice and Welfare 30(3):363-383.

Lepelley D., Louichi A., Valognes F., 2000a. Computer simulations of voting systems.
In Ballot G and Weisbuch G (eds). Applications of simulations to social sciences,
Hermes, Oxford, 181-194.

Lepelley D., Pierron P., Valognes F., 2000b. Scoring rules, Condorcet e�ciency and
social homogeneity. Theory and Decision 49: 175-196.

Saari D., 1995. Basic Geometry of Voting. Berlin, Heidelberg, New York, Springer.

Saari D., Valognes F., 1999. The Geometry Of Black's Single Peakedness And Related
Conditions. Journal of Math Econ 32:429-456.

Sen D., 1966. A possibility Theorem on Majority Decisions. Econometrica 34(2):491-
499.

Tataru M, Merlin V., 1997. On the relationship of the Condorcet winner and posi-
tional voting rules. Mathematical Social Sciences 34: 81-90.

Verdoolaege S., Seghir R., Beyls K., Loechner V., Bruynooghe M., 2004. Analytical
computation of Ehrhart polynomials: enabling more compiler analysis and opti-
mizations, in: Proceedings of International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, Washington DC.

Vickery W., 1960. Utility, strategy and social decision rules. Quaterly Journal of
Economics 74:507-535.

22



Ward B., 1965. Majority voting and alternative forms of public enterprises. In Mar-
golis J. (eds): Public economy of urban communities. J. Hopkins press, Baltimore,
pp 112-126.

Wilson M. C., Pritchard G., 2007. Probability calculations under the IAC hypothesis.
Mathematical Social Sciences 54:244-256.

23


	Introduction
	Basic Framework
	Preferences
	Scoring rules
	Preference restrictions
	The pairwise comparisons

	Preference restrictions, scoring rules and the election of the Condorcet loser
	The NBR and the Strong Borda Paradox
	The NTR and the Strong Borda Paradox
	The NMR and the Strong Borda Paradox

	The preference restrictions and the probability of electing the Condorcet loser
	Conclusion

