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Abstract

In this paper, we supplement the results of Kamwa and Merlin (2017) for the selection of a subset of two alternatives
out of four by computing the conditional probability of voting situations under which the Condorcet Committee a la
Gehrlein (CCG) and the Condorcet Committee a la Fishburn (CCF) may both exist and coincide when voters'
preferences on candidates are lexicographically extended on subsets. The CCG is a fixed-size subset of candidates
such that each of its members defeats in a pairwise contest any candidate outside. The CCF is a fixed-size subset of
candidates that is preferred to all other subsets of the same size by a majority of voters.
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1. Introduction

Consider an election where n (n > 3) voters have strict rankings (linear orders)' on A = {a, b, c,d}
a set of four candidates. The 24 possible linear orders on A are displayed in Table 1. In this

Table 1: Strict rankings on A = {a, b, ¢, d}

ni n2 n3 74 ns ne ny ng ng nip N1 Ni12
a a a a a a b b b b b b
b b c c d d a a c c d d
c d b d b c c d a d a c

d c d b c b d c d a c a

ni3 Mi4 MNi15 Mi16 Ni17 MN1g MN19 N20 N21  MN22  N23  N24
c c c c c c d d d d d d

a a b b d d a a b b c c
b d a d a b b c a c a b

d b d a b a c b c a b a

table, n; denotes the number of voters associated with the ranking of type 7; voters of type 1 rank

a before b, b before ¢ and ¢ before d. A voting situation . = (ny,ng, ..., n;, ..., ney) indicates the
24

number of voters for each linear order such that >’ n; = n. For a,b € A, we denote by ng, the
i=1
number of voters who prefer a to b. Candidate a is majority preferred to b if ng, > n4,; we denote

it by aMb.
We denote by A9 the set of all subsets of A of size g. Such a subset is called a committee. The
set A? of the possible two-member committees is : A? = {(a,b), (a,¢), (a,d), (b, c), (b,d), (c,d)}.

Definition 1. (Gehrlein, 1985) A committee C' € A9 is the Condorcet Committee a la Gehrlein
(CCQG) if and only if Va € C, we have aMb for all b€ A\ C.

For two committees C,C" € A9, we denote by nccr the number of voters who rank committee
C before C'. Committee C' is majority preferred to C’ if ncor > nero and we denote it by CM*C".
Notice that M stands for the majority relations on A and M™* stand for those on AY.

Definition 2. (Fishburn, 1981) A committee C' € A9 is the Condorcet Committee & la Fishburn
(CCF) if and only if VC" € A9\ C, CM*C".

To compute the CCF, we need voters’ rankings over the set of the committees of size g. Most of
the time, we only have voters’ rankings on candidates. According to Kamwa and Merlin (2017), by
selecting a committee that is the CCF when it exists, we are sure that we won’t get a dominated
committee, while selecting the CCG when it exists will prevent from selecting dominated candi-
dates. The ideal would be to select a committee that is both a CCG and a CCF. So, we have to
connect voters’s rankings on candidates to their rankings of the committees. That is what Kamwa
and Merlin (2017) did by assuming two kinds of preference extension techniques: the Lezimaz and
the Lezimin. We also assume these techniques here?.

The Leximax extension ranks subsets of candidates according to their best elements. If two
subsets have the same best element, the ranking will depend upon the second best element and
so on. At some point, for X C Y, if X and Y are still equivalent according to the Lezimaz while
there is no more alternative left in X for further comparison, X is declared better than Y. The
Leximax extended rankings on A? are displayed in Table 2.

!Indifference, intransitive or cyclic rankings are not allowed.
2 We refer to Barbera et al. (2001) for a review of preference extension methods and their normative properties.



Table 2: The Leximax extended rankings on A?

ni n9 ns n4g ns ne nry ng ng9 n10 ni1 ni2

(a,b)  (a,b) (a,¢) (a,¢) (a,d) (a,d) (a,b) (a,b) (b,c) (b,c) (b,d)  (b,d)
(a,¢) (a,d) (a,b) (a,d) (a,b) (a,c) (b,¢) (b,d)  (a,b) (b,d) (a,b) (b,¢)
(a,d) (a,¢) (a,d) (a,b) (a,¢) (a,b) (b,d) (b,c) (b,d) (a,b) (b,c) (a,b)
(b,¢) (b,d) (b, ¢) (¢,d) (b,d) (¢,d) (a,¢) (a,d) (a,¢) (¢, d) (a,d) (c,d)
(b,d) (b, ¢) (c,d) (b,¢) (e,d) (b,d) (a,d) (a,¢) (¢,d) (a,¢) (c¢,d) (a,d)
(¢,d) (¢,d)  (b,d) (b,d) (b,¢) (b,¢) (¢,d) (¢,d) (a,d) (a,d) (a,c) (a,c)
ni3 niq nis nie nir nig nig n20 na2i1 ng2 n23 n24

@ @ G o 0d ©d @d @d 0d 6d (0d (©d
(bie) (ed) (a0 (od (o) G Gd (@d (@d (@d (od (bd
(e,d) (b, ¢) (¢,d) (a,c) (b,¢) (a,¢)  (e,d) (b,d) (¢,d) (a,d) (b,d) (a,d)
(a,b) (a,d) (a,b) (b,d) (a,d) (b,d) (a,b) (a,c) (a,b) (b, c) (a,c) (b,0)
(a,d)  (a;b) (b,d) (a;b) (b,d) (a,d) (a,c) (a;b) (bc) (a,b) (b,c) (a,¢)
(b,d) (b,d) (a,d) (a,d) (a,b) (a,b) (b,c) (b,¢) (a,¢) (a,¢) (a,b) (a,b)

The Leximin extension is dual of the Leximax. It compares subsets by their worst elements. If
two subsets have the same worst element, the ranking depends upon the next worst elements and
so on. At some point, for X C Y, if X and Y are still equivalent according to the Leximin while
there is no more alternative left in X for further comparison, Y is declared better than X. The
Leximin extended rankings on A? are displayed in Table 3.

Table 3: The Leximin extended rankings on A?

ni n2 n3 n4 ns ne ny ns n9 n10 ni1 ni2
(a,b) (a,b) (a,¢) (a,¢) (a,d) (a,d) (a,b) (a,b) (b,c) (b,e) (b,d) (b,d)
(a,¢) (a,d) (a,b) (a,d) (a,b) (a,c) (b,¢) (b,d)  (a,b) (b,d) (a,b) (b,¢)
(b,e) (b,d) (b,e) (¢, d) (b,d) (¢, d) (a,¢) (a,d) (a,¢) (¢, d) (a,d) (¢, d)
(a,d) (a,¢) (a,d) (a,b) (a,¢) (a,b) (b,d) (b, ¢) (b,d) (a,b) (b,¢) (a,b)
(b,d) (b, ¢) (c,d) (b,¢) (e,d) (b,d) (a,d) (a,¢) (¢,d) (a,¢) (¢,d) (a,d)
(¢,d)  (c,d)  (b,d) (b,d) (b,¢) (b,¢) (¢,d) (¢,d) (a,d) (a,d) (a,¢) (a,c)
nis niq nis nie niv nig nig n20 na1 n22 n23 n24
@ (@ B o 0d ©d @d @d 0d 6d (0d (©d
be) (ed (@) (od (@) 6o Gd (o) () (@ (d (d
(a,b) (a,d) (a,b) (b,d) (a,d) (b,d) (a,b) (a,¢) (a,b) (b, ) (a,c) (b,¢)
(e,d)  (b,e) (c¢,d) (a,c) b,c) (a,¢) (e,d) (b,d) (c,;d) (a,d) (b,d) (a,d)
(a,d) (a,b) (b,d) (a,b) (b, d) (a,d) (a,¢) (a,b) (b, ¢) (a,b) (b,¢) (a,c)
(b,d) (b,d) (a,d) (a,d) (a,b) (a,b) (b,c) (b,c) (a,c) (a,c) (a,b) (a,b)

As one can notice, the Leximax and the Leximin rankings on the two-member committees are
not the same. Kamwa and Merlin (2017) claimed that based on the Leximax and the Leximin, we
can derive the majority relations among committees from those among candidates; they showed
that Va,b € A and VZ C A\ {a,b}, 2My < {a}M*{b} and {a}M*{b} < {a} UZM*{b} U Z.
They were able to connect the CCG to the CCF and they characterized the voting situations
where it is possible to have a committee that is both a CCG and CCF. What remains is to see
whether such a coincidence is just a rare oddity or is a common occurrence. We focus on this
question for the selection of a subset two alternatives out of four by computing the conditional
probability of voting situations under which the Condorcet Committee a la Gehrlein (CCG) and the
Condorcet Committee o la Fishburn (CCF) may both exist and coincide when voters’ preferences
on candidates are extended on subsets lexicographically.



2. Coincidence probabilities

First of all, we define the conditions on A? such that the CCG and the CCF coincide. Let us recall
that (a,b) = CCG only if candidates a and b beat ¢ and d in pairwise majority: aMc, aMd, bMc
and bMd; using the labels of Table 1, this is respectively equivalent to

n1 +n2 +n3 +n4 +ns5 +ne +n7 +ng +ni1 +nig + N2 + n21 > ng +nio + ni12 + ni13 + nig + nis + nie + ni7 + nig + n22 + n23 + N2y
ni1 +n2 +n3 +ng +ns + ne +nr +ng +ng + niz + nig + nis > nio +ni1 + ni2 + nie + ni7 + nig + nig + n20 + n21 + n22 + na23 + noa
ni1 +n2 + ns +n7 +ng +ng +nio + ni1 + niz2 + nig + n21 + n22 > n3 + ng + ne + ni3 + nia + nis + nie + ni17 + nig + n2o + n23 + noa
n1 + n2 +n3 +n7 +ng + ng + nio + ni11 + niz2 +ni3 +nis + nie > N4 + ns + ne + ni14 + ni7 + nig + nig + n2o + n21 + n22 + n23 + n24

For (a,b) = CCF it implies that (a,b)M*(a,c), (a,b)M*(a,d), (a,b)M*(b,c), (a,b)M*(b,d) and
(a,b)M*(c,d). Using the labels of Table 2 under the Leximax, this is respectively equivalent to

n1 +n2 +ns5 +n7 +ng +ng +nio + ni1 + ni2 + nig + n21 + n22 > n3 +ng4 +ne + n13 + nia + nis + nie + n17 + nig + n2o + n23 + na2g
n1 +n2 +n3 +n7 +ng + ng + nio + ni1 +niz2 +ni3 +nis +nie > nga + ns + ne + ni4 + ni7 + nig + nig + ngo + n21 + n22 + n23 + N2y
n1 +n2 +n3 +n4 +ns5 +ne +n7 +ng +ni1 + nig + n2o + n21 > ng +nio + ni12 + ni13 + nig + nis +nie + ni7 + nig + n22 + n23 + N2y
n1 +n2 +n3 +n4 +ns5 +ne +n7 +ng +ng +ni3 +nia +ni5 > nio +ni1 + ni2 + nie + ni7 + nig + nig + n2o + n21 + n22 + n23 + N2y
ni1 +n2 +n3 +ng +ns + ne +n7 +ng +ng + nio + ni1 + niz2 > ni3 + nia + nis + nie + ni7 + nig + nig + n20 + n21 + n22 + n23 + noa

One can easily notice that Equations (1) to (4) are exactly the same as (5) to (8). We get the
same conclusion with the Leximin. Thus, for the CCG and the CCF to coincide, it is necessary
for Equations (5) to (9) to be satisfied. The equations will enable us to compute the probabilities
of coincidence between the CCG and the CCF for m =4 and g = 2.

The Impartial Culture assumption (IC) is one of the most used assumptions in the social choice
literature when computing the likelihood of given events. Under the IC assumption, it is assumed
that each voter chooses her preference following a uniform probability distribution which gives
probability % to each ranking to be chosen independently. The likelihood of the voting situation
n= (TLl, Nno, ..., Ny¢, ...,n24) is

n! .
T % (24)

i=1 n;.

Prob(n) =

For more about the IC and other probabilistic assumptions, see among others, Gehrlein and
Fishburn (1976), Gehrlein and Lepelley (2010), Tataru and Merlin (1997).

Gehrlein (1985) showed under the IC that the limit probability that there is a CCG for m =3
and g = 2 is 0.916. For m = 4 the probability is 0.739 for g = 2 and 0.824 for g = 3 and g = 1.

Let us denote by P (4,g,n) and P2 (4, g,n) the probability under IC that given 4 candi-
dates, a CCG of size g exists and coincides with the CCF by Leximax and by Leximin extension
respectively. Similarly, we denote by ngﬂ “(4,g9,n) and ?Icgﬁn(él, g,n) the probability under IC
that a CCG of size g exists and there is no CCF. Proposition 1 gives the limit probabilities for
m =4 and g = 2 as n grows to infinity.

Proposition 1.

2

| 9
P (4,2, 00) =PI (4,2,00) = 0.739 + — [ I(t)dt = 0.581
™ Jo

2

P (4,2, 00) = Pyt (4,2, 00) = —3 [ 1(t)dt = 0158
™ Jo



where

(4-1) (77 -2 arccos(izl\/%) + arccos( 135 —garro1® 1322:684f£3;4t2 ))
(4 +t2 — 2t)V/16 + 3t% — 8t

B 2(—8 + 5t) 5 arecos 3(—8+5t) V10
(4 + t2 — 2t)/128 + 35t — 80t 2056 — 44t + 17t2

— arccos < (_24 + 5t> \/E >

I(t) =

40+/14 — 8t + 3t?

3(16 — 12t + 3t2)
— arccos
41/(14 — 8t + 3t2) (56 — 44t + 17¢2)

V3 (7r -+ arccos (%) — 2 arccos (27\500))
B 4412 -2

The details of the probability computations are provided in the Appendix. We learn from
Proposition 1 that, in a four-candidate elections, a CCG and a CCF of two members coincide with
probability 0.581 while the probability that the CCG fails to coincide with the CCF (i.e there is
a cycle on committees) is equal to 0.158. The conditional probability for m = 4 and g = 2 that

there is no CCF given that a CCG exists is equal to % = 0.214.

Table 4: Limiting probabilities

m=4

g=1]g=2]g=3
P& (4,g,00) | 0.824 | 0.739 | 0.824
P{(4,g,00) | 0.824 | 0.581 | 0.824

Pio(d.g,00)| 0 [o0158] 0

Table 4 summarizes our results and those from Gehrlein (1985). In this table the values,
P{/(m, g, 0) is the limit probability under IC that given m, a CCG of size g exists. For simplicity,
we write PG(4,2,00) = P (4,2, 00) = P (4,2, 00) and ch(4,2,oo) = ??gin(élﬂ,oo) =
—-CMin
PIC (4727 OO)

Table 5: Existence probabilities for the CCG and the CCF for m =4 and g = 2

3CCF | 3CCF | Total
3CCG | 0.581 | 0.158 |/ 0.739
Acca 0 0.261 || 0.261

| Total | 0581 | 0419 | 1 |

Table 5 provides probabilities of existence of the CCG and that of the CCF obtained by lexico-
graphic extension for two-member committees. When preferences are lexicographically extended,
there is a 58.1% of chance that a CCF exists. At this point, we can also compare our approach



via lexicographic extension of preferences over the subsets of two elements to a more direct ap-
proach where all the voters form preferences on the six subsets of size two independently from
their preferences on A. Hence, the existence of a CCF of size two is equivalent to the search of
a subset that dominates the five others via M*. That is, the probability of existence of a CCF
of size two is equivalent to the probability of existence of a Condorcet winner among six elements
(here, subsets). Let us denote by P{Y (m, o), the probability under IC that a Condorcet winner
exists with m candidates when the electorate is infinite. From Gehrlein (2006) or Gehrlein and
Fishburn (1976), we have :

PV (6,00) =3 — 5P (3,00) + 3PV (5, 00)

Hence, PV (6,00) = 3 — 5(0.916) + 3(0.749) = 0.667

Imposing a restriction via the Leximax or Leximin extension, reduces the probability existence
of a CCF (0.581 vs 0.667). In other words, restricting preferences via lexicographic extension is
more susceptible to lead to cycle among committees than when voters are are free to have any
type of rankings they want.

3. Conclusion

We found that, with four candidates and committees of size two, there is a 21.4% of chance that,
given a CCG exists, there is no CCF. In this respect, the CCG is a voting concept that is more likely
to exist than the CCF. Also, we found that, imposing a restriction via lexicographic preferences
reduces the probability existence of a CCF. However, it is not clear whether our conclusions can
be generalized. First, computations with more than four candidates would also allow us to have
a complete picture of the coincidence of the Condorcet committees. But, this remains a hard
and cumbersome task under the Impartial Culture using the same method as in Saari and Tataru
(1999) or Gehrlein and Fishburn (1976). To circumvent this, the only solution would be to rely on
Monte-Carlo simulations.

Appendix

Our objective is to evaluate the probability of the event described by Equations (5) to (9) under
the IC assumption, for n — oo. The first four equations describe the fact that {a,b} is the CCG.
Gehrlein (1985) already evaluated the probability of this event under IC for n large at 0.739. We
rewrite Equation (9) by using a parameter t.

1 —|—n2—|—n3—|—n4+n5—|—n6+n7+n8—|—n9—|—(t— 1)n10+(t—1)n11+(t—1)n12 >
(t—Dnig + (t — Dnia + (t — )nas + nie + nar + nisg + nig + noo + nat + nag + naz + nag (10)

When t = 0, Equation (10) is equivalent to Equation (8). At ¢t = 2, it fully describes Equation
(9). Our proof technique will in fact evaluate the probability that Equations (5) to (10) are
satisfied under IC for n large. At t = 0, we recover the value 0.739 while at ¢t = 2, we will derive
the probability of disagreement between the CCG and the CCF.

With four candidates, it is assumed under the Impartial Culture assumption that each voter is
equally likely to have one of the 24 preference types. Let x; be the random variable that associates



to each voter ¢ a 24-component vector with probability 21—4 of having 1 in each position. The

expectation of x; is
1 1 1
E(x;) = YR YRR
(z:) (24 24 24)

and the covariance matrix is a diagonal 24 x 24 matrix with the common entry o given by

0? = BE(z?) — BE(z;)?

Let
1 " 2i
T T : :
m = |\m 7T)’L g oo m - : - .
(ma, mo 24) o : :
24 24
The Central Limit Theorem in R?? implies
1 —t?
T
m'| = ———e"2 A
H [ } (\/§7T)23
as n — 0o where t = (t1,t,...,toy) € R* |t]2 =t + .-+ 12, and ) is the Lebesgue measure on

the 23-dimensional hyperplane ¢; + - - - 4 to4 = 0. Note that since m” has the measure supported
on the hyperplane m; + - - - + mos = 0, the limit of m’ as n — oo is also a measure supported on
t1 + -+ +tyy = 0. To compute the probability that given a CCG exists, it is also the CCF, we
need to evaluate the probability that a voting situation is characterized by the five inequalities (5)
to (10); m satisfies inequalities (5) to (10) if and only if 7 = (ny, ng, ..., n9y) also satisfies them.
Then, by the Central Limit Theorem, we write

T : 1 oL
Pr(m" satisfies (5) to (10)) — (\/5%)23/0 X

where C' = {t € R** ¢ satisfies (5) to (10);and Y271 (t;) = 0}.

As the measure
1 —¢2

'HEWG 2\

is absolutely continuous and radially symmetric, computing

1 — 1t
- 2 d\
(V)2 /ce

reduces to finding the measure i of the cone C, when the measure is invariant to rotations. The
measure [i of such a cone is proportional to the Euclidean measure of the cone, that is, the measure
on the sphere.

Saari and Tataru (1999) have developed a method of computing the probabilities of voting
events under the Impartial culture. Some refinements of this method are done in Merlin et al.
(2000), Merlin and Valognes (2004). This method is mainly based on linear algebra and the
calculation of a differential volume in a spherical simplex of dimension v using the Schlafli’s formula
(See Coxeter (1935), Schlafli (1950), Milnor (1982), Kellerhals (1989)). This formula is given by:

dvol,(C) =

Z vol,_o(S; N Sk)dajy; wvoly =1

(v—=1) 0<j<k<v



with a;j the dihedral angle formed by the facets S; and Sy of the cone C. Following the
arguments given by Saari and Tataru (1999), the probability that these inequalities are met si-
multaneously for a voting situation when p; = i, 1 =1,...,24 for n large is equal to the surface
of the spherical simplex 7" described by equations (5),(6),(7), (8), (10) on the surface of the unit
sphere in R®, divided by the surface of this sphere. More precisely, we will derive

6 t
PO (4,2, 00) = 0.73946 + — [ dvol,(C)
0

where w® = 8% is the volume of the surface of the unit sphere in R>.

Given the cone C, let Sy be the facet defined by the equation (5), Sy the facet defined by the
equation (6), so on for S3, Sy and S.
Let 9y, Uy, U3, Uy, Us be the normal vectors to the hyperplanes Sy, Ss, S3, Sy, Ss.

b = (1,1,-1,-1,1,-1,1,1,1,1,1,1,—-1,-1,—-1,-1,—1,-1,1,-1,1,1,—1,-1)
v = (1,1,1, 1,—1,—1,1111111—1,1,1,—1,—1,—1,—1,—1, 1,-1,-1)
v o= (1,1,1,1,1,1,1,1,-1,-1,1,-1,—-1,-1,—-1,-1,—-1,-1,1,1,1,-1,—1,-1)
o = (1,1,1,1,1,1,1,1,1,-1,—-1,-1,1,1,1,—1,—-1, 1,1, 1,1, -1, 1—1)
o= (L,L,L,L,1,1,1,1,1,¢—1,6—1,¢t—1,1—¢,1—¢,1—¢t,—1,-1,—1,-1,—1,—-1,-1,—1,-1)

Since v; and v, are respectively normal to S; and Sy, we can use the relationship

—U;.Vk

cos{@k) = T o]

to derive the value of the dihedral angle o, between vectors v; and vy.

19 = (V13 = (Qgq = (V34 — T — AICCOS (%)
s

Q14 = Q23 = 5
_ 6
X5 = T — arceos <2\/24+6t2—12t>
o o (4+t)vV6
Qg5 — (V35 = T arccos <—6 241602120

_ (—4+t)v6
Qa5 = ALCCOS (2\/24+6t2712t

Therefore,
d0412 = dOélg = dCY14 = d0523 = dC(24 = dOé34 =0

—t+4
dos = (4412 —2t)V/16+3t2— 8t
5t

dovgs = dazs =
—V3

44122t

(4+t2— 2t)x/l28+35t2780t
dOé45 =

The vectors 01, v3, U3, U3, U5 lie in a 5-dimension space. Vectors vg to vy form a basis for the
orthogonal subspace:



% = (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

v o= (- 2.0,2,-1,0,0,0,0,2,—1,0,0, - 1,0,0,0,0,0,0,0,1,0,0,0)
%y = (-2,0,2,—1,0,0,0,0,2,—1,0,0,—1,0,0,0,0,0,1,0,0,0,0,0)
T (-1,0,0,0,0,0,0,0,1,—1,1,0,0,0,0,0,0,0,0,0,0,0,0,0)
o (-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

tn = (-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

ti» = (-1,0,1,-1,0,0,0,0,2,—1,0,0,—1,0,0,0,0,0,0,1,0,0,0,0)
ts = (=1,0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
tiy = (-1,0,2,-1,0,0,0,0,1,—1,0,0,—1,0,0,0,0,0,0,0,0,1,0,0)
#s = (—1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

tie = (0,0,0,—1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

tir = (0,0,0,0,0,0,0,0,0,—1,0,1,0,0,0,0,0,0,0,0,0,0,0,0)

tis = (0,0,0,0,0,0,0,0,0,0,0,0,—1,0,1,0,0,0,0,0,0,0,0,0)

te = (0,0,0,0,0,0,0,0,1,—1,0,0,—1,0,0,1,0,0,0,0,0,0,0,0)
o = (0,0,1,—1,0,0,0,0,0,0,0,0,—1,1,0,0,0,0,0,0,0,0,0,0)
% = (0,0,1,—1,0,0,0,0,1,—1,0,0,—1,0,0,0,0,0,0,0,0,0,0,1)
Ty = (0,0,1,—1,0,0,0,0,1,—1,0,0,—1,0,0,0,0,0,0,0,0,0,1,0)
%y = (0,0,1,—1,0,0,0,0,1,—1,0,0,—1,0,0,0,0,1,0,0,0,0,0,0)
% = (0,0,1,—1,0,0,0,0,1,—1,0,0,—1,0,0,0,1,0,0,0,0,0,0,0)

Then, we can calculate the vertexes Piogy = S1 N Sy N S3MN Sy, Piazs = S1 NSy N S3N S5,
P1245 = Sl N SQ N 54 N 557 P1345 = Sl N Sg N 54 N S5 and P2345 = SQ N 53 N S4 N S5 by SOlViIlg the
following systems

S1=0 S1=0 S1=0 S1=0 S1>0
So =0 Sa =0 So =0 Sa >0 Sa =0
S3 =0 S3 =0 S3 >0 S3=0 S3=0
Sy =0 Sy >0 Sy =0 Sy =0 Sy =0
S5 >0 S5 =0 S5 =0 S5 =0 S5 =0
S =0 S =0 Se =0 Se =0 Se =0
Pi23q : Sr =0 Pra3s : S =0 P12gs : Sr =0 Pi3g5 : Sr =0 Pa3y5 : S7=0
Sa23 =0 Sa3 =0 Sa3 =0 Sa3 =0 Sa3 =0
Soq4 =0 S24 =0 S24 =0 S24 =0 S24 =0

The solutions of theses systems are:

P = (—=1,-1,2,5,2,5,—1,-1,2,5,2,5,—5,—2,—5,—2,1,1,—5, -2, -5, -2, 1,1)

Plogs = (44,4412t —8,—20+ 11¢, —8 4+ 10t, —20 + 11¢,4 + ¢, 4 + t, —8 + 10t,
—20 4 3, —8 — 6t, —20 + 3t,20 — 3,8 + 6,20 — 3,8 — 10t, —4 — ¢,
—4— 1,20 — 11,8 — 10£,20 — 11¢, —2t + 8, —4 — t, —4 — t)

P = (3,3,6,1,-2,1,3,3,-10,—7,6,—7,—1,—6,—1,2, -3, —3,7,10,7, —6, —3, —3)
P = (3,3,6,—7,—-10,—7,3,3,—-2,1,6,1,7,—6,7,10, -3, —3,—1,2, -1, —6, —3, —3)
Prss = (3.3.—10,—7.6.—7.3.3.6,1,~2.1, 1,2, —1,—6, —3, —3,7, —6,7, 10, —3, —3)

Knowing these vertices, we are able to compute the volumes (S; N S5), (Se N S5), (S3 N Ss)
and (S; N S5). Each of these volumes is the area of a triangle on the sphere in R?® defined by



Table 6: volumes and directions

H volumes \ Directions H
(81N S5) | Prass, Proaas, Pisss
(S2NS5) | Piass, Pioas, Pasas
(S3MS5) | Prass, Pigas, Pasas
(SaNS5) | Piaas, Pigas, Pogas

some directions. Table 6 gives the direction for each of these volumes. Let us consider the volume
(S1 N S5). By the Gauss-Bonnet theorem, the area of the triangle on the sphere in R? defined by
directions Pja3s5, Progs and P35 is equal to the sum of the angles on the surface of the triangle minus
. We denote by 71235, 71245 and Y1345 the angles on the surface of the triangle respectively/deﬁ\ned

at the vertexes Pjogs, Piogs and Pigs5. Also, we define the angles 6, = P123/5,?1245, 09 = Pia3s, Pi3as
and 03 = Pjogs, Pi3s5. By applying the the Gauss-Bonnet formula, we have

cos(d1) — cos(dz) cos(d3)

cos(1245) Sin(0,) sin(d)
owlome) = e
o) =
Where
coslon) =eostoa) = 9/ \/24<§ t—_1§8) t+\/3_963 12
cos(d;) = 1_53

It comes by the Gauss-Bonnet theorem that

vol(S1 N S5) = 7Yia3s + Y1245 + Y1345 — T

5 3t—4 N 32 —8t+3¢t?
= T — arccos arccos
4y/14 — 8t + 3 t2 8(14 — 8t + 3¢?)

In a similar way, we obtain

vol(Sy M 85) = vol(S5 N S5) — 21 — arccos ( 3(—8 + 5t)v/10 )

201/56 — 44t + 17t2

(=24 +51) /10
— arccos
4014 — 8t + 312

< 3(16 — 12t + 3¢?) )
— arccos
456 — 44t + 1712/14 — 8t + 3 t2

7 V10
vol(S4 N Ss) = =+ arccos (2—0> — 2 arccos (W)



It comes from the Schlafli’s formula that,
I(t) = UOl(Sl N S5>d0[15 + UOZ(SQ N 55)da25 + UOl(Sg N 55)da35 + UOZ(S4 N S5)d()é45

We have to multiply I(¢) by six and divide it by % the volume of the hypersphere in R® to
obtain the final differential volume —42 fot I(t)dt. At t = 2, the value of this differential volume
is equivalent to the probability F%’[ax (4,2, 00) that the CCG fails to meet the CCF. To obtain the

probability P%Ma‘x(4,2, oo) that the CCG and the CCF coincide, we just subtract ?[Cg“(élﬂ, 00)
from 0.739 the probability obtained by Gehrlein (1985).
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