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Abstract

Sickle cell anemia (SCA) and hemoglobin SC (HbSC) disease are the two most common

forms of sickle cell disease (SCD), a frequent hemoglobinopathy which exhibits a highly var-

iable clinical course. Although high levels of microparticles (MPs) have been consistently

reported in SCA and evidence of their harmful impact on the SCA complication occurrences

have been provided, no data on MP pattern in HbSC patients has been reported so far. In

this study, we determined and compared the MP patterns of 84 HbSC and 96 SCA children,

all at steady-state, using flow cytometry. Most of circulating MPs were derived from platelets

(PLTs) and red blood cells (RBCs) in the two SCD syndromes. Moreover, we showed that

HbSC patients exhibited lower blood concentration of total MPs compared to SCA patients,

resulting mainly from a decrease of MP levels originated from RBCs and to a lesser extent

from PLTs. We did not detect any association between blood MP concentrations and the

occurrence of painful vaso-occlusive crises, acute chest syndrome and pulmonary hyper-

tension in both patient groups. We also demonstrated for the first time, that whatever the

considered genotype, RBC-derived MPs exhibited higher externalized phosphatidylserine

level and were larger than PLT-derived MPs.

Introduction

Sickle cell disease (SCD) is a group of genetic disorders having in common the production of

the abnormal hemoglobin S (HbS) instead of hemoglobin A. Sickle cell anemia (SCA), i.e. the

homozygous form of SCD, results from a single base mutation in exon 1 of the β-globin gene

which causes the substitution of valine for glutamic acid at the sixth position of the β-globin

chain. When deoxygenated, HbS polymerizes and induces the sickling of red blood cells

(RBCs), leading to decreased deformability and increased fragility of these cells. Sickle RBCs
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do not easily flow through the microcirculation, causing frequent vaso-occlusive episodes, and

exhibit a reduced life-span, responsible for the anemic status of affected patients. Recurrent

HbS polymerization induces numerous RBC and systemic pathophysiological abnormalities

associated with clinical manifestations such as vaso-occlusive crises, acute chest syndrome and

multi-organ disease [1]. Co-inheritance of HbS and HbC, another abnormal Hb, is at the ori-

gin of the second most frequent sickle cell syndrome, i.e. hemoglobin SC disease. HbC is the

outcome of a single amino acid change at the same position in β-globin chain but with a lysine

replacing glutamic acid. The tendency of HbC to crystallize is enhanced in HbSC patients,

which promotes RBC dehydration further facilitating HbS polymerization and reducing RBC

deformability [2–3]. Hematologically, HbSC disease is distinct from SCA, with higher hemo-

globin (Hb) levels, lower rates of hemolysis and lower white blood cell counts [4]. HbSC dis-

ease is usually considered as a mild form of SCD but recent studies reported higher prevalence

of several complications such as retinopathy and osteonecrosis in HbSC than in SCA patients

[5,6]. In addition, the rate of hospitalized vaso-occlusive events in HbSC, particularly in chil-

dren, is non negligible [7]. Although the molecular and cellular mechanisms at the origin of

the polymerization of hemoglobin S and crystallization of hemoglobin C are now well

described [8,9], the wide clinical variability of SCD remains poorly understood [10].

Like in several cardiovascular and metabolic diseases [11], high plasma concentration of

microparticles (MPs) has been consistently reported in SCA patients at steady-state [12–18],

with a further rise during vaso-occlusive crisis (VOC) episodes [17–19]. These extracellular

vesicles are membrane-derived vesicles smaller than 1 μm that are shed from any cell type in

response to cell activation, cell stress or apoptosis [20]. Composed of a phospholipid bilayer

and enclosing cytosolic components such as enzymes and mRNA derived from their parental

cells, MPs are involved in the cellular cross-talk of several physiological and pathophysiological

pathways. Indeed, the functional consequences of MPs have been documented in several disor-

ders or clinical conditions such as myocardial infarction, preeclampsia, neovascularization,

metastasis, thrombosis and inflammation [21]. In the context of cardiovascular disorders and

transfusion, these MPs may promote inflammation and cell proliferation and may interfere

with normal vascular responses [22–23].

The involvement of these sub-cellular elements in several pathophysiological processes of

SCD has been strongly suggested. Indeed, it has been shown that MPs originated from sickle

RBCs may trigger coagulation, increase the production the production of radical oxygen spe-

cies by endothelial cells, induce erythrocyte adhesion to endothelial cells and endothelial cell

apopotosis, as well as, trigger renal vaso-occlusive crisis in a sickle mouse model [24–26]. Fur-

thermore, several studies also supported a role of MPs in the occurrence of several complica-

tions in patients with SCA [15,27–28]. While these data strongly suggest that MPs are not only

bio-markers but also bio-effectors in SCA, no study looked at the presence and/or at the circu-

lating MP profile in HbSC patients.

This study was therefore devoted to determine and compare quantitatively and qualitatively

MP patterns between 84 HbSC and 96 SCA children. In addition, to gain insight into the role

of MPs in HbSC disease as well as in SCA, we analyzed the associations between MP levels and

several markers of SCD clinical severity.

Materials and methods

Patients

The study included 180 consecutive SCD children regularly followed-up by two sickle cell cen-

ters based in the French Caribbean islands and identified by new-born screening programs:

109 (59 SCA and 50 HbSC) children followed-up in Guadeloupe and 71 (37 SCA and 34
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HbSC) children in Martinique. Overall, 91 boys and 89 girls between 8 and 16 years old were

included. Twenty-nine SCA children were under hydroxycarbamide (HC) treatment for more

than 6 months, with an average dose of 20.7±2.8 mg/kg per day. No HbSC children was under

HC therapy. All children were at steady state at inclusion, i.e. no blood transfusions in the pre-

vious three months, absence of acute episodes (infection, VOC, acute chest syndrome (ACS),

stroke and priapism) for at least one month before enrolment. The study was conducted in

accordance with the Declaration of Helsinki and was approved by the Regional Ethics Com-

mittee (CPP Sud/Ouest Outre Mer III, Bordeaux, France; registration number 2009-A00211-

56). Children and their parents were informed of the purpose and procedures of the study, and

gave written consent.

Clinical data

Charts were retrospectively reviewed by 3 physicians to recognize all ACS and VOC episodes

from birth to the time of blood sampling, based on previously described criteria [7]. The rates

of VOC were calculated for each child by dividing the total number of painful VOC episodes

by the number of patient-years [7] and two subgroups were constituted according to the

median VOC rate. The tricuspid regurgitant jet velocity (TRJV), available for 102 children at

steady-state, was also recorded. The Philips IE33 system (Philips Medical Systems, Bothell,

WA) was used for evaluating pulmonary hypertension according to the criteria of the Ameri-

can Society of Echocardiography [29]. A TRJV� 2.5 m/sec was considered abnormal [30–31].

Laboratory methods

The SCD diagnosis for these patients has been previously established at the referent laborato-

ries of the university hospitals of Pointe-à-Pitre (Guadeloupe) and Fort de France (Martinique)

by isolectrofocusing electrophoresis (Multiphor II™ System, GE HEALTH CARE, Buck, UK)

and high performance liquid chromatography (VARIANT™, Bio Rad Laboratories, Hercules,

CA, USA). In addition to Hb analysis, SCA diagnosis was confirmed by DNA analysis as previ-

ously described [32]. Blood count analysis including reticulocyte (RET) counts was performed

using a hematology analyzer (Max M-Retic, Coulter, USA). Serum lactate dehydrogenase

(LDH), aspartate aminotransferase (ASAT), total bilirubin (BIL) and unconjugated bilirubin

(UNBIL) levels were determined using standard methodologies.

Isolation of MPs and flow cytometry analysis

MPs were isolated and analyzed as previously reported, using a FC500 flow cytometer (Beck-

man Coulter, FL USA) [16]. Briefly, platelet-poor plasma, obtained from blood collected on

3.2% trisodium-citrate tube after centrifugation (1,500g, 10 min, room temperature), was sub-

mitted to ultracentrifugation (20,000g, 20 min, room temperature) to allow extraction of MPs.

The pellet was subsequently washed twice in working buffer (WB): (10 mM HEPES pH 7.4,

136 mM NaCl, 5 mM KCl, 2 mM MgCl2) containing 5 mM of EDTA for the first washing step,

or no EDTA for the second one. WB was added to the pellet for resuspension, and this MPs

solution, prepared either in Guadeloupe or in Martinique, was stored at - 80˚C in the biologi-

cal resource centers of Guadeloupe or Martinique. Flow cytometry analysis was performed in

Guadeloupe. Fluoresceinisothiocyanate (FITC)-conjugated annexin-V (Beckman Coulter) and

phycoerythrin (PE)-coupled cell type-specific monoclonal antibodies (MoAbs) were incubated

with extracted MPs, thereby allowing the determination of MPs cell type-of-origin. The cell

type markers-specific MoAbs were: anti-CD14 (GPI, clone M5E2, IgG2a; for monocytes),

anti-CD15 (Lewis X, clone HI98, IgM; for granulocytes), anti-CD41 (GPIIb, clone HI98, IgG1;

for platelets), anti-CD106 (VCAM1, clone 51–10 C9, IgG1; for endothelial cells), anti-CD235a
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(Glycophorin A, clone 11E4B-7-6, IgG1; for erythrocytes). IgG1 (679.1Mc7), IgG2a (7T4-1F5)

or IgM (G20-127) were used as isotypic controls. All MoAbs were from Beckman Coulter. The

acquisition gate for MPs was standardized using the megamix kit, a blend of size-calibrated

fluorescent microbeads (0.5, 0.9 and 3 μm; Biocytex, Marseille, France) according to the sup-

plier’s instructions. MPs were defined as elements smaller than 1μm positively labeled with

annexin-V. This analysis procedure and the flow cytometer used allowed the detection and

analysis of sub-cellular elements of diameters ranging from 400 to 900 nm, known to be com-

posed of MPs mainly [33]. However, some of these sub-cellular elements detected could also

be apoptotic bodies, another type of extracellular vesicles, since their diameters overlap with

those of MPs [34]. Flow-Count™ fluorospheres (Beckman Coulter) were used to obtain abso-

lute MPs quantification. Flow cytometry analysis of MPs is represented in Fig 1. Blood MP

concentrations were calculated from plasma MP concentrations corrected by the hematocrit

values.

Statistical analysis

Quantitative variables were summarized as median with the interquartile range (IQR) and cat-

egorical data were expressed in percentage. Intergroup differences were analyzed by Mann-

Whitney non-parametric test or Student t test when appropriate. Categorized variables were

analyzed using Fisher’s exact test. Bivariate correlations were tested by Spearman’s rank corre-

lation. The characteristics of MPs originated from RBCs and PLTs were compared in each

SCD syndrome as well as the characteristics of each cell type specific MPs between the two

SCD syndromes using Mann-Whitney test. To identify factors independently associated with

RBC and PLT-derived MP concentrations, multivariate linear regression analyses were per-

formed with the inclusion of clinical and laboratory variables that were found to be associated

with MP concentrations in univariate analyses. Step-by-step downward iterations were done

to retain the independent parameters. The model analyses were performed using log-trans-

formed MP concentrations to normalize the data distribution. The significance level was

defined as p< 0.05. Analyses were conducted using SPSS (v. 21, IBM SPSS Statistics, Chicago,

IL) and GraphPad Prism (v.7, GraphPad, La Jolla, CA).

Results

The hematological, biochemical and clinical features of the 180 SCD patients included in the

present study are shown in Table 1. As expected, HbSC children were less anemic and they

exhibited lower fetal hemoglobin (HbF), hemolytic markers levels, white blood cell (WBC)

and platelet (PLT) counts than SCA children. Fewer children with a past-history of VOC or

ACS were also detected in the HbSC children group, whereas no difference was observed for

abnormal TRJV between the two groups.

Compared to SCA children, those affected by HbSC disease exhibited a significantly lower

concentration of total MPs, resulting mainly from a decrease of MPs originated from RBCs

and to a lesser extent from PLTs (Table 2).

We also detected lower concentrations of total MP, RBC- and PLT-derived MP in HbSC

patients compared to SCA patients not treated by HC (4,587 (IQR 2,605–10,915) vs 12,155

MP/μl (IQR 5,916–19,510), p< 0.001; 260 (IQR 151–540) vs 755 MP/μl (IQR 401–1,782),

p< 0.001; 4,014 (IQR 2,154–9,570) vs 8,643 MP/μl (IQR 4,383–15,697), p< 0.01, respectively)

while no difference was detected between HbSC and HC-treated SCA patient (doi.org/10.

6084/m9.figshare.4955201.v1).

The mean fluorescence intensity (MFI) of Annexin V-FITC, a parameter reflecting the den-

sity of phosphatidylserine (PS) on the MPs membrane outer leaflet, and the mean forward

Microparticle patterns in SCA versus HbSC patients
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scatter (FS) index, a parameter correlated with MPs size, were compared between SCA and

HbSC children. For this analysis, we considered the two most common blood cell type-specific

MPs detected, i.e. MPs released by RBCs and PLTs. As illustrated in Fig 2A, we observed

higher MFI values for RBC-derived MPs than for PLT-derived MPs in the two SCD groups. In

both groups, we also detected higher mean FS indexes for MPs originated from RBCs (Fig 2B

and S1 Fig). Moreover, RBC- and PLT-derived MPs isolated from HbSC children exhibited

higher MFI than those isolated from SCA children (p = 0.009 and p = 0.002 respectively). No

mean FS index difference was detected between the two groups for PLT-derived MPs (p = 0.5)

while higher FS values for RBC-derived MPs were detected in SCA patients compared to

HbSC patients (p = 0.004).

We then compared MP patterns between children having a positive history of VOC or ACS

or those with TRJV� 2.5 m/sec with those who did not experience these conditions in each

Fig 1. MP characterization by flow cytometry. A: Acquisition gate (H) was based on forward- and side-scatter values of 0.9

mm-large calibration beads; B: autofluorescence was determined using isotopic control (IgG-PE); C: platelet-derived MPs or D:

erythrocyte-derived MPs were labelled with FITC-annexin-V (FL1) and PE-conjugated monoclonal antibodies directed against

CD41 or CD235a, respectively.

https://doi.org/10.1371/journal.pone.0177397.g001
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SCD group. Since HC treatment modifies the hematological parameters and the clinical

expression of the disease (S1 Table), and is associated with a decrease of MP concentration (S2

Table), SCA children treated with HC were excluded from this analysis.

No significant difference in total blood MP concentrations was observed between children

with and without one of the complication investigated (Fig 3). Similar results were obtained

for RBC- and PLT-derived MPs (doi.org/10.6084/m9.figshare.4955216.v1, doi.org/10.6084/

m9.figshare.4955225.v1).

The relationships between the concentrations of RBC- and PLT-derived MPs, anemia and

hemolytic markers are shown in Table 3. For RBC-derived MPs, we detected an inverse corre-

lation with the level of hemoglobin (Hb) and HbF, and positive relationships with RET count,

UNBIL, LDH and ASAT levels in SCA patients not treated by HC. A positive correlation was

Table 1. Biological and clinical characteristics of the SCD studied patients.

SCA patients HbSC patients p values

n 96 84 -

Sex ratio (M/F) 47/49 44/40 0.65&

Age (years) 11.24 ± 2.4 11.54 ± 2.4 0.40*

Hb (g/dL) 7.9 (7.1–8.7) 11.3 (10.6–11.9) <10−3#

HbF (%) 7.6 (4.3–12.2) 1.9 (1.2–3.2) <10−3#

RET (109/L) 269 (200–342) 116 (96.5–153) <10−3#

LDH (IU/L) 588 (466–700) 292 (264–333) <10−3#

Total bilirubin (μM) 47 (35–68) 21 (16–30) <10−3#

Unconjugated Bilirubin (μM) 37 (25–59) 17 (12–23) <10−3#

ASAT (IU/L) 49 (37–52) 26 (21–29) <10−3#

WBC (109/L) 10.8 (8.7–12.6) 5.9 (4.7–8.2) <10−3#

PLT (109/L) 442 (364–495) 212 (168–316) <10−3#

HC treatment 29 0 -

History of VOC (yes/no) 82/14 57/27 0.007&

VOC rate 0.33 (0.11–0.78) 0.14 (0–0.31) 0.0004#

History of ACS (yes/no) 48/48 15/69 <10−3&

TRJV� 2.5m/s (yes/no) 14/46 5/37 0.19&

Quantitative variables were summarized as means ± standard deviation or as the median with the interquartile range (IQR) according to their distributions.

Intergroup differences were assessed using unpaired t test (*), Mann Whitney test (#) or chi 2 test (&). Significant p values are in bold. Hb: hemoglobin;

HbF: fetal hemoglobin; RET: reticulocytes; LDH: lactate dehydrogenase; ASAT: aspartate aminotransferase, WBC: white blood cell; PLT: platelet; TRJV:

tricuspid regurgitation jet velocity; VOC: vaso-occlusive crisis; ACS: acute chest syndrome; HC: hydroxycarbamide.

https://doi.org/10.1371/journal.pone.0177397.t001

Table 2. Cellular origins and blood MP concentrations of SCA and HbSC patients.

SCA patients HbSC patients p values

Total MPs (MPs/μl) 8,507 (4,705–18,022) 4,587 (2,605–10,915) 0.001

RBC-MPs (MPs/μl) 631 (272–1,498) 260 (151–540) <10−3

PLT-MPs (MPs/μl) 6,485 (3,310–15,537) 4,014 (2,154–9,570) 0.008

Mono-MPs (MPs/μl) 31 (0–111) 19 (4–61) 0.194

Neutro-MPs (MPs/μl) 24 (1–103) 16 (0–62) 0.272

Endo-MPs (MPs/μl) 24 (1–107) 16 (2–60) 0.440

MP concentrations were expressed as median with the interquartile range. Significant p values are in bold.

Mono: monocyte; Neutro: neutrophil; Endo: endothelial.

https://doi.org/10.1371/journal.pone.0177397.t002
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Fig 2. Comparison of RBC- and PLT-derived MP characteristics between SCA and HbSC patients. A:

mean fluorescence intensity of annexin V; B: mean forward scatter index. The value distributions are

represented as box and whiskers (min to max). ****: p < 10−4.

https://doi.org/10.1371/journal.pone.0177397.g002

Fig 3. Comparison of total MP concentrations between not HC-treated SCA and HbSC patients

classified according to the occurrence of VOC, ACS and abnormal TRJV. A: Not HC-treated SCA

children classified according to VOC, ACS and TRJV� 2.5 m/s occurrences respectively. B: HbSC children

classified according to VOC ACS and TRJV� 2.5 m/s occurrences respectively. Blood total MP

concentrations are represented as median with interquartile range.

https://doi.org/10.1371/journal.pone.0177397.g003

Table 3. Correlation between MP concentrations and markers of hemolysis/anemia in SCD patients.

SCA patients without HC treatment HbSC patients

Spearman ρ 95% CI p values Spearman ρ 95% CI p values

RBC-derived MP

Hb -0.33 -0.51 to -0.12 0.002 -0.09 -0.31 to 0.13 0.41

HbF -0.34 -0.54 to -0.11 0.004 -0.03 -0.28 to 0.21 0.78

RET 0.34 0.13 to 0.53 0.0015 0.31 0.08 to 0.49 0.009

UNBIL 0.33 0.11 to 0.52 0.004 0.04 -0.20 to 0.27 0.74

LDH 0.38 0.12 to 0.58 0.004 -0.12 -0.37 to 0.14 0.35

ASAT 0.31 0.09 to 0.50 0.005 -0.01 -0.25 to 0.23 0.93

PLT-derived MP

Hb -0.22 -0.43 to -0.004 0.04 -0.2 -0.40 to 0.03 0.08

HbF -0.21 -0.43 to 0.04 0.09 0.01 -0.23 to 0.26 0.92

RET 0.15 -0.08 to 0.36 0.18 0.28 0.06 to 0.48 0.013

UNBIL 0.24 0.02 to 0.44 0.03 -0.19 -0.40 to 0.03 0.08

LDH 0.13 -0.14 to 0.38 0.32 0.21 -0.05 to 0.44 0.10

ASAT 0.04 -0.18 to 0.28 0.67 0.25 0.02 to 0.46 0.03

Correlations were estimated by Spearman’s rank correlation (ρ) in SCD patients. CI: confidence interval. Significant p values are in bold.

https://doi.org/10.1371/journal.pone.0177397.t003
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observed between RBC-derived MPs and RET counts in HbSC patients. For PLT-derived

MPs, relationships with Hb and UNBIL levels were observed in SCA patients without HC

treatment, while correlations with RET count and ASAT level were detected in the HbSC

group.

Multivariate linear regression analyses were performed to assess the presence of indepen-

dent associations between clinical/laboratory variables and RBC- and PLT-derived MP con-

centrations. RET (beta = 0.25, 95% confident intervals (CI): 0 to 0.002, p = 0.014) and LDH

(beta = 0.21, 95% CI: 0 to 0.001, p = 0.035) remained independently associated with MPs origi-

nated from RBCs in SCA children. Hb (beta = -0.25, 95% CI: -0.16 to -0.003, p = 0.04) and HC

treatment (beta = -2.09, 95% CI: -0.41 to -0.012, p = 0.038) were independently associated with

PLT-derived MPs in SCA children. RET was the only parameter independently associated

with RBC-derived MPs (beta = 0.3, 95% CI: -0.001 to -0.005, p = 0.005) or PLT-derived MPs

(beta = 0.26, 95% CI: 0.001 to 0.0056, p = 0.018) in HbSC children.

Discussion

In this study, we described the quantitative and qualitative MP pattern in HbSC children and

identified several distinct features compared to those of SCA children. Although most of circu-

lating MPs were derived from PLTs and RBCs in the two SCD syndromes studied, we showed

that HbSC patients exhibited lower blood concentration of total MPs, RBC- and PLT-derived

MPs than SCA patients not treated with HC. Moreover, we also demonstrated for the first

time that whatever the considered genotype, RBC-derived MPs exhibited higher externalized

PS and were larger than PLT-derived MPs. Finally, we did not detect any association between

MPs concentration and the occurrence of three major complications in both patient groups.

The mechanisms leading to MPs shedding from cytoplasmic membrane remain not fully

understood and differ from a cell-type to another [20,35]. These processes are described as

involving increased cytosolic calcium, re-organization of cytoskeleton proteins, associated

with weakening of their association with the lipid bilayer, externalization of PS and imply dis-

tinct enzymatic activities according to the cell type. In SCA, several proteins involved in the

shedding of MPs by RBCs have been identified, such as thrombospondin-1 [24] or acid sphin-

gomyelinase [36]. Two major pathophysiological mechanisms have been associated with the

increased vesiculation of sickle RBCs: 1) repeated RBC sickling/unsikling events [37–38], and

2) oxidation of sickle RBC membrane proteins [39]. These two phenomena are also at the ori-

gin of the fragility of sickle RBCs, explaining the marked hemolysis and anemia in SCD [40–

41]. Indeed, as previously demonstrated [14–16,42], it was not surprising to observe significant

correlations between several hemolytic markers and the level of RBC-derived MP concentra-

tion in both SCA and HbSC patients. It is also tempting to speculate that the lower RBC-

derived MP concentration detected in HbSC compared to SCA patients was due to lower oxi-

dative stress and limited sickling/unsickling episodes in the former group compared to the lat-

ter one. The mechanisms involved in the shedding of MPs from RBCs such as the involvement

of thrombospondin-1 and sphingomyelinase or the exacerbation of oxidative stress, not

addressed in the present study, clearly deserve further investigations.

Since nearly every component of hemostasis is altered in the direction of a pro-coagulant

phenotype in SCD, this disorder has been referred to as a “hypercoagulability state” [43]. In

addition to high plasma levels of PLT-released proteins such as thrombospondin-1, platelet

factor 4 [44] or sCD40L [45], increased PLT expression of CD62P (P-selectin) and CD40L has

been described in SCA patients [46], demonstrating abnormal activation of this blood cell type

element. In agreement with previous studies, our study showed that Hb level and RET count

were independently associated with the level of PLT-derived MPs in SCA and HbSC patients,
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respectively, which suggests a link between hemolysis/anemia and platelet activation in SCD

[14–15,42].

MPs exhibit pro-coagulant properties through different mechanisms depending on the

presence of PS and tissue factor at their surface [12,47–48]. The higher density of externalized

PS in RBC-derived MPs and bigger size of RBC-derived MPs compared to PLT-derived MPs

could explain why RBC-derived MPs but not PLT-derived MPs seem to have a strong impact

on blood coagulation [14,43]. The increase of externalized PS in MPs originated from RBCs

compared to those derived from PLTs is consistent with the higher PS level of the cytoplasmic

membrane reported in the former than in the latter [49,50]. Unexpectedly, we observed that

PLT- and RBC-derived MPs isolated from HbSC patients have higher levels of externalized PS

than those isolated from SCA patients. These observations cannot be explained by the size of

MPs since no difference was observed between the two groups for PLT-derived MPs and

higher FS values were detected for RBC-derived MPs isolated from SCA patients. The higher

PS exposure of MPs isolated from HbSC patients seem to have a limited impact on blood coag-

ulation since lower plasma levels of coagulation markers have been detected in this sickle cell

syndrome compared to SCA [6], an observation also in agreement with their observed lower

blood MPs concentration.

As expected, SCA patients under HC treatment had lower MPs levels than those without

HC [16]. Unexpectedly, we did not detect any association between MP levels and occurrences

of painful VOC, ACS and TRJV� 2.5 m/s in either SCA or HbSC patients. These results con-

trast with previous findings where higher MP concentrations were reported in SCA patients

with frequent VOC [15,27] or other complications such as ACS or pulmonary hypertension

[15]. Differences in study design and/or methods used to analyze MPs may account for these

discrepancies. In our previous report, the clinical history of adult SCA patients was recorded

over a two years-period [27] compared to the more accurate life-long recording period of the

present study. Furthermore, the age difference of the patients included in these two studies

may also be involved in the discrepancy observed although no report to our knowledge had

documented so far an age-related MP distribution. The design of our study also differed from

that of Tantawy et al [15] in several issues. Indeed, they have studied young children and ado-

lescents with various sickle cell syndromes (SCA and Sβ-thalassemia) with different clinical

status (at steady-state and during crisis). Furthermore the pre-analytical and analytical proce-

dures that we used were also different. These two technical steps are well known critical factors

impacting MP pattern, quantitatively and qualitatively [26]. Despite undertaken standardiza-

tion attempts [51,52], no consensus for flow-cytometry analysis of MPs has emerged up to

now [26] leading to different protocols and doubts on the most accurate strategy to be used.

Given the differences between MPs purification procedures, we advocated to report the distri-

butions of FS values for MPs and calibration beads as shown in the S1 Fig. It should be

pointed-out that our flow cytometer could not detect small MPs (diameter < 400 nm), which

may be relevant bio-markers and bio-effectors. Indeed, we have recently shown that exosomes

isolated from SCA patients impacted the endothelial cells phenotype and induced monocyte

adhesion in a severity dependent manner [53]. We have also identified signature of exosomal

microRNAs that distinguished severe from mild SCA patients [53]. Our present data do not

provide evidence that large MPs are biomarkers of the three SCD complications analyzed. Fur-

ther studies are warranted to better describe the clinical significance of the different sub-types

of extracellular vesicles in the sickle cell disease pathophysiological processes by analyzing the

quantitative and qualitative patterns of MPs and exosomes in the same patients.

In summary, we have shown that HbSC patients exhibited lower concentration of MPs

compared to SCA patients. Furthermore, we provided evidence that RBC-derived MPs exhib-

ited higher density of externalized PS than PLT-derived MPs and thus could be more efficient
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in triggering coagulation activation. Although we did not detect any relationship between the

3 major SCD complications studied and MP concentrations, further studies are warranted to

decipher their roles in the occurrence of SCD clinical manifestations, specifically those associ-

ated with a hypercoagulability phenotype.

Supporting information

S1 Fig. Distributions of FS indexes of PLT-derived MPs and RBC-derived MPs in one SCA

patient. Size-calibrated beads were used to ensure the reproducibility of FS values determina-

tion. Due to the optical properties of FC500 cytometers, 900nm beads have the same FS value

than 1μm-large MPs. All MPs detected have a size comprised between 0.4 and 1μm but size

distribution for RBC-derived MPs is shifted towards bigger size when compared to PLT-

derived MPs.

(TIF)

S1 Table. Comparison of biological parameters and clinical expression between HC-

treated versus HC-not treated SCA patients. Quantitative variables were summarized as

means ± standard deviation or as the median with the interquartile range (IQR) according to

their distributions. Intergroup differences were assessed using unpaired t test (�), Mann Whit-

ney test (#) or chi 2 test (&). Significant p values are in bold. TRJV: tricuspid regurgitation jet

velocity; VOC: vaso-occlusive crisis; ACS: acute chest syndrome.

(TIF)

S2 Table. MP concentrations in HC-treated SCA patients and SCA patients not treated

with HC. MP concentrations were expressed as median with the interquartile range. Inter-

group differences were assessed using the Mann Whitney test. Significant p values are in bold.

Mono: monocyte; Neutro: neutrophil; Endo: endothelial.

(TIF)
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