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The ability of left-handed materials to overcome the diffraction limit was first 

considered as one of the most exciting and challenging outcome of the negative refraction 

concept. Flat lens focusing of elastic waves is however a challenge. We demonstrate 

broadband focusing of elastic waves at 10 kHz carrier frequency, below the first stop band, 

in a 45°-tilted square array of circular air holes perforated in a Duraluminium thin plate. 

By adjusting the relative thickness of the outer plate we achieve large-angle negative 

refraction with diffraction-limited lateral resolution. We find good agreement with a simple 

beam-lattice model and finite-difference time-domain simulations. 
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INTRODUCTION 

Veselago’s 1968 discovery of a convergent flat lens via negative refraction1 and Pendry’s 2000 

bold claim that this lens has a resolution only limited by its material constituents2 have paved the 

way towards an enhanced control of light trajectories in materials structured on a sub-wavelength 

scale. The subsequent experimental demonstration of negative refraction of microwaves in a 

metamaterial consisting of a periodic arrangement of thin straight wires and thin loops3 fueled the 

interest in the physics of negative refraction4. 

These discoveries prompted physicists to also explore focusing via negative refraction in the 

context of resonant discrete spring-mass mechanical systems for other types of waves, such as 

acoustic or elastodynamic waves, where the effective dispersive parameters could be Young’s 

modulus, density, bulk modulus and so forth5-9. 

In the tracks of photonics, phononic crystals10 have also been proposed as an alternative to resonant 

acoustic metamaterials. Dispersion bands can be tailored to force group and phase velocities to 

point in opposite directions. Experiments in linear surface water waves11 and sonic wave12-16 

transmission through water-immersed pillars, or layers of perforated plates17, illustrate the high 

potential of acoustic metamaterials. 

However, when one moves into the area of elastodynamic waves, governing equations become 

much less tractable as compressional and shear waves are inherently coupled in structured solids. 

Another difficulty intrinsic to the tensor nature of the Navier’s equations is that they do not behave 

nicely upon a change of coordinates18. In contrast to Maxwell’s equations, their form is not 

preserved under geometric transforms such as space folding, whereby the image plane of a flat 

lens with a negative refractive index is expected to map onto its source plane19.  
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There is however a limiting geometry where flat lens focusing for elastodynamics waves has been 

recently predicted in a time-harmonic setting20: a vibrating thin plate. Here, compressional and 

shear components of the wave are linked by stress-free boundary conditions on the limiting 

surfaces to produce dispersive Lamb modes, leading to simplification of the tensor equations into 

a fourth order differential operator such as those of Timoshenko or Graff21,22. Beyond the interest 

in diffractive tomography23 and non-destructive testing24 of large plate-like structures, control of 

flexural waves25 in structured plates has become an increasingly fashionable topic in the past few 

months with the first experimental validation26 of the theoretical proposal for cloaking in thin 

plates27,28. Recently, negative refraction in elastic plates was reported at an interface via mode 

conversion29 or across a prism-shaped phononic crystal30. Advantage was taken from band folding 

in the second band where the directions of the wave vector and group velocity are anti-parallel, the 

drawback being to work at high frequencies, where several acoustic modes coexist and no 

manageable asymptotic theory seems to be available. However, large-angle negative refraction 

(LANR) and flat lens focusing for bending waves have never been reported to date. 

Here, we show that LANR and focusing of elastic waves with resolution down to the diffraction 

limit are within a relatively easy reach in structured thin plates, in the first band (acoustic band) 

where homogenization theory is valid and analytical form of the band diagram is derived. Inspired 

by the earlier work by Joannopoulos’s group for electromagnetic waves31, we consider a flat lens 

formed by a square array of circular air holes tilted through an angle of 45° perforated in a 

Duraluminium thin plate. By matching free-space and platonic crystal dispersion curves, 

broadband LANR is achieved. Pulse measurements allow to discriminate between direct focusing 

and spurious reflections from the edges of the plate. Three-dimensional finite-difference time-

domain simulations including open boundary conditions confirm the experimental observation. 
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THEORY AND NUMERICS 

We first compute the equifrequency contour and the band structure (Fig. 1) of the elastodynamic 

equations in a platonic crystal: A transversely infinite thin plate structured with a square lattice of 

see-through holes. We use Finite Element Method by enforcing Floquet-Bloch conditions on the 

opposite vertical boundaries of an elementary cell (a thin box) containing a see-through stress-free 

circular cylindrical hole and stress-free top and bottom boundaries (see right inset in Fig.1b). The 

effect of the crystal anisotropy and its dependence on geometric parameters (hole radius, r, lattice 

constant, l, plate thickness, h) is well understood by the graphical representation of the 

isofrequency surfaces (Fig. 1a), which describe the variation of the wave vector with direction and 

frequency. Isofrequency contours of the lowest dispersion curve (in red in Fig. 1b) display the 

hallmark of LANR in the Γ-M direction: isofrequency surfaces become convex everywhere about 

the M-point in the reciprocal space, and the size of the isofrequency contours shrinks with 

increasing frequency. The direction of energy transport, determined by the group velocity, vg, 

which is perpendicular to the isofrequencies, points inward around the M-point (Fig. 1d), as 

opposed to outward around the Γ-point at lower frequencies32. 

Remarkably, we find that the acoustic band can be approximated in closed form if one considers 

that the flexions of a periodically perforated plate can be mimicked by the flexions of a lattice of 

beams33 (see left inset in Fig.1b). Floquet-Bloch bending waves propagating in such a lattice are 

described by the dispersion relation20, 33: 

sin(𝛽𝑙) [cos(𝑘1𝑙) + cos(𝑘2𝑙) − 2 cos(𝛽𝑙)][cos(𝑘1𝑙) + cos(𝑘2𝑙) − 2 cos h(𝛽𝑙)] = 0           (1) 

with 2l the pitch of the array and k1 and k2 the components of the Bloch vector k. We define the 

reduced frequency β with 𝛽2 = 𝑝√𝜌ℎ/𝐷 with p the pulsation, D = Eh3/12(1-ν2), the flexural 

rigidity, ν the Poisson’s ratio, E the Young’s modulus, h the plate thickness and   the plate density. 
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The second factor in this equation provides us with the dashed curves in Fig. 1b. The match 

between asymptotics and numerics computed by finite elements method (solid curves in Fig. 1b) 

is sharp in the acoustic band. Beyond the acoustic band, the asymptotic model breaks down when 

the flexural wave starts sensing the specific shape of air holes, i.e. when we move away from the 

homogenization regime. 

To demonstrate LANR and flat lens focusing, we now consider a rectangular lens formed by a 45°-

tilted (Γ-M direction) finite-sized section of the platonic crystal perforated in a larger thin plate. 

The lens interface, which is optimally oriented with respect to the Γ-M direction, introduces a 

mismatch between the isofrequency contours outside and within the platonic crystal (blue and red 

contours in Fig. 1a) at the working frequency where negative refraction is expected (above the X-

point). Nevertheless, better adjustment of isofrequency contours is still possible by taking 

advantage of an extra degree of freedom offered by the plate geometry: The “free-space” bending-

wave dispersion relation34 is independently adjustable by varying the thickness h of the plate (with 

h << λ). The effect of increasing the plate thickness outside the platonic crystal is seen in Fig. 1b 

where the point at crossing of the two dispersion curves is brought closer to the working frequency. 

Consequently, negative refraction operates on a larger angle32. 

 

EXPERIMENTS 

A 2mm-thick Duraluminium rectangular plate35 (500 mm x 300 mm) was first thinned down to 

1mm in its central region (98 mm x 300 mm). A regular square lattice of 104 circular holes with 

radius 6mm was then computer-aided perforated in this region. The structured plate is shown in 

the inset of Fig. 3. The platonic crystal has a lattice constant l = 15 mm, resulting in a surface 

filling-fraction of 50% and rectangular dimensions L = 98mm x H = 234mm. The square lattice 
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orientation is 45° with the edges of the plate (Γ-M direction). The edges of the plate are covered 

by a 2mm-thick layer of blue-tack on both sides over 2cm, which turns out to be a good absorber 

in the kHz range. A 3dB attenuation of the reflected wave at the edges is thus achieved, which is 

enough to observe focusing of a short pulse before edge reflections become significant.  

Phenyl salicylate (Salol-melting point of 43°C) is used to bond and couple a 1cm-diameter 

piezoelectric ceramic pastille (PKS1-4A1 MuRata Shock Sensor) on the plate along its main 

median at a distance L/5=1.8 cm from the lattice. A digitized acoustic Gaussian pulse centered at 

f0 with bandwidth σ is digital-to-analog converted and amplified before being emitted by the 

pastille. In the kHz range, only zero-order symmetric, S0, and anti-symmetric, A0, modes can 

propagate in the plate22. 

On the other side of the plate, the acoustic field velocity, 𝑣(𝒓, 𝑡) = 𝐴(𝒓, 𝑡) cos(2𝜋𝑓0𝑡 + 𝜑(𝒓, 𝑡)), 

is measured at every point at the surface of the plate by a laser vibrometer (Polytec sensor head 

OFV505, controller OFV5000). The vibrometer is only sensitive to vertical-displacement velocity 

and therefore measures preferentially the anti-symmetric mode A0. An X-Y stage allows scanning 

of the probe across the plate, including the crystal. The spatial resolution of the scan is 2mm × 

2mm. The vertical-displacement velocity, 𝑣(𝒓, 𝑡), is measured and the slowly varying envelope, 

A(r,t), and phase, φ(r,t) are extracted using the Hilbert transform.  

The amplitude-squared, |A(r,t)|2 and the phase φ(r,t) of the velocity field at t = 833 µs are shown 

in Fig. 2 for carrier frequencies f0 = 5 kHz and 10 kHz. For a pulse with f0 = 5 kHz and σ = 3.0 

kHz, the divergent wavefront issued from the source is seen to traverse the platonic crystal without 

much distortion (Fig. 2a,b). This is consistent with the corresponding isofrequency, which 

surrounds the Γ-point. Above the X-point, at f0 = 10 kHz, propagation operates a dramatic change 

(fig. 2c,d): A convergent wavefront emerges from the platonic crystal and the acoustic pulse 
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refocuses at a distance 0.4L, where L is the lens thickness, and reaches its peak value at t = 833 µs, 

348 µs after the initial pulse, which corresponds to the travel time within the periodic lattice. The 

lensing effect is best illustrated in the movie36 where the time evolution of the slowly varying 

envelope squared |A(r,t)|2 of the velocity-field crossing the sample is shown for an acoustic pulse 

centered at f0 = 10 kHz and σ = 2.3 kHz. The contrast is blatant in the phase representation between 

the diverging propagating wavefront at f0 = 5 kHz (Fig. 2a) and the wavefront emerging from the 

focal point at f0 = 10 kHz (Fig. 2d). We define the lateral resolution as the full width at half 

maximum (FWHM) of the lateral amplitude-profile of the image spot. A lateral resolution of 0.59 

λ is achieved (Fig. 3, open circles), where λ = 44.7 mm is the wavelength of Lamb waves in the 

plate at 10 kHz. A comparison of the maximum amplitude at the focal point, AF, and at the first 

side lobes, ASL, gives a lateral contrast |AF- ASL| / |AF + ASL| = 0.63. Interestingly enough, significant 

transmission, AF /AS = 27 %, is achieved, where AS is the maximum amplitude at the source 

position. To assess the effect of the double-step geometry, we reproduce the experiment in a plate 

with identical platonic structure but uniform thickness of 1mm. In this case, the resolution at focus 

is no better than 1.05 λ (Fig. 3, open diamonds). This confirms that the double-step geometry we 

use to better match the equifrequency contours indeed significantly improves the LANR. Focusing 

is also observed with a source displaced laterally from the median (x-axis) by L/2, which rules out 

any symmetry spurious effect which might result from residual reflections. 

The experimental results were systematically compared to three-dimensional Finite Difference 

Time Domain (3D-FDTD) numerical simulations37,38. The effect of air loading was neglected in 

the simulations. The plate was assumed to stand in vacuum: Stress-free boundary conditions were 

applied on the upper and lower surfaces of the plate, and vacuum within the simulation domain 

was simply modeled by a material with vanishing elastic constants. Initially, 3 dB-absorbing 
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boundary layers (ABL)39 were used to reproduce the experimental conditions. The numerically-

computed intensity and phase distributions are shown in Fig. 2e,f, and the lateral profile is given 

in Fig. 3 (dashed line). The similarity with experimental data is striking for the intensity and phase 

spatial distribution at t = 833 µs, as well as for the lateral resolution (0.61 λ). Numerical 

simulations were reproduced using highly absorbing boundary layers with 54 dB attenuation to 

simulate a transversely unbounded plate and test the dependence of the refocusing resolution on 

the boundary conditions. We confirm that multiple reflections at the edges of the plate do not 

artificially contribute to the lateral resolution before the pulse is refocused.  

We find that focusing is effective from 8 kHz to 12 kHz leading to broadband lensing effect with 

Δf/f0 = 40%. The quality of the focus only degrades at higher frequencies where isofrequency 

contours shrink around the M-point whereas the free-space isofrequency circle increases: The 

larger mismatch between the two contours reduces the angular aperture of the refocused beam. 

 

CONCLUSION 

In conclusion, we have theoretically investigated and experimentally demonstrated focusing of 

elastic waves in a thin plate by a flat lens simply realized with a square array of circular see-through 

holes. The fact that focusing occurs at a frequency in the homogenization domain (i.e. deep down 

on the acoustic band) allows for an accurate asymptotic estimate by mimicking the dynamics of 

the structured plate by that of flexural waves propagating within a lattice of beams. We point out 

that on average, the shape of holes does not affect the lower part of the acoustic band, which is 

obviously no longer the case when one moves towards higher frequencies. Working at low 

frequencies is advantageous since a single Lamb mode is excited in this spectral regime where the 

wavelength is much larger than the thickness of the plate, reducing greatly the complexity due to 
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multi-mode conversion. Meanwhile, since we operate below the stop band, Bragg refraction is 

absent and relatively good transmission is achieved even when a double-step is added to the plate 

to better match isofrequency contours. Finally, this geometry opens the way to explore 

experimentally flat lens super-focusing by replacing the non-resonant holes by subwavelength 

resonant scatterers such as blind holes or pillars40. 
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Figure 1: (a) Isofrequency contours. The (k1,k2) plane has been rotated by 45° to align the ΓM-direction with the horizontal incident 
direction normal to the platonic lens. The crystal isofrequency at 10 kHz circles the M-point (red circle) while the free-space 
isofrequency at 10 kHz circles the Γ-point (blue circle). (b) Band diagram. Horizontal axis: Projection of the Bloch vector on the 
boundary of the first irreducible Brillouin zone ΓXM. Vertical axis: Bending wave frequency. Comparison of finite element 
computations (solid line) against analytical estimate given by Eq. 1 (dashed line). Excellent agreement is found in the acoustic band 
(dashed redline).The blue curves starting from the M-point correspond to “free space” bending waves propagating in 1 mm-thick 
(full circles) and 2 mm-thick (open circles) homogeneous plate along the ΓM direction. Insets: unit cell of the actual platonic crystal 
(right) and for the analytical model (left). 
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measured on the image side where focusing is expected (The full picture is available in the movie36). (a)&(b): 
Experiment at f0 = 5 kHz carrier frequency, which shows a divergent wavefront.(c)&(d): Experiment at f0 = 10 kHz carrier 
frequency, which shows refocusing. (f)&(g): 3D-FDTD simulation also at f0 = 10 kHz. Note the velocity-field oscillations 
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the hallmarks of focusing through a negatively refracting lens41,42. 
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step (2mm-1mm-2mm) (cyan line with open circles). While the resolution given by the FWHM of the central peak is 1.0 λ in 
the uniform plate, it becomes 0.59 λ in the double-step structure, thus confirming the larger-angle negative-refraction 
achieved by matching free-space and platonic crystal dispersion curves. Similar resolution (0.61 λ) is obtained through 3D-
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step (2mm-1mm-2mm thick) rectangular plate with the square lattice of see-through circular 12mm-diam holes. The source, 
a piezoelectric pastille, is acoustically coupled to the metallic plate. Blue-tack is stuck on both sides and edges of the plate to 
damp the acoustic waves and reduce reflections. The green-light beam of the laser vibrometer in actuality scans the plate 
surface opposite the emitter. 


