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NULL CONTROLLABILITY OF SALMONELLA SPREAD

WITHIN AN INDUSTRIAL HEN HOUSE

G. MOPHOU, P. ZONGO, AND R. DORVILLE

Abstract. The main purpose of this paper is to propose a deterministic

mathematical model with control variable which describes the spatiotemporal

spread of Salmonella within a laying flock. This model assume an indirect

transmission of the disease within the flock through the bacteria density in the

environment. We provide a mathematical analyze of the null controllability

of the model: we begin to construct a family of solutions to the linear null-

controllability problem using the Carleman inequality. Then, by a generalized

Leray-Shauder fixed point theorem, we show that one can bring the system to

rest at final time T.

1. Introduction

Salmonellosis is an infectious disease of humans and animals caused by Salmonella

bacteria. The bacterium is commonly found in farm leading to contamination of

poultry products, mostly eggs and egg products. Contamination of fruits and veg-

etables may occur when they have been fertilized or irrigated by faecal wastes.

Here, we will focus on salmonella spread within industrial hen house.

Models have already been proposed to study Salmonella spread within industrial

hen house [1, 10, 16, 17, 18, 21, 22]. But from the best of our knowledge, no model

considered the null controllability of this food-borne illness. A biological system is

said to be null controllable at time T if there exists a control such that the solution

of system is null at time T. In the particular case of salmonellosis model, a solution

of system represents both density of infected hens and the density of bacteria; a

control within hen house might be an antibacterial cleaning products to eliminate

the bacteria in environment or the management of ventilation system to limit the

dispersal of bacteria in environment or other control type.

In what follows, we consider the following system modeling the salmonella spread

within industrial hen house:
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∂S(x, t)

∂t
= −σS(x, t)C(x, t) in Q,(1a)

∂I(x, t)

∂t
= σS(x, t)C(x, t) in Q,(1b)

∂C(x, t)

∂t
−D∆C(x, t) + αC(x, t)− β(t)I(x, t) = v(x, t)χω,(1c)

∂C

∂ν
= 0 on Σ,(1d)

C(x, 0) = C0(x) in Ω,(1e)

S(x, 0) = S0(x) in Ω,(1f)

I(x, 0) = I0(x) in Ω.(1g)

where N, M ∈ IN\{0} and Ω is a bounded open subset of IRN with boundary Γ

of class C2.Here, ω is an open non empty subset of Ω, Q = Ω×(0, T ), ωT = ω×(0, T )

and Σ = Γ× (0, T ) for a time T > 0.

In equation (1), C(x, t) denotes the density of bacteria in the environment at

time t and position x, S(x, t) denotes the density of susceptible hens at time t and

position x, I(x, t) denotes the density of infectious hens at time t and position x.

v(x, t) denotes the variable control on which one acts to reduce over time the density

of bacteria within hen house. χω is the characteristic function of the control set ω

and ν denotes the unit outward normal vector to Γ. The term β(t)I(x, t) represents

the density of excreted bacteria by infectious hens at time t and position x. Because

the quantity of fecal shedding by infected hens can fluctuate over time, we assume

that the excretion rate β is depending on time t. The parameters σ, α and D

denote respectively the transmission rate, the mortality rate of the bacteria and

the diffusion coefficient for their dispersal in the environment. Furthermore, we

assume that σ, α and D are constant and positive. The domain Ω represents an

industrial laying hens house in which the population of laying hens is confined and

assumed motionless. The variable control is introduced in order to understand how

to eliminate salmonella at a final time t = T when disease was already introduced

at a previous time t = 0. As in [1, 22], we assume that Salmonella disperses in the

hens house via a diffusion process through dust particles, contaminated aerosols.

2. Preliminary

Before going further, we need to reformulate the problem (1) in terms of a scalar

non-local parabolic equation. We proceed as in [1]. Thus, coming back to (1), one

obtains that the quantity

S(x, t) + I(x, t) ≡ S0(x) + I0(x) in Q.
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The integration of equations (1a) and (1b) allows us to reduce the system (1) to

the following problem

(2)



S(x, t) = S0(x)e−σ
∫ t
0
C(s,x)ds,

I(x, t) = I0(x) + S0(x)(1− e−σ
∫ t
0
C(s,x)ds),

∂C(x,t)
∂t −D∆C(x, t) + αC(x, t)− β(t)I(x, t) = v(x, t)χω in Q

∂C

∂ν
= 0 on Σ,

C(x, 0) = C0(x) in Ω.

This allows us to reduce the problem to the following simplified scalar equation

for C in which the state variable S and I has been eliminated

(3)

∂C

∂t
−D∆C + αC − β(t)

(
I0(x) + S0(x)(1− e−σ

∫ t
0
C(s,x)ds)

)
= vχω in Q,

∂C

∂ν
= 0 on Σ,

C(x, 0) = C0(x) in Ω.

In what follows, we normalize the diffusion coefficient D to 1 by using the rescaling

x := x/
√
D and we focus on the situation when the initial distribution of infectious

hens, namely I0(x) ≡ 0. Thus, system (3) can be rewritten as:

(4)


∂C

∂t
−∆C + αC − β(t)S0(x)F

(∫ t

0

C(x, s)ds

)
= vχω in Q,

∂C

∂ν
= 0 on Σ,

C(x, 0) = C0(x) in Ω

where α > 0 and σ > 0. The real function F is given by F (z) = 1 − e−σz for any

z ∈ IR+. Note that the function F is of class C1 on IR+ and globally Lipschitz.

Moreover F is such that |F (z)| < σ|z|.
We are now interested by the following null controllability problem: Given α >

0, σ > 0, β ∈ L∞(0, T ), C0 ∈ L2(Ω) and S0 ∈ L∞(Ω), find a control v ∈ L2(ωT )

such that if C is solution to (4) then C satisfies

(5) C(T ) = C(x, T ) = 0 in Ω.

There are many literature on null controllability for parabolic equation. Indeed,

consider the following parabolic equation:

(6)
∂y

∂t
−∆y + f(y) = Bv with y(0) = y0,

where v is the control, B is a linear continuous operator defined on the control

space and f is a suitable function. The function y0 is given.
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In the linear case, D. Russell in [19] has proved that exact controllability for the

wave equation implies exact controllability for the heat equation. Later on Lebeau

and Robbiano in [9] solved null boundary controllability of (6) in the case f ≡ 0

using observability inequalities deriving from Carleman inequalities. At the same

time, O. Y. Imanuvilov and A. Fursikov in [2] obtained the same result for more

general operators including variable coefficients and nonzero potentials using more

directly global Carleman inequalities for the evolution operator. In [7], D. Tataru

showed that for linear equations, local and global controllability are equivalent

and hold for any time T > 0. Considering a linear Fourier boundary condition,

E. Fernandez-Cara, M. González-Burgos, S. Guerrero and J.P. Puel in [5] use the

Carleman estimate for the weak solution of heat equation with non-homogeneous

Neumann boundary conditions to prove the null controllability of (6). In [13],

O. Nakoulima gives a result of null controllability for of (6) with constraint on a

distributed control. His results is based on an observability inequality adapted to

the constraint.

In the nonlinear case, the problem of finite dimensional null controllability is

studied by E. Zuazua in [8]. The author proved that for a rather general and natural

class of non-linearities, the problem is solvable if the initial data are small enough.

In [2] A. Fursikov and O. Yu. Imanuvilov showed that, when the control acts on the

boundary, null controllability holds for bounded continuous and sufficiently small

initial data. Let us also mention results in [28, 24], where the methods in [2] have

been combined with the variational approach to controllability in [29] to prove null

controllability results for (6) with nonlinearities that grow at infinity in a super

linear way.

When nonlinear term contains gradient terms, O. Yu. Imanuvilov and M. Ya-

mamoto showed in [25], by using Carleman inequalities in Sobolev spaces of negative

order, that global exact zero controllability of (6) holds when the semilinear term

has sublinear growth at infinity. Later on Doubova et al.[23] proved that system

(6) is null controllable at any time if the nonlinear term f(y,∇y) grows slower than

|y| log3/2(1 + |y|+ |∇y|) + |∇y| log1/2(1 + |y|+ |∇y|) at infinity. In [26], G. Mophou

proved that the null controllability problem with a finite number of constraints

on the state for (6) involving gradient terms holds. Her results is based on an

observability inequality adapted to the constraint.

In the case null controllability of parabolic equation with nonlocal linearities,

few result are known. We refer for instance to the work of E. Fernandez-Cara et al.

[6] where the authors proved a local null controllability for the following parabolic

equation
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
∂y

∂t
+A(t)y = vχω in Q,

y = 0 on Σ,

y(0) = y0 in Ω,

where

A(t)y =

N∑
i,j=1

Aij(y(., t), t)
∂2y

∂xi∂xj
,

the functions Aij are given in a suitable space and can have the form

Aij(y(., t), t) = cij

(∫
Ω

y(x, t) dx

)
with cij which are positive reals. Also in [30], O. Traoré establishes a null control-

lability result for a nonlinear population dynamics model in which the birth term

is nonlocal.

In this paper we consider the nonlocal parabolic system (4). Then assuming that

(7)
2

α
|β|4L∞(0,T )T

3σ2|S0|4L∞(Ω) < 1,

we prove that one can bring the system to rest at time T . More precisely, we show

the following results:

Theorem 2.1. Let Ω be a bounded open subset of IRN with boundary Γ of class C2

and ω a non-empty open subset of Γ. Assume that (7) holds. Then there exists a

positive real weight function θ (a precise definition of θ will be given later on) such

that, for any α > 0 and σ > 0, for any function S0 ∈ L∞(Ω), C0 ∈ L2(Ω), and any

function β ∈ L∞(0, T ) with θβ ∈ L∞(Q) , there exists a control v ∈ L2(ωT ) such

that (v, C) with C = C(v) is solution of the null controllability problem (4)-(5).

The proof of the null controllability problem (4)-(5) lies on the existence of a func-

tion θ, a Carleman inequality (see Subsection 3) and a generalized Leray-Shauder

fixed point theorem.

The paper is organized as follows : Section 3 is devoted to resolution of a linear

null-controllability problem. In this section, we construct by means of Carleman

inequality a family of controls that can bring the associate states to rest at time T .

Then we prove that among these controls, there exists one of minimal norm in the

control space. The proof of Theorem 2.1 is given in Section 4.

3. Study of a linear null-controllability problem

In this section, we construct a solution to the following linear null controllability:

Given α > 0, σ > 0, S0 ∈ L∞(Ω)), β ∈ L∞(0, T ), C0 ∈ L2(Ω) and b ∈ L2(Q), find

a control v ∈ L2(ωT ) such that, if C is solution of
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(8)


∂C

∂t
−∆C − αC − β(t)S0(x)b(x, t) = vχω in Q,

∂C

∂ν
= 0 on Σ,

C(x, 0) = C0(x) in Ω

then

(9) C(T ) = 0 in Ω.

First of all, observe that if α > 0 and σ > 0, functions b, C0, and S0 belong to

L2(Q), L2(Ω) and L∞(Ω) respectively, and the control function v is in L2(Q) then

the system (8) has a weak solution C ∈ L2((0, T );H1(Ω)) ∩ C([0, T ], L2(Ω)) in the

sense that C satisfies (see [12])

(10)



C ∈ L2((0, T );H1(Ω)) ∩ C([0, T ], L2(Ω)),

〈∂C
∂t

(x, t), φ(x, t)〉(H1(Ω))′,(H1(Ω)) +

∫
Ω

∇C(x, t).∇φ(x, t)dx+

α

∫
Ω

C(x, t)φ(x, t)dx+

∫
Ω

β(t)S0(x)b(x, t)φ(x, t)dx =∫
ω

v(x, t)φ(x, t)dx, a.e. in (0, T ), ∀φ ∈ H1(Ω)

with the initial condition:C(x, 0) = C0(x)

where (H1(Ω))′ is the dual of H1(Ω).

To prove the null controllability of (8) and (9), we use an observability inequality

which is consequence of the global Carleman inequality [3]. So, let us consider an

auxiliary function ψ ∈ C2(Ω) which satisfies the following conditions:

(11)


Ψ(x) > 0 ∀x ∈ Ω

|∇Ψ| > 0 ∀x ∈ Ω\ω′

Ψ(x) = 0 on Γ

where ω′ ⊂⊂ ω is an nonempty open set. Such a function ψ exists according to A.

Fursikov and O. Yu. Imanuvilov [2].

For (x, t) ∈ Q, we define for any positive parameter value λ ≥ 1 the following weight

functions :

(12) ϕ(x, t) =
eλΨ(x)

t(T − t)
,

(13) η(x, t) =
e2λ|Ψ|∞ − eλΨ(x)

t(T − t)
.
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From now on, we adopt the following notations

(14)



L =
∂

∂t
−∆ + αI,

L∗ = − ∂

∂t
−∆ + αI,

L∗0 = − ∂

∂t
−∆,

V = {ρ ∈ C∞(Q),
∂ρ

∂ν
= 0 on Σ}

where α > 0 and I is the operator identity.

For any f ∈ L2(Q), let ρ be a solution to

(15)


L∗0ρ = f(x, t) in Q,
∂ρ

∂ν
= 0 on Σ,

ρ(x, T ) = 0 in Ω.

Then the following result holds.

Proposition 3.1. [5] There exist λ∗, σ∗ and K only depending on Ω and ω such

that, for any λ ≥ λ∗ and any s ≥ s∗(λ) = σ∗(e2λ|Ψ|∞T + T 2) , the solution to (15)

satisfies

(16)∫ T

0

∫
Ω

e−2sη

(
(sϕ)−1

(∣∣∣∣∂ρ∂t
∣∣∣∣2 + |∆ρ|2

)
+ sλ2ϕ |∇ρ|2 + s3λ4ϕ3 |ρ|2

)
dx dt

≤ K

[∫ T

0

∫
Ω

e−2sη |L∗0ρ|
2
dx dt+ s3λ4

∫ T

0

∫
ω

e−2sηϕ3 |ρ|2 dx dt

]
.

Now, if we write L∗0 ρ = L∗ ρ − αρ, the inequality (16) holds for fixed for any

λ ≥ λ∗ and any s ≥ s∗(λ) = σ∗(e2λ|Ψ|∞T + T 2). Therefore, observing that

∫ T

0

∫
Ω

e−2sη|L∗0 ρ|2 dx dt ≤

2

[∫ T

0

∫
Ω

e−2sη|L∗ ρ|2 dx dt+ α2

∫ T

0

∫
Ω

e−2sη|ρ|2 dx dt

]
,

and choosing s and λ sufficiently large depending on α, we absorb the term 2α2

∫ T

0

∫
Ω

e−2sη|ρ|2 dx dt

in the left hand side and we deduce from (16), the following result.

Lemma 3.2. There exist λ∗, σ∗ and K only depending on Ω, ω and α such that,

for any λ ≥ λ∗ and any s ≥ s∗(λ) = σ∗(e2λ|Ψ|∞T + T 2), the solution to (15)

satisfies

(17)

∫ T

0

∫
Ω

e−2sηϕ3 |ρ|2 dx dt

≤ K

[∫ T

0

∫
Ω

s−3λ−4e−2sη |L∗ρ|2 dx dt+

∫ T

0

∫
ω

e−2sηϕ3 |ρ|2 dx dt

]
.
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Remark 3.3. From now on, we will denote by K(X) a generic positive constant

whose value varies from a line to another but depending on X.

In view of the definitions of η and ϕ given respectively by (12) and (13), we have

that e−2sηϕ3 and e−2sη belong to L∞(Q). Therefore, we set

(18)
1

θ2
= ϕ3e−2sη

and we deduce from (17) that

(19)∫ T

0

∫
Ω

1

θ2
|ρ|2 dx dt ≤ K(Ω, ω, α, T )

[∫ T

0

∫
Ω

|L∗ρ|2 dx dt+

∫ T

0

∫
ω

|ρ|2 dx dt

]
.

Moreover, proceeding as in [20] we can prove using (17) that the following inequality

of observability holds:

(20)

∫
Ω

|ρ(0)|2 dx dt ≤ K(Ω, ω, α, T )

[∫ T

0

∫
Ω

|L∗ρ|2 dx dt+

∫ T

0

∫
ω

|ρ|2 dx dt

]
.

We can now construct a solution to (8) and (9). Thus, consider the following

symmetric bilinear form

(21) a(ρ, ρ̂) =

∫ T

0

∫
Ω

L∗ρL∗ρ̂ dx dt+

∫ T

0

∫
ω

ρ ρ̂ dx dt.

According to (19), this symmetric bilinear form is a scalar product on V. Let V

be the completion of V with respect to the norm:

ρ 7→ ‖ρ‖V =
√
a(ρ, ρ).(22)

The closure of V is the Hilbert space V.

Let θ be defined as in (18) and β ∈ L∞(0, T ) be such that θβ ∈ L∞(Q). Then,

thanks to Cauchy-Schwartz’s inequality, (19) and (20), the following linear form

defined on V by:

ρ 7→
∫ T

0

∫
Ω

β(t)S0(x)b(x, t) ρ dx dt+

∫
Ω

C0ρ(0) dx

is continuous on V . Therefore, Lax-Milgram’s theorem allows us to say that, for

every C0 ∈ L2(Ω), S0 ∈ L∞(Ω), b ∈ L2(Q) and for any β ∈ L∞(0, T ) such that

θβ ∈ L∞(Q), there exists one and only one solution ρθ in V of the variational

equation :

(23) a(ρθ, ρ) =

∫
Q

β(t)S0(x)b(x, t) ρ dx dt+

∫
Ω

C0ρ(0) dx, ∀ρ ∈ V.

In others words∫
Q

L∗ρθ L
∗ρ dx dt+

∫
ωT

ρ ρθ dxdt =

∫
Q

β(t)S0(x)b(x, t) ρ dx dt+

∫
Ω

C0ρ(0) dx, ∀ρ ∈ V.
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Proposition 3.4. For any C0 ∈ L2(Ω), S0 ∈ L∞(Ω) b ∈ L2(Q) and for any

β ∈ L∞(0, T ) such that θβ ∈ L∞(Q), let ρθ be the unique solution of (23). Set

vθ = −ρθχω(24)

and

Cθ = L∗ρθ.(25)

Then the pair (vθ, Cθ) is such that (8) and (9) hold. Moreover, there exists K =

K (Ω, ω, T, α) > 0 such that

‖ρθ‖V ≤ K
[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)|b|L2(Q)

]
,(26a)

‖vθ‖L2(ωT ) ≤ K
[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)|b|L2(Q)

]
,(26b)

‖Cθ‖L2(0,T ;H1(Ω)) ≤ K
[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)|b|L2(Q)

]
.(26c)

Proof. One proceeds as in [14, 15], using the variational equation (23) and

inequalities (19) and (20).

Remark 3.5. Since vθ and yθ depends on θ, (vθ, yθ) is a family of solution of the

null controllability problem (8) and (9).

Proposition 3.6. Under the assumption of Proposition 3.4, there exists a unique

control û such that

(27) ‖û‖L2(ωT ) = min
v̄∈E
|v̄|L2(ωT )

where

E =
{
v̄ ∈ L2(ωT )| (v̄, C̄ = C(v̄)) verifies (8), (9)

}
.

Moreover, there exists K = K (Ω, ω, σ, T, α) > 0 such that

(28) ‖û‖L2(ωT ) ≤ K
[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)|b|L2(Q)

]
.

Proof. According to Proposition 3.4, the pair (vθ, Cθ) satisfies (8) and (5).

Consequently, the set E is non empty. Since E is also a closed convex subset of

L2(ωT ), we deduce that there exists a unique control variable û of minimal norm

in L2(ωT ) such that
(
û, Ĉ = C(û)

)
solves (8) and (9). This means that

‖û‖L2(ωT ) ≤ ‖vθ‖L2(ωT ).

Hence, using (26b), we obtain (28).

Proposition 3.7. Let û be the unique control verifying (27). Then

û = −ρ̂χω(29)
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where ρ̂ ∈ V is solution of

L∗ρ̂ =0, in Q,(30a)

∂ρ̂

ν
=0, on Σ.(30b)

Moreover, there exists K = K (Ω, ω, α, T, α) > 0 such that

(31) ‖û‖L2(ωT ) ≤ K
[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)|b|L2(Q)

]
.

To prove Proposition 3.7, we use a penalization argument and we proceed in

three steps.

Step 1. For every ε > 0, we consider the functional

(32) Jε(v) =
1

2
|v|2L2(ωT ) +

1

2ε
|C(T )|2L2(Ω).

The functional Jε is well defined since C ∈ C([0, T ], L2(Ω)).

The optimal control problem is then to find vε ∈ L2(ωT ) such that

(33) Jε(vε) = min
v∈L2(ωT )

Jε(v).

It is classical to show that there exists a unique solution vε to (33) (see for example

[12]). If we write Cε the solution to (8) corresponding to vε, using an adjoint state

ρε, the triplet (Cε, ρε, vε) is solution of the following first order optimality system

(34)


LCε = β(t)S0(x)b(x, t) + vεχω in Q,
∂Cε
∂ν

= 0 on Σ,

Cε(0) = C0 in Ω,

(35)


L∗ρε = 0 in Q,
∂ρε
∂ν

= 0 on Σ,

ρε(T ) =
1

ε
Cε(T ) in Ω.

vε = −ρεχω.(36)

Step 2. We give estimates on the control vε and on the state and adjoint state

Cε and ρε.

Multiplying the state equation (34) by ρε and integrating by parts over Q, we

obtain that∫
Ω

Cε(T ) ρε(T ) dx =

∫
Ω

Cε(0) ρε(0) dx+

∫ T

0

∫
Ω

β(t)S0(x)b(x, t) ρε(x, t)dx dt

+

∫ T

0

∫
ω

vε ρεdx dt
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and in view of (35)3 and (36) we get,

1

ε
|Cε(T )|2L2(Ω) + |vε|2L2(ωT ) =

∫
Ω

C0 ρε(0) dx

+

∫ T

0

∫
Ω

β(t)S0(x)b(x, t) ρε(x, t)dx dt.

Therefore, using (19), (20) and (35)1, we have

2Jε(vε) ≤ K(Ω, ω, T, α)|C0|L2(Ω)|ρε|L2(ωT )

+ |θβ|L∞(Q)|S0|L∞(Ω)|b|L2(Q)

∣∣∣∣1θ ρε
∣∣∣∣
L2(Q)

≤ K(Ω, ω, T, α)
[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)|b|L2(Q)

]
|ρε|L2(ωT )

which in view of the definition of Jε and (36) implies that

|Cε(T )|L2(Ω) ≤
√
εK(Ω, ω, T, α)

[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)|b|L2(Q)

]
,(37a)

|vε|L2(ωT ) ≤ K(Ω, ω, T, α)
[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)|b|L2(Q)

]
.(37b)

Hence, in view of (34), we deduce that there exists

K = K(Ω, ω, T, α, |θβ|L∞(Q), |β|L∞(0,T ), |S0|L∞(Ω)) > 0

such that

(38) |Cε|L2(0,T ;H1(Ω)) ≤ K
[
|C0|L2(Ω) + |b|L2(Q)

]
,

and by standard arguments, we can prove that,

(39)

∣∣∣∣∂Cε∂t
∣∣∣∣
L2(0,T ;H−1(Ω))

≤ K
[
|C0|L2(Ω) + |b|L2(Q)

]
.

From (38) and (39), we obtain that

(40) |Cε|W (0,T )) ≤ K
[
|C0|L2(Ω) + |b|L2(Q)

]
where

(41) W (0, T ) =

{
ρ ∈ L2((0, T ), H1(Ω)),

∂ρ

∂t
∈ L2(0, T ;H−1(Ω))

}
On the other hand, as ρε is solution of (35), using (19), (36), (37b) and the definition

of the norm on V given by (22), we deduce that∣∣∣∣1θ ρε
∣∣∣∣
L2Q

≤ K(Ω, ω, T, α)
[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)|b|L2(Q)

]
,(42)

|ρε|V ≤ K(Ω, ω, T, α)
[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)|b|L2(Q)

]
.(43)
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Step 3. In view of (37), (40) and (42), we can extract subsequences of (vε),

(Cε) and ρε (still called (vε), (Cε)and ρε) such that

Cε(T ) → δ = 0 strongly in L2(Ω),(44)

vε ⇀ ṽ weakly in L2(ωT ),(45)

Cε ⇀ C̃ weakly in W (0, T ),(46)

ρε ⇀ ρ̃ weakly in L2(
1

θ
,Q).(47)

Therefore, we can prove by passing (34) to the limit when ε tends to 0 that C̃ is

solution of

(48)


LC̃ = β(t)S0(x)b(x, t) + ṽχω in Q,

∂C̃

∂ν
= 0 on Σ,

C̃(0) = C0 in Ω,

and verifies

C̃(T ) = 0

since by (44) and (46),

Cε(T )→ δ = C̃(T ) = 0 strongly in  L2(Ω).

Therefore it is clear that (ṽ, C̃) verifies (8)-(9) and there exists a solution to the

null controllability problem. Moreover, because of (37b), (43) and (36) we see that

ρε ⇀ ρ̃ weakly in L2(ωT ),(49)

ρε ⇀ ρ̃ weakly in V.(50)

Therefore, it is clear from (35) that ρ̃ satisfies

(51)

 L∗ρ̃ = 0 in Q,
∂ρ̃

∂ν
= 0 on Σ

on the one hand, and on the other hand,

(52) ṽ = −ρ̃χω

since (36), (45) and (49) hold.

As it has been shown in Proposition 3.6 that we can find a unique û ∈ E (ad-

missible control) such that û is of minimal norm in L2(ωT ). As ṽ ∈ E ,

1

2
|vε|2L2(ωT ) ≤ Jε(vε) ≤ Jε(û) =

1

2
|û|2L2(ωT )

and
1

2
|û|2L2(ωT ) ≤

1

2
|ṽ|2L2(ωT ).
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But because of (45),

lim inf
ε→0

1

2
|vε|2L2(ωT ) ≥

1

2
|ṽ|2L2(ωT ).

Therefore we have

ṽ = û

and

(53) vε → û strongly in L2(ωT ).

Writing ρ̂ = ρ̃ we have

(54) û = ρ̂χω.

Finally from (37b), (45) and (53) we deduce (31). This finishes the proof of Propo-

sition 3.7.

4. Proof of the main result

For z ∈ L2(Q), let b = F (z). Then according to Proposition 3.7 there exists a

control û verifying (31) such that the pair (û, Ĉ = C(û)) satisfies the null control-

lability (8) and (9). Then we defined for z ∈ L2(Q), Π(z), the nonempty set of all∫ t

0

C(x, s)ds where C = C(v) solves (8) and verifies (9), the control v verifies (31).

It suffices now to prove that Π which is a multivalued mapping of L2(Q) has a fixed

point to complete the proof of Theorem 2.1. To this end we use the generalisation

of the Leray-Schauder fixed point theorem [4]. So, set

N = {z ∈ L2(Q), ∃ζ ∈ (0, 1), z ∈ ζΠ(z)}.

Then we have the following results

Proposition 4.1. Let F be defined as in Section 1. Then

(i) Π is a compact multivalued mapping of L2(Q).

(ii) For all z ∈ L2(Q), Π(z) is a nonempty closed convex subset of L2(Q).

(iii) N is bounded in L2(Q).

(iv) Π is upper semicontinuous on L2(Q).

Proof. • We prove the compactness of Π..

Let z ∈ L2(Q) such that |z|L2(Q) ≤ r, r > 0. Consider (ϕn)n ⊂ Π(z). Then from

the definition of Π, for all n, there exists a pair (vn, Cn) ∈ L2(ωT ) × L2(Q) such

that ϕn =
∫ t

0
Cn(x, s) ds , vn verifies (31) and the associate state Cn is solution

of (8) with b(x, t) = F
(∫ t

0
z(x, s) ds

)
and satisfies (9) . This means that the pair

(vn, Cn) satisfies
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(55)


∂Cn
∂t
−∆Cn + αCn + β(t)S0(x)F

(∫ t

0

z(x, s) ds

)
= vnχω, in Q,

∂Cn
∂ν

= 0, on Σ,

Cn(0) = C0, in Ω,

and

(56) Cn(T ) = 0 in Ω.

Moreover, in view of (31), there exists K = K (Ω, ω, α, T ) > 0 such that

(57)

‖vn‖L2(ωT ) ≤ K

[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)

∣∣∣F (∫ t0 z(x, s) ds)∣∣∣L2(Q)

]
.

Since |F (z)| ≤ σ|z|, this latter inequality yields

(58) ‖vn‖L2(ωT ) ≤ K
[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)σ r

]
.

Multiplying (55) by Cn and integrating by parts over Q, we obtain∫ T

0

∫
Ω

|∇Cn|2dx dt+ α

∫ T

0

∫
Ω

|Cn|2dx dt =
1

2

∫
Ω

|C0|2 dx+

∫ T

0

∫
Ω

vnχω Cndx dt

+

∫ T

0

∫
Ω

β(t)S0(x)F

(∫ t

0

z(x, s) ds

)
Cndx dt,

which by using Young inequality gives∫ T

0

∫
Ω

|∇Cn|2dx dt+

(
α−
|β|2L∞(0,T )|S0|2L∞(Ω)

2µ0
− α

2

)∫ T

0

∫
Ω

|Cn|2dx dt ≤

1

2
|C0|2L2(Ω) +

1

2α

∫ T

0

∫
ω

|vn|2dx dt+
µ0

2
|β|2L∞(0,T )|S0|2L∞(Ω)σ

2r2,

for any µ0 > 0. Therefore choosing µ0 such that(
α

2
−
|β|2L∞(0,T )|S0|2L∞(Ω)

2µ0

)
> α/4

. That is, µ0 >
2

α
|β|2L∞(0,T )|S0|2L∞(Ω) and using (58), we have that

min(1, α/4)

(∫ T

0

∫
Ω

|∇Cn|2dx dt+

∫ T

0

∫
Ω

|Cn|2dx dt

)
≤

1

2
|C0|2L2(Ω) +

1

2α
K2
[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)σ r

]2
+

µ0

2
|β|2L∞(0,T )|S0|2L∞(Ω)σ

2r2 ≤
1

2
|C0|2L2(Ω) +

1

α
K2
[
|C0|2L2(Ω) + |θβ|2L∞(Q)|S0|2L∞(Ω)σ

2 r2
]

+
µ0

2
|β|2L∞(0,T )|S0|2L∞(Ω)σ

2r2



15

where K = K (Ω, ω, α, T ) > 0. Hence, there exists K = K (Ω, ω, α, T ) > 0 such

that

(59)

|Cn|2L2(0,T ;H1(Ω)) ≤ 1

min(1, α/4)

[(
1

2
+
K2

α

)
|C0|2L2(Ω)

+

(
K2

α
|θβ|2L∞(Q)|S0|2L∞(Ω) +

µ0

2
|β|2L∞(0,T )|S0|2L∞(Ω)

)
σ2r2

]
.

Consequently, by standard argument we can prove that for any µ0 >
2

α
|β|2L∞(0,T )|S0|2L∞(Ω),

there exists a constant K = K
(
Ω, ω, α, T, |β|L∞(0,T ), |θβ|L∞(Q), |S0|L∞(Ω), µ0

)
> 0

such that such that∣∣∣∣∂Cn∂t
∣∣∣∣2
L2(0,T ;H−1(Ω))

≤ K
(
|C0|2L2(Ω) + σ2r2

)
.

Thus, combining this latter inequality with (59) we obtain that

(60) |Cn|2W (0,T ) ≤ K
(
|C0|2L2(Ω) + σ2r2

)
with K = K

(
Ω, ω, α, T, |β|L∞(0,T ), |θβ|L∞(Q), |S0|L∞(Ω), µ0

)
> 0.

On the other, we have that ϕn =
∫ t

0
Cn(x, s) ds verifies

(61)


∂ϕn
∂t
−∆ϕn + αϕn = Θn in Q,

∂ϕn
∂ν

= 0 on Σ,

ϕn(0) = 0 in Ω,

where

Θn = C0 +

∫ t

0

vn(x, s)χωds+ S0(x)

∫ t

0

β(s)F

(∫ s

0

z(x, τ) dτ

)
ds.

Observing in the one hand that,∣∣∣∣∫ t

0

vn(x, s)χωds

∣∣∣∣2
L2(Q)

≤ T 3|vn|2L2(ωT )

≤ 2T 3K (Ω, ω, α, T )
2
(
|C0|2L2(Ω) + |θβ|2L∞(Q)|S0|2L∞(Ω)σ

2 r2
)

since (58) holds, and on the other hand that,∣∣∣∣S0(x)

∫ t

0

β(s)F

(∫ s

0

z(x, τ) dτ

)
ds

∣∣∣∣2
L2(Q)

≤ |β|2L∞(Q)|S0|2L∞(Ω)σ
2 r2T 2,

we deduce that

|Θn|2L2(Q) ≤ 3(T + 2T 3K (Ω, ω, α, T )
2
)|C0|2L2(Ω)

+ 3
(

2T 3K (Ω, ω, α, T )
2 |θβ|2L∞(Q) + |β|2L∞(Q)T

2
)
|S0|2L∞(Ω)σ

2 r2.

Thus, there exists K = K
(
Ω, ω, α, T, |β|L∞(0,T ), |θβ|L∞(Q), |S0|L∞(Ω)

)
> 0 such

that
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(62) |Θn|2L2(Q) ≤ K
(
|C0|2L2(Ω) + σ2 r2

)
.

Multiplying (61) by ϕn and integrating by parts over Q, we deduce that∫ T

0

∫
Ω

|∇ϕn|2dx dt+
1

2
(2α− α)

∫ T

0

∫
Ω

|ϕn|2dx dt ≤
1

2α

∫ T

0

∫
ω

|Θn|2dx dt.

This implies that

min(1, α/2)

(∫ T

0

∫
Ω

|∇ϕn|2dx dt+

∫ T

0

∫
Ω

|ϕn|2dx dt

)
≤ 1

2α

∫ T

0

∫
ω

|Θn|2dx dt.

Hence, in view of (62), there existsK = K
(
Ω, ω, α, T, |β|L∞(0,T ), |θβ|L∞(Q), |S0|L∞(Ω)

)
>

0 such that

(63) |ϕn|2L2(0,T ;H1(Ω))dx dt ≤ K
(
|C0|2L2(Ω) + σ2 r2

)
.

By standard arguments, we deduce that
∂ϕn
∂t

is bounded in L2(0, T ;H−1(Ω)). This

means that ϕn is bounded in W (0, T ). As by the Aubin-Lions Lemma, the imbed-

ding of W (0, T ) in L2(Q) is compact, we conclude that Π is compact.

• We prove that Π(z) is a nonempty closed convex subset of L2(Q).

It is clear that for all z ∈ L2(Q), we have that Π(z) is a nonempty convex set.

Let (ϕn) ⊂ Π(z) such that ϕn → ϕ in L2(Q). It suffices to prove that ϕ ∈ Π(z) to

obtain that Π(z) is a closed subset of L2(Q). Since ϕn =
∫ t

0
Cn(x, s) ds where Cn

is solution of (55) and satisfies (56) with vn verifying (57), we can say that vn and

Cn verifies (58) and (60) respectively. Consequently, there exists subsequences of

(vn) and (Cn) still denoted by (vn) and (Cn) such that

vn ⇀ v weakly in L2(ωT ),(64)

Cn ⇀ C weakly in W (0, T ).(65)

Since the imbedding of W (0, T ) in L2(ωT ) is compact, we have

Cn → C strongly in L2(ωT ).(66)

Therefore, we have

ϕn =

∫ t

0

Cn(x, s) ds→ ϕ =

∫ t

0

C(x, s) ds

and since F is continuous on IR,

F (ϕn) = F

(∫ t

0

Cn(x, s) ds

)
→ F (ϕ) = F

(∫ t

0

C(x, s) ds

)
..(67)
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Then, using (64), (65), (66) and (67) while passing (55) and (56) to the limit when

n tends to ∞, one obtains that the pair (v, C = C(v)) satisfies

(68)


∂C

∂t
−∆C + αC + β(t)S0(x)F

(∫ t

0

z(x, s) ds

)
= vχω, in Q,

∂C

∂ν
= 0, on Σ,

C(0) = C0, in Ω

and (9). Moreover, in view of (57) and (64), we deduce that

(69) ‖v‖L2(ωT ) ≤ K

[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)

∣∣∣∣F (∫ t

0

z(x, s) ds

)∣∣∣∣
L2(Q)

]
.

where K = K(Ω, ω, α, T ). Hence, ϕ ∈ Π(z).

• We prove that N is bounded in L2(Q).

Let z ∈ N . Then there exists ζ ∈ (0, 1) such that 1
ζ z ∈ Π(z). Consequently there

exists a pair (v,C=C(v))∈ L2(ωT ) × L2(Q) such that z = ζ
∫ t

0
C(x, s) ds where C

satisfies (68) and (9) with b(x, t) = F

(
ζ

∫ t

0

C(x, s) ds

)
, the control v verifies (31).

This means that

‖v‖L2(ωT ) ≤ K(Ω, ω, α, T )
[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω) |F (z)|L2(Q)

]
≤ K(Ω, ω, α, T )

[
|C0|L2(Ω) + σ|θβ|L∞(Q)|S0|L∞(Ω) |z|L2(Q)

]
.

Therefore, proceeding as for (59) we obtain that for any µ0 >
2
α |β|

2
L∞(0,T )|S0|2L∞(Ω)

there exists there exists K = K (Ω, ω, α, T ) > 0 such that

|C|2L2(0,T ;H1(Ω)) ≤ 1

min(1, α/4)

[(
1

2
+
K2

α

)
|C0|2L2(Ω)

+

(
K2

α
|θβ|2L∞(Q)|S0|2L∞(Ω) +

µ0

2
|β|2L∞(0,T )|S0|2L∞(Ω)

)
σ2|z|2L2(Q)

]
.

This implies that

(70)

|C|2L2(Q) ≤ 1

min(1, α/4)

[(
1

2
+
K2

α

)
|C0|2L2(Ω)

+

(
K2

α
|θβ|2L∞(Q)|S0|2L∞(Ω) +

µ0

2
|β|2L∞(0,T )|S0|2L∞(Ω)

)
σ2|z|2L2(Q)

]
.

with K = K (Ω, ω, α, T ) > 0. As

(71) |z|2L2(Q) =

∣∣∣∣ζ ∫ t

0

c(x, s) ds

∣∣∣∣2
L2(Q)

≤ T 3|C|2L2(Q),

using (70), we deduce that



18 G. MOPHOU, P. ZONGO, AND R. DORVILLE

[
1−

T 3σ2|S0|2L∞(Ω)

min(1, α/4)

(
K2

α
|θβ|2L∞(Q) +

µ0

2
|β|2L∞(0,T )

)]
|z|2L2(Q) ≤

T 3

min(1, α/4)

(
1

2
+
K2

α

)
|C0|2L2(Ω)

choosing µ0 such that[
1−

T 3σ2|S0|2L∞(Ω)

min(1, α/4)

(
K2

α
|θβ|2L∞(Q) +

µ0

2
|β|2L∞(0,T )

)]
>

1

2
.

This means choosing

2

α
|β|2L∞(0,T )|S0|2L∞(Ω) < µ0 <

1

T 3σ2|S0|2L∞(Ω)|β|
2
L∞(0,T )

,

we deduce that there exists K = K (Ω, ω, α, T ) > 0 such that

|z|2L2(Q) ≤
2T 3

min(1, α/4)

(
1

2
+
K2

α

)
|C0|2L2(Ω).

• We prove that Π is upper semicontinuous on L2(Q)

To this end we show that for any closed subset G of L2(Q), Π−1(G) is closed

in L2(Q). Let (zn) ⊂ Π−1(G) such that zn → z in L2(Q). Then zn is bounded in

L2(Q) and for all n there exists ϕn ∈ G such that ϕn ∈ Π(zn). Hence from the

definition of Π, there exists a pair (vn, Cn = C(vn)) ∈ L2(ωT ) × L2(Q) such that

ϕn =
∫ t

0
Cn(x, s) ds where (vn, Cn) satisfies

(72)
∂Cn
∂t
−∆Cn + αCn + β(t)S0(x)F

(∫ t

0

zn(x, s) ds

)
= vnχω, in Q,

∂Cn
∂ν

= 0, on Σ,

Cn(0) = C0, in Ω

and

Cn(T ) = 0 in Ω.

The control vn verifies

(73)

‖vn‖L2(ωT ) ≤ K

[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)

∣∣∣F (∫ t0 zn(x, s) ds
)∣∣∣
L2(Q)

]
.

Let µ0 be chosen as above. That is

2

α
|β|2L∞(0,T )|S0|2L∞(Ω) < µ0 <

1

T 3σ2|S0|2L∞(Ω)|β|
2
L∞(0,T )

.

Since zn is bounded, we know that there exists r > such that ‖zn‖L2(Q) ≤ r.

Consequently, we can also prove as above that Cn and vn satisfy respectively (60)

and (58). This means that
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|Cn|2W (0,T ) ≤ K
(
|C0|2L2(Ω) + σ2r2

)
with K = K

(
Ω, ω, α, T, |β|L∞(0,T ), |θβ|L∞(Q), |S0|L∞(Ω), µ0

)
> 0 and

‖vn‖L2(ωT ) ≤ K
[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)σ r

]
.

with K = K (Ω, ω, α, T ) > 0. Thus, there exists a subsequence of (vn, Cn) still

called (vn, Cn) such that

vn ⇀ v weakly in L2(ωT ),(74)

Cn ⇀ C weakly in W (0, T ).(75)

Since the imbedding of W (0, T ) in L2(Q) is compact, we have

Cn → C strongly in L2(Q)

and

ϕn =

∫ t

0

Cn(x, s) ds→ ϕ =

∫ t

0

C(x, s). ds

The function F being a continuous, we have

F (zn)→ F (z)

and one can prove using (74), (75) and (73) that (v, C = C(v)) satisfies

(76)


∂C

∂t
−∆C + αC + β(t)S0(x)F

(∫ t

0

z(x, s) ds

)
= vχω, in Q,

∂C

∂ν
= 0, on Σ,

C(0) = C0, in Ω

and

C(T ) = 0 in Ω,

the control v verifies

(77) ‖v‖L2(ωT ) ≤ K
[
|C0|L2(Ω) + |θβ|L∞(Q)|S0|L∞(Ω)σr

]
with K = K (Ω, ω, α, T ) > 0. This implies that

(78) ϕ ∈ Π(z).

On the other hand, zn being bounded, one can prove as for (63) in Page 16 that ϕn

is bounded in W (0, T ). Therefore, the Aubin-Lions Lemma allows us to conclude

that

ϕn → ϕ strongly in L2(Q).

Since G is closed, we deduce that ϕ ∈ G. Finally, in view of (78), we deduce that

z ∈ Π−1(G). The proof of Proposition 4.1 is then complete.

�
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