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Abstract

In this paper, we consider a direct protein transfer process between
cells in co-culture. Assuming that cells continually encounter each other,
and from some hypotheses on cell-to-cell rules of transfer, we derive dis-
crete and continuous Boltzmann-like integrodifferential equations. The
novelty of this model is to take into account multiple transfer rules. This
new transfer model is used to fit the experimental data of cell-to-cell pro-
tein transfer in breast cancer.

Keywords: Breast cancer cells, protein transfers, discrete and continuous mod-
els.

1 Introduction

The objective of this paper is to analyse a population dynamics model for a
distribution of cells with respect to a quantity of protein called P-glycoprotein
(P-gp). We consider a co-culture of two variants of human breast cancer cell
lines, the wild-type chemotherapy sensitive MCF-7 cells which are sensitive5

to chemotherapy, and the MCF-7/Doxo cells which are resistant to cytotoxic
treatments by P-gp overexpression. We refer to Pasquier et al. [14] for more
information about the biological background. We assume that all cells contin-
ually encounter each other. Each pairwise encounter results a direct cell-to-cell

1



protein transfer. We focus particularly on the size content of the transferable10

matter with the conservation of the total transferred mass and of the total
population.

In this article, we examine different strategies of exchange of P-pg with
different efficient transfer rates. We investigate how to model some new transfer
rules in systems constituted by a large number of interacting cells. Actually the15

main novelty compared to the previous existing models is to allow two different
types of transfer rate. This corresponds to the MCF-7 and MCF-7/Doxo ability
to transfer exchange P-gp by direct contact.

Recent studies have shown that cells can communicate by the transfer of
membrane proteins [6]. For instance, the direct transfer of P-gp between cells20

was studied in [1, 12, 16, 14, 15]. Because P-gp is acting as a drug-efflux pump,
its transfer may confer resistance against cytotoxic drugs to the recipient cells.
Another example is the transfer of human immunodeficiency virus (HIV) from
an infected cell to an uninfected cell [5]. Moreover it has been shown in recent
studies that the α-synuclein can be intercellularly transferred, which could be a25

key element in the spread of Parkinson disease pathology [10].
Mathematical models have already been proposed to study the transfer of

physical quantities between particles with Boltzmann-type equation (see review
in [17]). These types of models have also been used in population dynamics
[2, 3, 4]. Recently an integro-partial differential Boltzmann-type equation for30

cell population dynamics have been analysed in [11]. Furthermore, this model
was used to analyse the consequences of cell-to-cell P-glycoprotein transfer on
acquired multidrug resistance in breast cancer [14]. In [13], a stochastic model
was developed to study the horizontal transfer of genes in microbial popula-
tions. The goal of this paper is to provide a new class of mathematical models35

which include different strategies of transfer rates and direct cell-to-cell rules of
transfers, which can explain experimental data.

In section 2, we summarize some basic assumptions of the experimentation.
We then discuss, in section 3, the transfer rules and derive a new mathematical
model. A discrete model is presented in section 4. In sections 5 and 6 we com-40

pare the model to the experimental data. We will also provide in the appendix
a result of convergence of the discrete model to the continuous model.

2 Methods and basic assumptions

In [14], we have shown that MCF-7 cells acquired resistance to chemotherapeutic
treatments by direct transfer of a protein called P-glycoprotein (P-gp) from45

resistant cells to sensitive cells in vitro. Figure 1) shows the protein transfer
between these cells in co-culture. The red cells correspond to resistant cells,
and the green cells correspond to sensitive cells. Our goal, in this paper, is to
describe the resistance acquired by sensitive cells from resistant cells by such a
cell-to-cell direct transfer.50
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Figure 1: (Color online) Confocal imaging of cell-to-cell interactions in the
human breast cancer cell line, MCF-7. Wild-type sensitive MCF-7 were
cytosol-tagged with the persistent probe CellTracker Green (green fluorescence,
ctgMCF-7) P-glycoprotein (P-gp) overexpressing chemotherapy-resistant cells
were membrane-tagged with a phycoerythrin-conjugate antibody directed against
a P-Pgp (red fluuorescence, peMCF-7). A mixture of 50 : 50 of ctgMCF-7 and
peMCF-7 was co-cultured over six days. Images were obtained by confocal laser
scanning microscopy. Photos were taken at day 2 (D2) (scale bar:15 µm), day 4
(D4) (scale bar: 75 µm), and day 6 (D6) (scale bar:80 µm). Note that cells be-
come organized into well-delimited islets over the 6-day time course. This figure
illustrates the experimental conditions.

For simplicity, in the schematic and in the model, we assume that the trans-
ferable matter is transferred from a donor population to a second recipient
population. We assume that cells are cultured as adherent cells in a dish. The
cell can exchange proteins or other molecules with cells around it. We assume
that when a contact between cells occurs, the donor cell can donate a small55

portion of the proteins to the recipient cell. This process may actually occur as
exchange of protein portions, but here we describe only the direct transfer of
observable proteins present exclusively in the donor cells.

Experimental procedures: In previous studies [14, 15], we have demon-
strated that intercellular transfers of functional P-glycoprotein occur through60

donor-recipient interactions in the absence of drug selection pressure in MCF-
7 human breast cancer cell line. Briefly, in these experiments, drug-sensitive
parental MCF-7 cells were tagged with the persistent fluorescent probe cy-
totracker green, mixed 50:50 and co-cultured with P-gp overexpressing drug-
resistant variants, in the absence of treatment. Transfers of P-gp were moni-65

tored over 7 days in 50:50 co-cultures by immunodetection of the protein using
confocal microscopy, as illustrated in Figure 1 (parental MCF-7 in green, P-
gp in red). Parental and drug-sensitive MCF-7 were of similar growth rates,
0.6195 and 0.6328 respectively [14]. Co-cultures were interrupted before cell
confluency. Transwell co-incubation experiments, where cells were physically70

separated signaling-molecules permeable porous membranes, proved the non-
influence of local soluble factors capable of gene induction in the acquired resis-
tance [15].

P-gp expression levels in cell membranes as well as drug efflux capacities
were quantitatively followed over time by flow cytometry. This latter phenotype,75
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leading to drug resistance, was used to generate the set of experimental data used
in the present study. As depicted in Figure 3, parental MCF-7 with no efflux
activity accumulated the fluorescent probe calcein-AM and were distributed in
the right side of the histogram (region R2), while probe-expelling cells populated
the left part of the graph (region R1).80

Our goal, in this paper, is to describe the resistance acquired by sensitive
cells from resistant cells by cell-to-cell direct transfer.

3 Derivation of a continuous model describing
transfers

Consider a population of cells in a co-culture, where each cell possesses an85

amount of protein to be partially transferred due to some specific rules. As-
sume that cells continually encounter other cells. Each pairwise of encounter
during the transfer time results a winner ”Recipient cell” and a loser ”Donor
cell” or a loser ”Recipient cell” and a winner ”Donor cell”. Then in order to fully
determine the transfer rules we will use two types of (deterministic type) trans-90

fers when the transfer occurs between two given cells. The basic assumptions
used to describe the transfers are the following.

Assumption 1 (i) The probability that a pair of two individuals are involved
in a transfer event is independent of their p values and the pairing is
chosen randomly from all individuals.95

(ii) The time between two transfer events follows an exponential law with mean
τ−1 > 0 (alternatively, τ is the rate of transfer per unit time).

(iii) Let f ∈ L∞ (R,R) be an even function with 0 ≤ f ≤ 1 (we call f the
transfer efficiency). If two individuals whose difference in quantity is p
are involved in a transfer, then the one with higher value loses f(p) times100

the difference of their p values and the one with lower p value gains exactly
this amount.

Recall that with the above assumption a transfer model was proposed by Hi-
now et al. [11]. Actually Assumption 1 corresponds precisely to the following
differential equation105 {

∂u(t, x)

∂t
= 2τ [T0(u(t, .))(x)− u(t, x)] , for x ∈ R,

u(0, .) = u0 ∈ L1
+ (R) .

(3.1)

In this model u(t, x) is the density of cells, that is to say that∫ x2

x1

u(t, x)dx

is the number of cells with transferable quantity x ∈ (x1, x2). Assumption 1-(ii)
means that the flux of cells that transferring is 2τ

∫
R u(t, x) at a given time
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t. This corresponds to the term −2τu(t, x) in system (3.1). The distribution
obtain after one transfer (this flux of transferring cells) is given by the transfer
operator 2τT0(u)(x). The operator of transfer is defined by

T0(u)(x) :=


T̂0(u)(x)∫
R u(r)dr

if
∫
R u(r)dr 6= 0,

0 otherwise,

where

T̂0(u)(x) :=

∫
R
u(x+ f(p)p)u(x− (1− f(p))p)dp.

In this article we will extend Assumption 1-(iii) by considering the case of
two transfer efficiencies. For a given transfer between two cells, we now choose
randomly the transfer efficiency (in between two function f1 and f2). Ones the
transfer efficiency is fixed, we use the same idea than in model (3.1) to describe
the transfers.110

Assumption 2 Let f1, f2 ∈ L∞ (R) be two even functions with 0 ≤ f1 ≤ 1/2
and 0 ≤ f2 ≤ 1/2 (two transfer efficiencies). If two individuals whose difference
in quantity is p are involved in a transfer, then the one with higher value loses
f1(p) (respectively f2(p)) times the difference of their p values and the one with
lower p value gains exactly this amount with the probability π1(p) (respectively115

with the probability π2(p)).

More precisely we will make the following assumption

Assumption 3 We assume that 0 ≤ (f1 + f2)(p) < 1 for almost every p ∈ R.

Then we will define the probabilities π1(p) and π2(p) by

π1(p) :=
[ 1
2 − f2(p)]

[1− (f1 + f2)(p)]
and π2(p) :=

[ 1
2 − f1(p)]

[1− (f1 + f2)(p)]
. (3.2)

One may observe that
π1(p) + π2(p) ≡ 1.
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(a)

ynew = yold − f1(p)p
znew = zold + f1(p)p

(b)

ynew = yold − f2(p)p
znew = zold + f2(p)p

(c)

ynew = zold + f1(p)p
znew = yold − f1(p)p

(d)

ynew = zold + f2(p)p
znew = yold − f2(p)p

Figure 2: This figure illustrates the rule of transfer Assumption 2. We assume
that the quantities of transferable quantities for each cells are yold and zold

(respectively ynew and znew) before transfer (respectively after transfer). In
the above figure p := yold − zold is assumed to be positive. The figures (a)
and (c) correspond to the fraction transferred is f1(p) while the figures (b) and
(d) correspond to the transfer efficiency f2(p). As explained in Assumption 2
the transfer efficiency f1(p) is used with a probability π1(p) while the transfer
efficiency f2(p) is used with a probability π2(p).

Remark 4 In order to compare the model with real data, we will assume that f1

and f2 are two step functions (see (5.2)-(5.3)). More precisely, we will assume
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that there exist two positive real numbers δmax > δmin > 0 such that for each
i = 1, 2

fi(p) :=

{
f̄i if p ∈ (δmin, δmax)
εf̄i otherwise.

(3.3)

with fi > 0 and ε ∈ [0, 1] (very small). This mean that exchanges takes place
mostly if the difference of the transfer pair p ∈ (δmin, δmax). Otherwise if p 6∈120

(δmin, δmax) the fraction transferred is very small. Therefore the quantities δmin

and δmax can be regarded as a transfer threshold.

Under the above assumptions the model describing the transfers is the fol-
lowing {

∂u(t, x)

∂t
= 2τ [T (u(t, .))(x)− u(t, x)] , for x ∈ R,

u(0, .) = u0 ∈ L1
+ (R) .

(3.4)

The operator describing the rule for one transfer is defined by

T (u)(x) =


T̂ (u)(x)∫
R u(r)dr

if
∫
R u(r)dr 6= 0,

0 otherwise,

where

T̂ (u)(x) :=

∫
R
π1(p)u(x+ f1(p)p)u(x− (1− f1(p))p)dp

+

∫
R
π2(p)u(x+ f2(p)p)u(x− (1− f2(p))p)dp.

The preservation of the total number of cells, and the preservation of the total125

mass of transferable quantity follow from the following equalities.

Lemma 5 Let Assumptions 2 and 3 be satisfied. We have the following prop-
erties

(i) (Preservation of the total number of cells) For each u ∈ L1
+(R) we

have T (u) ∈ L1
+(R) and130 ∫

R
T (u)(x)dx =

∫
R
u(x)dx

(ii) (Preservation of the total mass of transferable quantities) For
each u ∈ L1

+(R) such that
∫
R xu(x)dx < +∞ we have∫

R
xT (u)(x)dx =

∫
R
xu(x)dx
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Remark 6 The transfer operator T also preserves the support of the distribu-
tion u. Actually if u is only defined on a subinterval I ⊂ R then we will define
T̂ as

T̂ (u)(x) :=

∫
R
π1(p)u(x+ f1(p)p)u(x− (1− f1(p))p)dp

+

∫
R
π2(p)u(x+ f2(p)p)u(x− (1− f2(p))p)dp.

where

u(x) :=

{
u(x) if x ∈ I
0 otherwise.

Proof. Consider

V :=

∫
R
u(r)dr

∫
R
φ(x)[T (u)(x)− u(x)]dx.

We have

V =

∫
R

∫
R
π1(p)φ(x)u(x+ f1(p)p)u(x− (1− f1(p))p)dpdx

+

∫
R

∫
R
π2(p)φ(x)u(x+ f2(p)p)u(x− (1− f2(p))p)dpdx

−
∫
R

∫
R
φ(x)u(x)u(p)dxdp

By using Fubini’s theorem we have

V =

∫
R

∫
R
π1(p)φ(x)u(x+ f1(p)p)u(x− (1− f1(p))p)dxdp

+

∫
R

∫
R
π2(p)φ(x)u(x+ f2(p)p)u(x− (1− f2(p))p)dxdp

−
∫
R

∫
R

φ(x) + φ(p)

2
u(p)u(x)dxdp

By using the changes of variable, choosing the variable y instead of x with
y = x+ f1(p)p, y = x+ (1− f2)(p)p and y = x− p respectively in the first, the
second and the third integral we obtain

V =

∫
R

∫
R

[π1(l)φ(y + f1(p)p) + π2(p)φ(y + l − f2(p)p)

−φ(y) + φ(y + p)

2
]u(y)u(y + p)dpdy.

Therefore V = 0 whenever

π1(l)φ(y + f1(p)p) + π2(p)φ(y + l − f2(p)p) ≡ φ(y) + φ(y + p)

2
. (3.5)

To conclude it is sufficient to verify the above equality respectively when φ(x) ≡
1 and φ(x) = x and we obtain (i) and (ii).

By using the same arguments as in Hinow et al. [11] combined with Lemma
5 we have the following result.135
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Theorem 7 Let τ > 0. Let Assumptions 2 and 3 be satisfied. For each ini-
tial distribution u0 ∈ L1

+(R) (3.4) has a unique global positive solution u(t, .).
Moreover the first and second moments of the distribution u0 are preserved in
time. Namely we have the following properties for each t ≥ 0∫

R
u(t, x)dx =

∫
R
u0(x)dx and

∫
R
xu(t, x)dx =

∫
R
xu0(x)dx.

Remark 8 The differential equation (3.4) also preserves the support of the dis-
tribution u0 ∈ L1

+(R). That is to say that if support(u0) ⊂ I (for an interval
I ⊂ R) then for each t ≥ 0

support(u(t, .)) ⊂ I.

Remark 9 By using the same modelling ideas than in Ducrot et al. [7], we
could include the cell proliferation as follows

∂tu(t, p) = 2τ [T (u(t, .))(x)− u(t, x)] +

[
β

1 + γU(t)
− µ

]
u(t, p), for x ∈ R,

where U(t) =
∫
R u(t, p)dp is the total number of cells, with β > 0 is the division

and µ > 0 is the mortality rate. The fraction 1
1+γU is taking into account the

contact inhibition pressure. The above model is not taking into account the time
between two cell divisions. It is still a modeling issue to take into account the
cell cycle into such a transfer model. In particular, we would be to know how140

P-gp is redistributed between the daughter cells (at cell division).

4 The Discrete Model

Given the maximal value of the transferable quantity xmax and its minimal
value xmin, we consider a partition

0 = x1 < x2 < ... < xi = x1 + i∆x < ... < xIL = L

with xi+1 − xi = ∆x,∀i = 1, IL − 1. Starting with the initial distribution u0(x)
for all sizes x, we introduce an initial sequence u0

i , i = 1, ...IL, by

u0
i =

1

∆x

∫ xi+1

xi

u0(x)dx ' u0(
xi+1 + xi

2
).

We suppose that all the values uni for i = 1, ..., IL are known, and we propose
to build the un+1

i for i = 1, ...IL by the following scheme:

un+1
i = uni +2τ∆t 1

(
∑IL

j=1 u
n
j ∆x)

∑
j∈Z

π1(lj)u
n
i−f1(pj)j u

n
i+(1−f1(pj))j∆x

+2τ∆t 1

(
∑IL

j=1 u
n
j ∆x)

∑
j∈Z

π2(pj)u
n
i−(1−f2(pj))ju

n
i+f2(pj)j∆x

−2τ∆tuni

(4.1)
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where pj = j∆x is the difference of the transferable quantities between two
partner cells, the quantities i−f1(pj))j, i+(1−f1(pj)j, i−f2(pj)j and i+(1−
f2(pj)j are understood respectively as their integer parts in the system (4.1),
and

ui :=

{
ui if i = 1, ..., IL,
0 otherwise.

Let us rewrite the above scheme (4.1) under the compact form145

un+1
i = uni + 2τ∆tFni (4.2)

with

Fni :=

∑
j

∑
k

Kijku
n
j u

n
k∑

j=1

unj
− uni (4.3)

where Kijk will be defined precisely in section 5.
Similarly to the continuous case, for any sequence (φi)i=1,...,IL we have the

following inequality

IL∑
j=1

unj

IL∑
i=1

φiF
n
i =

IL∑
j=1

IL∑
k=1

(
IL∑
i=1

Ki,j,kφi −
φj + φk

2

)
unj u

n
k . (4.4)

Therefore
IL∑
i=1

φiF
n
i = 0,∀u0 ≥ 0

if and only if
IL∑
i=1

φiKi,j,k =
φj + φk

2
.

Theorem 10 The total number of cells
∑IL
i=1 u

n
i is constant in time for the

solution of the discrete model (4.2) if and only if

IL∑
i=1

Ki,j,k = 1,∀j, k = 1, ..., IL. (4.5)

The total mass of transferable quantities is preserved in time for the solution of
the discrete model (4.2) if and only if

IL∑
i=1

xiKi,j,k =
xj + xk

2
. (4.6)
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5 Simulation experiments150

In this section, we present some numerical simulations to calibrate the trans-
fer model (3.4) with experimental data used in [14]. The numerical scheme
presented in the above section was implemented using MATLAB.

5.1 Material and method

5.1.1 Transfer kernel155

According to Assumption 3, if a cell Cj and a cell Ck have, respectively, a
quantity xj and xk of P-gp activity before transfer with xj ≥ xk, then, after
transfer, Cj (respectively, Ck) will have an activity xj − (xj − xk)f1(xj − xk)
with the probability π1(xj − xk) (respectively, xk + (xj − xk)f2(xj − xk) with
the probability π2(xj − xk)). So the fraction transferred is f1(xj − xk), with160

a probability π1(xj − xk) (resp. π2(xj − xk)) for Cj (respectively, Ck) which
depends on the difference between xj and xk (the distance between the P-gp
activities of Cj and Ck).

Together with these considerations, one can define the transfer kernel K
satisfying the properties of Theorem 10 as follows:

Ki,j,k :=


π1(xj − xk) if xi = xj − (xj − xk)f1(xj − xk),

π2(xj − xk) if xi = xk + (xj − xk)f2(xj − xk),

0 otherwise.

(5.1)

In what follows, we simplify the transfer efficiency f1 and f2 by assuming
that

f1(xj − xk) =

{
f̄1 if (xj − xk) ∈ (δmin, δmax)
εf̄1 otherwise

(5.2)

and

f2(xj − xk) =

{
f̄2 if (xj − xk) ∈ (δmin, δmax)
εf̄2 otherwise.

(5.3)

where f̄1 and f̄2 represent the constant fraction of transferred quantity.165

Remark 11 ε = 0 means that the transfer occurs only if δmin < xj−xk < δmax.
ε ∈ (0, 1) means that a low quantity is transferred when the difference xj − xk
is either very low or very large.

5.1.2 Data scaling: data obtained by Flow cytometry

To calibrate the transfer model in the section below, we use the data described in170

[14] where experimentally 50% of non P-gp-expressing parental MCF-7 cells were
co-cultured with 50% of their multidrug resistant counterpart MCF-7/Doxo
variants of the human breast cancer cell line cf. [14]. Flow cytometry analysis
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of efflux activity transfers between MCF-7 and MCF-7/Doxo was considered.
Membrane P-gp content was followed over time, from day 0 to day 6, by flow175

cytometry. After 0, 3, 4, 5 and 6 days of co-culture a sample of 10 000 cells was
analyzed. Experimental data obtained were expressed in fluorescence units (f.u).
According to the fluorescence (F) scale used in cytometry, F varies between
Fmin = 1 and Fmax = 104.

We point out that fluorescence scale was not suitable to calibrate the transfer180

model for two reasons:
(i) the distance between the P-gp activities of two cells Cj and Ck having

respectively a quantity xj and xk of P-gp activity may be inappropriate because
the distance considered, is defined by d(Cj , Ck) = |xj −xk|. The result could be
underestimate.185

(ii) The model was written in terms of transferable quantity, (e.g. transfers
of P-glycoproteins) while experimental data give cell fluorescence accumulation
as an inverse function of P-gp activity cf. [14].

In order to deal with (i)-(ii), fluorescence units were rescaling into an arbi-
trary P-glycoproteins unit by introducing a non-linear bijection map F : [0, 1]→190

[1, 104] defined by F (p) = 104p where p denotes the P-glycoproteins expression
on the cell surface and F its corresponding fluorescence value.

5.1.3 Estimation of model parameters

We selected for model validation two scenarios: in both cases, the standard error
(RMSE) of simulated and observed data was estimated. Recall that RMSE :=195 √∑N

l=1(obs(tl)− sim(tl))2/N where N is the number of observed data, obs(tl)

and sim(tl) are the observed and simulated data at time tl respectively.
Scenario 1 (unequal fractions transferred): we assume that transfer frac-
tions f̄1 and f̄2 defined in (5.2)-(5.3) are different and the fitting parameters are
carried out by the minimization of the RMSE.200

Scenario 2 (equal fractions transferred): we assume that transfer fractions
f̄1 and f̄2 defined in (5.2)-(5.3) are equal and the fitting parameters are carried
out by the minimization of the RMSE.

12



Symbol Description Scen. 1 Scen. 2 Units Method

τ Rate of transfer of P-gp activity 0.95 0.90 day−1 fitted
Fmin Minimum value of P-gp activity 1 1 f.u data
Fmax Maximum value of P-gp activity 104 104 f.u data
δmin Minimum threshold for transfers 104∗0.41 104∗0.32 f.u fitted
δmax Maximum threshold for transfers 104∗0.46 104∗0.63 f.u fitted
f̄1 Transfer efficiency for p value in J 0.48 0.1 - fitted
f̄2 Transfer efficiency for p value in J 0.07 0.1 - fitted
εf̄1 Transfer efficiency for p value in Jc 0.05 0.001 - fitted
εf̄2 Transfer efficiency for p value in Jc 0.007 0.001 - fitted

Table 1: List of the model parameters, their significations, values and symbols.
The model is simulated with an arbitrary P-glycoproteins unit p ∈ [0, 1] and
by using a rescaling argument F (p) := 104p ∈ [1, 104] one gets its equivalent in
terms of fluorescence units (f.u). Here J := (δmin, δmax) and Jc its complemen-
tary.

5.2 Results

5.2.1 Data scaling: data obtained by Flow cytometry205

Results after experimental data scaling are shown in Figure 3.
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Figure 3: Flow cytometry analysis of efflux activity transfers between
MCF-7 and MCF-7/Doxo variants of the human breast cancer cell
line. 50:50 MCF 7:MCF 7/Doxo cell mixture is seeded on culture dishes at
day 0 and co-cultured during 6 days. After 0, 3, 4, 5 and 6 days of co-culture
a sample of 10 000 cells was analysed. Figures (a) and (b) are two different
types of visualisation of the same distribution in time. Figure (a) looks clearer,
but the figure (b) will be more convenient to data with the models. One may
observe that the larger the fluorescence is the less the cells are capable to efflux
calceinAM. Therefore the sensitive cells sensitive to drug treatment are located
on the right side of figure (b), while the cells multi-drug resistant are located on
the left side of figure (b).
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Figure 4: The blue dots represent the integral over [xmin, xmax] of the P-gp
distribution which is 1 since the distribution coming from the measurement has
been renormalized (by dividing by 10000 the total number of cells measured).
The red dots represent the total mass of fluorescence at day 0, 3, 4, 5 and 6.
The total mass of fluorescence stays around 0.5 during the experiment.

5.2.2 Estimation of model parameters

Scenario 1 (Unequal fraction transferred): after the minimization of the RMSE
considering unequal fraction transferred, we get f̄1 = 0.48 and f̄2 = 0.07, the rate
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of transfer is τ = 0.95, the minimum threshold for large transfer is δmin = 0.41, the210

maximum threshold for large transfer is δmax = 0.46, the low transferred quantity
when the difference between the donor and the recipient is either very low or very
large is εf̄1 = 0.0504 and εf̄2 = 0.0074. Simulated results are shown in figure 5(a),
RMSE = 0.2854.

Scenario 2 (Equal fraction transferred): after the minimization of the RMSE215

considering Equal fraction transferred, we get f̄1 = f̄2 = 0.1, the rate of transfer,
τ = 0.90, the minimum threshold for large transfer, δmin = 0.32 and the maximum
threshold for large transfer, δmax = 0.63, εf̄1 = 0.001 and εf̄2 = 0.001. Simulated
results are shown in Figure 5(b), RSME = 0.5518.
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(a) RSME = 0.5518

Figure 5: Evolution of cell density with respect to the quantity of P-glycoproteins.
Experimental results showing the distribution of the cell density with respect to
the quantity of P-glycoproteins are shown in Figure 3. (a) Simulated results
when transfer fractions f̄1 and f̄2 are different: f̄1 = 0.48 and f̄2 = 0.07. (b)
Simulated results when transfer fractions f̄1 and f̄2 are assumed equal: f̄1 =
f̄2 = 0.1,
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Figure 6: Evolution of cell density with respect to the quantity of P-glycoproteins.
Experimental results showing the distribution of the cell density with respect to
the quantity of P-glycoproteins are shown in Figure 3. This figure is another
different type of visualisation of the Figure 5

15



5.3 Discussion220

By comparing the RMSE values for both scenarios, one can conclude that the first
scenario gives a good fit of data compared to the second one. Since experimental
data used to fit our model were already used to fit a model developped in[11, 14], our
simulation results and those obtained in [14] are very close when we take the same
transfer rule, namely π1 = π2 = 1/2, but it does not provide a good fit of experimental225

data. So our model extends the previous model in [11, 14] where only equal fraction
transferred was possible.

6 Directions for future experimental studies

The model presented here, in the absence of precise values for the multitude of phys-
ical parameters involved in the process, makes a number of assumptions in order to230

provide some qualitative predictions. Careful experimental studies may validate or
correct certain aspects of this model. These predictions and assumptions should help
to tease out the role the direct transfer of proteins plays physiologically. We have
a simplistic constant rate of transfer. Imaging a large number of cells could help to
provide us with a better understanding of the dynamic of direct transfer formation235

and their static distribution. Experiments measuring the protein transfer of differing
sizes can shed light on the validity of our model.

7 Conclusion

In this paper, a model was formulated to describe some transfer rules in popula-
tion dynamics. Population was structured by a continuous variable corresponding to240

transferable material while the time was considered continuous. The model extends
the previous model developed in [11, 14].

Mathematical analysis was performed, namely existence and uniqueness of solu-
tions, the preservation of individuals number, the preservation of transfer quantity
mass. Moreover a discrete version of the model was also presented.245

The model was able to reproduce experimental data obtained from experiments
on the consequences of cell-to-cell protein transfer in breast cancer.

Our model can be extended to include spatial organization of population as well
as population growth (without limit cycle description see [7]). Our model provides an
alternative to carrying out further large-scale studies concerning transfer processes in250

population dynamics. Our results are applicable generally to systems in which transfer
of quantities occurs within a population.
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8 Appendix: Convergence of the discrete model
to continuous model

In this section we show the convergence of the scheme (4.1). It means that the differ-
ence |u − u∆|1 between the approximate solution u∆ of the discrete model (4.1) and
the solution u of the continuous model (3.4) tends to zero as the meshsizes ∆t,∆x go
to zero (for simplicity we set ∆t = r∆x). Here the approximate solution u∆ is defined
as the piecewise constant function defined on ]0, T [×ΩL (with ΩL := [0, L])

u∆(t, x) = un
i For all (t, x) ∈, ]tn, tn+1[×]xi, xi+1[

where the values un
i are computed by (4.1).255

Theorem 12 Let u0 ∈ (L1 ∩ L∞)(ΩL) with total variation be bounded locally in ΩL,
u0 ≥ 0 , then as the meshsize ∆x tends to zero, there is a subsequence of (u∆)∆x>0,
the family of approximate solution, converging in L1

loc([0, T ] × ΩL) to a function u ∈
L1

loc([0, T ]× ΩL).
The limiting function u(t, x) just obtained is a weak solution of the problem (3.1).260

On order to prove Theorem 12, we first prove the existence of a limit u to u∆ when the
meshsize ∆x goes to zero. Then we prove that this limit is a solution of the continuous
problem (3.1).
Existence of a limit for u∆: The proof of existence of the limit u(t, x) is based on
the compact canonical imbedding from W 1,1(Ω) into L1(Ω). Let I(u∆), defined on
[0, T ] × ΩL, be the interpolate of degree one of u∆ at the vertices of each rectangle
[xi, xi+1]× [tn, tn+1] where it is given by

I(u∆)(x, t) = un
i + (un

i+1 − un
i )x− i∆x∆x + (un+1

i − un
i ) t− nr∆xr∆x

+(un+1
i+1 − u

n+1
i − un

i+1 + un
i )

(x− i∆x)(t− nr∆x)
r(∆x)2

(8.1)

I(u∆) is continuous with

|I(u∆)|L∞([0,T ]×ΩL) = |u∆|L∞([0,T ]×ΩL) = sup
n,i
|un

i | (8.2)

and differentiable inside each rectangle. Thus we obtain∫ ∫
|∂I(u∆)

∂t
|dxdt ≤

N∑
n=0

∑
i≤IL

|un+1
i − un

i |∆x. . (8.3)

In the same way265 ∫ ∫
|∂I(u∆)

∂x
|dxdt =

N∑
n=0

∑
i≤IL

|un
i+1 − un

i |r∆x . (8.4)

On the other hand one can check that the numerical scheme (4.1) satisfies the following
a priori estimates
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sup
i
|un+1

i | ≤ (1 + C1∆t) sup
i
|un

i |
IL−1∑
i=1

|un+1
i+1 − u

n+1
i | ≤ (1 + C2∆t)

IL−1∑
i=1

|un
i+1 − un

i |

IL−1∑
i=1

|un+1
i − un

i | ≤
IL−1∑
i=1

|un
i+1 − un

i |

(8.5)

where C1 and C2 are two constants independent of n.
Let u0 ∈ L∞(ΩL), then supi |u0

i | ≤ C. It follows that u∆ is bounded and then
contains a subsequence u∆p weakly star convergent to a limit u ∈ L∞([0, T ] × ΩL)270

bounded by |u0|∞L (ΩL).
Let u0 with the total variation TV (u0(x)) =

∑IL
i=1 |u0(xi+1)−u0(xi)| be bounded,

we have,by applying the discrete Gronwall lemma to the estimates (8.5) and using
successively (8.2)and (8.3),(8.4), It follows also that

|I(u∆)|L∞([0,T ]×ΩL) + |∂I(u∆)

∂x
|L1([0,T ]×ΩL) + |∂I(u∆)

∂t
|L1([0,T ]×ΩL) ≤M. (8.6)

Therefore from
{
I(u)∆

}
associated to

{
u∆
}

, we extract a subsequence convergent to{
I(u)∆p

}
in L1

loc(]0, T [×ΩL). Then we verify that
{
I(u)∆p − u∆p

}
tends to zero in L1

, for all bounded open sets ]0, T [×ΩL. Since the associate subsequence u∆ weakly star
converges to a function u ∈ L∞(]0, T [×ΩL), and since on the other hand

{
I(u∆p)

}
is

convergent in L1
loc(]0, T [×ΩL), we have

u∆ converges to u in L1
loc(]0, T [×ΩL). (8.7)

This ends the proof of the existence of a limit.
Convergence of F∆(u∆) to T (u) : Let us define the discrete operator acting on the
piecewise constant function u∆ by

F∆(u∆) = Fn
i for all (t, x) ∈, ]tn, tn+1[×]xi, xi+1[

where Fn
i given by (4.3). We have proved the following lemma

Lemma 13 The discrete transfer operator F∆(u∆) converges to the continuous trans-
fer operator T (u) , u being the limit function of u∆ as ∆x goes to zero.275

Let us write∣∣∣F ,∆(u∆)− T (u)
∣∣∣
1
≤ |F∆(u∆)− T (u∆)|1 + |T (u∆)− T (u)|1

Since The transfer operator T is Lipchitz and u∆ converges to u the second term of

the right hand side of the above inequality

∫ 1

0

|T∆(u∆)(x)− T (u)(x)|dx −→ 0 as the

meshsize ∆x goes to zero.
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Let us now calculate T̂ (u∆)(x).

T̂ (u∆)(x) =
∑
j

∫ xj+1

xj

π1(p)u∆(xi + f1(p)p)u∆(xi − (1− f1(p))p)dp

+
∑
j

∫ xj+1

xj

π2(p)u∆(xi + f2(p)p)u∆(xi − (1− f2(p))p)dp.

=
∑
j

∫ xj+1

xj

π1(p)dpun
i+f1(pj)ju

n
i−(1−f1(pj))j

+
∑
j

∫ xj+1

xj

π2(p)dpun
i+f2(pj)ju

n
i−(1−f2(pj))j .

In section 3 we use the approximation π1 and π2

π1(lj) =

∫ xj+1

xj
π1(p)dp

∆x
and π2(lj) =

∫ xj+1

xj
π2(p)dp

∆x
(8.8)

we conclude that T (u∆)− F∆(u∆) = 0. This completes the proof of the lemma.
Weak solution: Now we consider the consistancy of the scheme, which means that
this limit u is a weak solution of the continuous problem (3.1). For all smooth φ ∈
C1([0, T ]× ΩL) with compact support in [0, T [×[0, 1], we define

∀(t, x) ∈ [xi−1, xi[×[tn, tn+1[, φ∆(t, x) = φn
i =

1

∆t∆x

∫ tn+1

tn

∫ xi

xi−1

φ(t, x)dt dx.

Multiplying the scheme (4.1) by ∆xφn
i we get,280 ∑

i,n

(un+1
i − un

i )φn
i − 2τ∆t

∑
i,n

Fn
i φ

n
i ∆x = 0, (8.9)

then summing by part we get∑
i,n

(
un+1
i (φn

i − φn+1
i )

)
∆x− 2τ∆t

∑
i,n

Fn
i φ

n
i ∆x−

∑
i

u0
iφ

0
i ∆x = 0 (8.10)

which is equivalent to

∫ T

0

∫
ΩL

u∆(t, x)
φ∆(t+ ∆t, x)− φ∆(t, x)

∆t
dx dt+

∫ T

0

∫
ΩL

2τF∆(u∆)(t, x)φ∆(t, x)dx dt

+

∫
ΩL

u∆(0, x)φ∆(0, x)dx = 0,

(8.11)
we pass to the limit ∆x→ 0, we obtain∫ T

0

∫
ΩL

u(t, x)
∂φ

∂t
(t, x)dxdt+

∫ T

0

∫
ΩL

2τ [T (u(t, .))(x)− u(t, x)]φ(t, x) dx dt

+

∫
ΩL

u(0, x)φ(0, x)dx = 0
(8.12)

which means that the limit u obtained using the discrete scheme is a weak solution of
the problem (3.1) with the initial data u0(x).
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