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BLOCH–PERIODIC GENERALIZED FUNCTIONS

Maximilian F. Hasler1

Abstract. Bloch-periodicity is a generalization of the notion of periodic
and antiperiodic functions with much practical relevance for engeneer-
ing science and especially condensed matter physics. In recent work we
have considered this property in the setting of classical functional analy-
sis, and also introduced the new notion of asymptotically Bloch-periodic
functions. In this paper we formulate these properties and results in the
framework of Colombeau-type generalized functions.
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1. Introduction

This paper introduces the notion of Bloch–periodic and asymptotically
Bloch–periodic generalized functions and, as an application, we will display
some solutions to semilinear differential equations with irregular coefficients in
his framework.

Bloch periodicity,

f(x+ p) = ei k·pf(x) ; x, p, k ∈ Rn ,

is a generalization of the usual periodicity and the recently extensively studied
antiperiodicity (see, e.g., [2, 3, 4, 5, 9, 15] and references therein), which is
obviously of major relevance in particular in condensed matter and solid state
physics, where quantum mechanical wavefunctions have this symmetry.

In [10] we have generalized this notion to that of asymptotic Bloch period-
icity, which will be defined later in the paper. Solutions to various equations
describing propagation of heat and of waves in solid matter are expected to
have this property.

The novelty of this paper is to extend these definitions to the framework
of algebras of generalized functions as first introduced by Colombeau [6, 7].
These algebras are quotient spaces of “moderate” sequences modulo the subset
of “negligible” sequences; more recently this has been identified to be the as-
sociated Hausdorff space of the subspace of sequences for which multiplication
is continuous with respect to a naturally arising “asymptotic” topology.

As an application we will consider solutions to differential equations with
non-smooth coefficients, which have the considered periodicity.
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The applications in biology, physics, engineering, and other sciences make
the study of Bloch–periodic solutions a very attractive topic in the qualitative
theory of differential equations.

In [12], the authors studied the structure of several classes of functions
ranging from periodic to bounded and continuous ones. Then they used the
results obtained to investigate the existence of these types of solutions to the
integro-differential equation u′ = Au + a ∗ Au + f(·, Cu(·)). Some properties
of asymptotically periodic and S-asymptotically ω-periodic functions were also
investigated there and in [1].

In [14] authors extended these results to antiperiodic functions. They stu-
died asymptotically antiperiodic functions in a Banach space and used the
results to consider existence of antiperiodic mild solutions to a class of inte-
grodifferential equations.

The paper [10] is a continuation of [12] and [14] considers the case of Bloch–
periodic functions. It introduces this notion and asymptotically Bloch–periodic
functions in a Banach space, and investigates the existence of Bloch–periodic
mild solutions to a class of integrodifferential equations.

This present paper will make the link between this line of research and ear-
lier work of the author in the area of Colombeau generalized functions, which
have attracted substantial interest over the last years. Indeed, these algebras
provide the adequate framework for posing and solving differential problems in
cases where irregularities and non-linearity are both present. The classical the-
ories of calculus and Schwartz distributions can handle one or the other, but not
both at the same time; it is a well known proven fact that distributions cannot
be multiplied unconditionnally. On the other hand, this case is most interesting
for applications because many interesting natural phenomena are non-linear: in
particular, while a linear system may well propagate singularities, it is unlikely
(if not unable) to produce singularities. Conversely, while most natural laws are
linear in first approximation, i.e., for small forces, accelerations, velocities and
deviation from equilibrium, this is not true in more extreme situations, and it
may often be the case that irregularities as shocks etc, are associated with such
conditions which make the linear approximation invalid.

2. Colombeau type generalized functions

The concept of Bloch periodicity is quite well known in physics and engineer-
ing, but seems not yet extensively studied in mathematics. After investigations
in the framework of classical analysis [10] where we discussed Bloch–periodic
solutions to integro-differential equations of the form u′ = Au+ a ∗Au+ f , we
introduce it here for the first time in the setting of Colombeau–type generalized
functions.

We refer to [11] for details on the general construction of M–extensions,
which include Colombeau’s algebra of New Generalized Functions [6, 7] as a
special case. Here, we just recall the basic ideas.

An asymptotic scale M ⊂ RΛ defines a natural topology τM (E) on the se-
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quence space EΛ, for any topological R-module (E, τ(E)). Namely, the neigh-
borhoods of zero in this topology are simply the “product” of the sequences
defining the growth scale, with the zero neighborhoods of the base space E.

Colombeau’s simplified algebra is obtained by choosing Λ = (0, 1], M =
{(εm)ε∈Λ;m ∈ Z}, and E = C∞(Rn) with topology defined by seminorms pK,ℓ

of sup norm of ℓ-th derivatives on compact sets K.

Then the “moderate” sequences can be defined as the subspace EM on
which multiplication RΛ × EΛ → EΛ is continuous. In the Colombeau case
these are nets of functions (fε)ε whose seminorms pK,ℓ are bounded by some
negative power of the parameter ε ∈ Λ = (0, 1].

Finally, the M–extension GM (E) is simply the Hausdorff space ẼM =
EM /{o}; i.e., Colombeau’s set N of “negligible” sequences is nothing else than
the intersection of the above mentioned neighborhoods of zero, which amounts
to require that all seminorms tend to zero faster than any power of ε.

Together with the canonical extension of morphisms ϕ : E → F to GM (ϕ) :
GM (E) → GM (F ), based on a component-wise definition which passes to the
quotient, this yields a functor GM : ModTopR → ModTopGM (R).

Furthermore, thanks to the functoriality of the construction, if E is a
presheaf (resp., a fine sheaf), then GM (E) : Ω → GM (E(Ω)) is also a presheaf
(resp., a fine sheaf).

In the sequel we will use as base space E = E(Rn;X) where E is the sheaf
of smooth functions defined on Rn, with values in the Banach space X. Since
the scale is often fixed once for ever, we will sometimes also drop the subscript
M and simply write G(E) for the space (or sheaf) of generalized functions.

3. Bloch–periodic functions

Definition 1 (Bloch–periodic functions). Assume given a complex linear space
X, vectors p, k ∈ Rn, and a subset J = Jp ⊂ Rn such that J+p ⊂ J. A function
f : J → X is said to be (p, k)–periodic, or Bloch–periodic with period p and
Bloch wave vector or Floquet exponent k, iff

f(x+ p) = ei k·p f(x), for all x ∈ J .

We denote by Pp,k(J;X), the space of all (p, k)–periodic functions J → X, and
we drop J in the case J = Rn.

Example 2. If f is (p, k)–periodic with k ·p = 2π, then f is simply p–periodic;
if k · p = π, then f is p–antiperiodic.

One could define Bloch-periodic functions without imposing a domain such
that J+p ⊂ J, by requiring the given property only whenever {x, x+ p} ⊂ Df .
However, in the sequel, to obtain several results especially for asymptotically
Bloch-periodic functions, we must be able to “go to infinity”; yet in applications
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we don’t always have functions defined on the whole of Rn. Important nontrivial
examples inculde J = Rn

+ (for p ∈ Rn
+), or a strip in R2, parallel to p, J =

[a, b] + R p.

Example 3. Examples of Bloch periodic functions are given for any sequence
{an} = O(1/n2) by f(x) =

∑
n∈J ei n k·x an , x, k ∈ Rn .

This is (p, k)–Bloch–periodic when J ⊂ 1 +mZ, m = 2π
k·p , e.g., the set of odd

numbers for k · p = π, or J = {1, 4, 7, 10, ...} for k · p = 2π/3.

3.1. Bloch-periodic Colombeau-type generalized functions

Definition 4. The space of (p, k)–periodic generalized functions J → X,
in GM (E) and for given p, k ∈ Rn, is

GPp,kE(J;X) :=
{
f ∈ GM (E(J;X)) | tpf = ei k·p f

}
,

the eigenspace, for eigenvalue ei k·p, of the translation operator tp : f 7→ tpf
with tpf(x) = f(x + p), acting on GM (E(J;X)). Again, we will omit the sub-
script M and J when they are tacitly understood, or not relevant, or J = Rn.

In the above, we use the translation operator on GM (E(J;X)), which is
actually the canonical extension of the (linear and continuous) translation op-
erator acting on the base space E(J;X). As mentioned in section 2, due to the
functoriality of the construction, this extension is again a well defined, linear
and continuous operator on the space of generalized functions.

We prefer the above way of writing f(x + p) = ei k·p f(x), since the use of
the linear and continuous translation operator and notion of eigenvalue, both
certainly well-defined, avoids the doubts that might arise with more elementary
notation, concerning “point values” on one hand, and the exponential function
on the other hand.

This way of writing things also makes quite evident that we have the fol-
lowing generalization of results from the classical case:

Proposition 5. Some purely algebraic properties of Bloch–periodic generalized
functions include:

(i) GPp,kE(X) ⊂ GPmp,kE(X), for any m ∈ N (or m ∈ Z if −J ⊂ J).

(ii) GPp,kE(X) is a C–vector space and C̃–module, where C̃ = GM (C) is the
ring of generalized complex numbers.

(iii) GPp,kE(X) is stable under linear operators A ∈ L(X) (acting “pointwise”
on E, Af = x 7→ Af(x), and canonically extending to GPp,kE(X)).

If X and thus E(X) are algebras:

(iv) If f ∈ GPp,kE(X) and g ∈ GPp,mE(X) for some m ∈ Rn, then the product
f g ∈ GPp,k+mE(X).
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(v) If f−1 = 1/f is well defined, then f−1 is (p,−k)–periodic.

Furthermore, if we restrict ourserlves, for simplicity, to J = Rn, we have the
following basic properties of GPp,kE(X):

Proposition 6. • GPp,kE(X) is stable under translations ta : f 7→ fa :=
x 7→ f(x+ a), a ∈ Rn arbitrary.

• GPp,kE(X) is stable under I∆ : f 7→ I∆f := x 7→
∫
x+∆

f(y) dny, where
∆ is a compact set. In the one-dimensional case, we replace ∆ by a ∈ R
and have Iaf := x 7→

∫ x+a

x
f(y) dy.

• GPp,kE(X) is stable under convolution by integrable functions g,
f 7→ f ∗ g := x 7→

∫
f(x− y) g(y) dny.

Proof. All of the given operations are continuous linear operators, well defined
on the space of generalized functions, according to the standard textbooks [7, 8].
So there is no issue concerning the growth conditions, and the preservation of
the Bloch periodicity can be shown using the standard change of variable as in
the classical setting, if one wishes, on the level of representatives.

3.2. Existence and properties of (p, k)–periodic generalized func-
tions

Example 7. Examples of Bloch periodic generalized functions are given for
any sequence of generalized numbers (an)n∈N with only a finite number of
nonzero terms, by

f(x) =
∑
n∈J

ei n k·x an , x, k ∈ Rn .

As before, this is (p, k)–Bloch–periodic when J ⊂ 1 +mZ, m = 2π
k·p , e.g., the

set of odd numbers for k · p = π, or J = {1, 4, 7, 10, ...} for k · p = 2π/3. Other
suitable, less restrictive conditions on the coefficients an, via the convergence
of the series

∑
n∈N an in the topological ring of generalized numbers C̃, could

be possible.

Lemma 8. For all (y, v) ∈ Rn × GM (X), there is u ∈ GPp,kE(X) such that
u(y) = v.

Proof. A suitable function u ∈ GPp,kE(X) is explicitly given by u(x) =
ei k·(x−y) v.

3.3. Applications: Heat and wave equations

Example 9. Consider the heat equation ut(x, t) = uxx(x, t), (x, t) ∈ R×R+.
Solutions with u(·, 0) = f ∈ GE(R) are given by

u(x, t) =
1

2
√
πt

∫ ∞

−∞
e−

(x−s)2

4t f(s) ds.
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If f ∈ GPp,kE(R) is Bloch–periodic, then u(x, t) is also Bloch–periodic with
the same period and Bloch wave vector, in the first variable x, for any fixed
t ∈ R+.

Example 10. Now consider the wave equation in R2, utt(x, t) = uxx(x, t).
Solutions with u(x, 0) = f(x), ut(x, 0) = g(x), are given by

u(x, t) =
1

2
[f(x+ t) + f(x− t)] +

1

2

∫ x+t

x−t

g(s) ds.

If f, g ∈ GPp,kE(X) are (p, k)–periodic, then for fixed t ∈ R+, u(·, t) is also
Bloch–periodic with the same period and wave vector (p, k).

3.4. Asymptotically Bloch-periodic generalized functions

We denote again by X̃ = GM (X) the generalized X-valued constants, i.e.,
the M–extension of X.

Definition 11. We define the space of generalized functions J → X vanishing
at infinity as

GE0(J;X) = {f ∈ G(E(J;X)) | ∀U ∈ V(0X̃) ∃K b J : f(J \K) ⊂ U} .

Here, V(0X̃) is the set of all neighborhoods of zero in X̃, and by f(J \K)
we mean the set of all point values f(x), with x ∈ J \ K. With this, we can
state the following

Definition 12. The set of asymptotically (p, k)–periodic generalized functions
on J ⊂ Rn is GAPp,k(E(J;X)) := GPp,kE(J;X) + GE0(J;X)

= {f ∈ G(E(J;X)) | ∃(g, h) ∈ GPp,kE(J;X)× GE0(J;X) : f = g + h} .

The generalized functions g and h are called, respectively, the principal and
the corrective part of f .

Analog to similar results for asymptotically periodic (classical) functions,
we have

Proposition 13 (Uniqueness of decomposition). The decomposition of f ∈
GAPp,kE(J, X), as sum of g ∈ GPp,kE(J, X) and h ∈ GE0(J;X), is unique.

For this proposition to hold, it is obviously crucial that J satisfies the cha-
racteristic property J + p ⊂ J mentioned when this set was introduced in the
definition of Bloch periodicity.

Proof. Assume that g1 + h1 = g2 + h2 are two such decompositions of f ∈
GAPp,k(E(J, X)). Then g1 − g2 = h2 − h1 ∈ GE0(J;X) vanishes at infinity, i.e.,
the difference g1 − g2 must have values in any arbitrarily small neighborhood
of zero of generalized numbers, outside some compact K. But using the Bloch
periodicity of g1 − g2 ∈ GPp,k(E(J, X)), the difference g1 − g2 must have this
property on any compact K′ ⊂ J, since translation by a multiple of p will always
take us outside K. Therefore, g1 − g2 = o, which yields the result.
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4. Composition and classical results

We first recall some results from the classical setting [10] which will, due to
their purely algebraic nature, straightforwardly extend to the generalized case.

Theorem 14. Let F : X → X. The following properties are equivalent:
(i) For every u ∈ Pp,k(X), F ◦ u ∈ Pp,k(X).
(ii) For all x ∈ X, F (ei k·px) = ei k·pF (x).

Remark 15. When k · p = π, this means that F is an odd function.
Note that every linear map F satisfies both of these properties.

For given F : Rn ×X → X, we define Nemytskii’s superposition operator
by

NF (φ)(·) := F (·, φ(·)) , φ ∈ Pp,k(X).

Then we have

Theorem 16. Let F : Rn ×X → X. The following properties are equivalent:
(i) For every u ∈ Pp,k(X), NF (u) ∈ Pp,k(X);
(ii) ∀(t, x) ∈ Rn ×X,F (t+ p, ei k·px) = ei k·p F (t, x).

Corollary 17. Let F : Rn × X → X satisfy one of the equivalent properties
of the preceding theorem, with k · p a multiple of 2π

m , m ∈ N∗. Then F is
mp–periodic w.r.t. the first variable.

Corollary 18. Consider k · p = π and F : Rn ×X → X satisfying either of

(i) F is (p, k)–Bloch–periodic with respect to the first variable and even w.r.t.
the second;

(ii) F is p–periodic with respect to the first variable and odd with respect to
the second.

Then, for every function u ∈ Pp,k(X) , NF (u) ∈ Pp,k(X).

Proposition 19. If f ∈ C1(Rn, X) is (p, k)–Bloch–periodic, then f ′ ∈
Pp,k(L(Rn, X)).

Proof. The proof is immediate, using that f ′ is defined to be the unique map
such that f(x+ h)− f(x) = f ′(x)h+ o(h). From this it is obvious that Bloch
periodicity of f entails that of f ′.

Corollary 20. Let F ∈ C1(Rn×X,X) satisfy the equivalent properties (i) and
(ii) of Theorem 16. Then for every function u ∈ C1(Rn, X) which is (p, k)–
Bloch–periodic, the function Φ : Rn −→ X defined by Φ(·) = F (·, u(·)) (which
is (p, k)–Bloch–periodic) is differentiable, and Φ′ is (p, k)–Bloch–periodic.

Now we give a last result which we have proved in the classical case [10]:
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Corollary 21. If F ∈ C1(Rn × X,X) satisfies the equivalent properties (i)
and (ii) of Theorem 16, so does the partial derivative (with respect to the first
variable t ∈ Rn) D1F of F . Moreover the partial derivative (with respect to the
second variable x ∈ X) D2F of F verifies:

∀(t, x) ∈ Rn ×X, D2F (t+ ω, ei k·px) = D2F (t, x).

Since Colombeau generalized functions are infinitely differentiable (as well
as a whole, as in each component), these results also hold in the generalized
case, i.e., for Bloch periodic generalized fuctions u ∈ GPp,kE(X). In forthcom-
ing developments, we will use these rather elementary results in the study of
more elaborate integro-differential problems, where Bloch periodic generalized
functions as initial data yield solutions with the same symmetry.

5. Summary and outlook

We have defined the notion of Bloch-periodic and asymptotically Bloch-
periodic generalized functions, and provided some very basic examples for il-
lustration. But this work clearly calls for further investigations. First, we would
like to work out in detail more classical results that extend to the generalized
case, and find the most appropriate sheaves of functions relevant for the given
applications. In particular, we would like to go as far as possible in generalizing
our recent results concerning Bloch-periodic solutions to the integro-differential
equation

u′(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s) ds+ f(t, Cu(t)) .

To that end, we plan to extend the systematic study and use of convolution
operators, extensively studied for Colombeau algebras in [13].

We also intend to extend our previous results from Colombeau type algebras
of generalized functions, for example the study of values in generalized points,
to the case of Bloch periodic generalized functions. Finally, it would also be
interesting to consider Bloch periodicity with generalized parameters (p, k), i.e.,
consider the possibility of one or both of these to be vectors whose components
are generalized numbers.
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