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Method for Identifying Spatial Reservoirs of
Malaria Infection and Control Strategies

Pascal Zongo, René Dorville, and Elisée Gouba

Abstract—Managing spatial reservoirs of malaria infection population has been proved to have a signifcant impact
plays a crucial role in effective disease control. In this paper, on the epidemic behavior. For example, the impact of the
a reservoir of infection refers to one or more interconnected |, oo o human population on malaria transmission in

subpopulations that sustain the epidemic at the level of the different realistic situations: fi | into urb d
metapopulation to which applying a (linear) control strategy ¢1Hierent realisic situations. irom rural Into urban areas an

suffices to eradicate the disease in the whole system. We proposéolonization of heretofore unused territories was performed.
a numerical method to explain the steps for identifying reser- Using type reproduction numbers approach developed in

voirs of malaria infection within n connected regions with the [14], [26], the authors identify the reservoirs of infection and

explicit movement of human population from the previous theo-
retical results in order to design an efficient computational tool.
Furthermore, we determine the minimal percentage (critical
vaccination fraction) of susceptible individuals in the reservoirs

evaluate the effect of control measures. We point out that the
reservoirs of infection remain variously and loosely defned
in the literature [12], [13], [27], [28]. In this paper, a reservoir

that should be protected to eliminate malaria. The costs and of infection is a subpopulation to which applying a (linear)
cost-effectiveness of malaria control interventions were analysed control strategy suff ces to eradicate the disease in the whole

considering two strategies of control. (i) protecting the minimal
fraction of susceptible individual; (ii) protecting any fraction

greater than the minimal fraction. Cost-effectiveness analysis

system [3], [14], [26]. A reservoir may comprise multiple
connected subpopulation of human and/or mosquitoes. Thus

shows that the less cost and more effective strategy is toto reduce or eliminate malaria over time, a control should be

vaccinate (or protect) the minimal fraction of susceptible human
in the reservoir of infection to halt outbreak. A numerical
example provides insight into the efficiency of this approach.

Index Terms—Control, Optimization, Metapopulation, Basic
reproductive number, cost-effectiveness analysis.

I. INTRODUCTION

Malaria is a mosquito-borne infections disease caused by
protozoa of the genus plasmodium (parasite). It is estimated
that about 1.5-3 million of people, mostly children, die of
malaria every year [29]. Malaria control requires an inte-
grated approach, including prevention and prompt treatment
[30].

The parasites are transmitted indirectly from human to
human by the bite of infected female mosquitoes of the genus
Anopheles. There is some natural acquired partial immunity
to the pathogen in humans developed after many years of
repeated infections [4], [8], [16], [24].

Models have already been proposed to provide an explicit
framework for understanding malaria transmission dynamics
in human population for over 100 years [6], [10], [20], [22]
and references there in. Human movement has rarely been
taken into account in models. Recently, it was shown that
the role of human movement plays a signifcant role on
disease reemergence and persistence [2], [5], [23]. There
are two standard approaches to study the spatial dynamics
of vector borne disease such as malaria: partial differential
equations [19], [31], [32], [33] and meta-population models
[3], [18], [31]. More precisely, in [3], a metapopulation
malaria model was proposed using SI and SIRS models for
the vectors and hosts, respectively. The mobility of human
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applied simultaneously in the different reservoirs of infection,
but the minimal fraction of susceptible individuals of each
reservoir to be protected is not specifed, thus a control like
that should be cost a great deal of money. Therefore arise the
following question, what minimal fraction of each group of
the reservoir should be protected to eliminate malaria? This
minimal fraction can be interpreted as the critical vaccination
fraction (fraction of population to vaccinate to halt outbreak).

The main purpose of this paper is threefold: (i) to explain
the steps for identifying reservoirs of malaria infection from
the theoretical results derived in [3] in order to design
an eff cient computational tool; (ii) determine the minimal
percentage of susceptible individuals in the reservoir namely,
those that should be protected to eliminate the malaria
over time in the whole of the region; (iii) analysis the
cost and cost-effectiveness when controlling infection within
the reservoir from the minimal percentage of susceptible
individuals to protect. Cost-effectiveness analysis is very
important because it compares the costs and health effects
of an intervention to assess the extent to which it can be
regarded as providing value for money [1], [25]. This informs
decision-makers who have to determine where to allocate
limited healthcare resources.

II. DESCRIPTION OF MODEL FORMULATION

In this section we give a summary of the model as already
discussed in [3] before to extend it. The space was split
into n geographical regions. For each geographical unity
i, © = 1,...,n, human population was divided into three
subclasses: susceptible S ;(t), infectious I ;(¢) and semi-
immune Ry ;(t). Total size of the human population H;(t) =
Sw,i(t)+In,;(t)+ Ru,i(t) and the mosquito population into
two subclasses: susceptible Sy ;(¢) and infectious Iy ;(¢).
Total mosquito population V;(t) = Sy;(t)+Iv,(t). Table III
summarizes the model parameters as well as their biological
interpretation and Table I summarizes the state variables.

(Advance online publication: 10 February 2018)
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TABLE |

THE STATE VARIABLES the basic reproduction number denoted By. This latter
is the expected number of secondary cases produced by

State variables for humans a typical infective individual introduced into a completely
Sw.i(t): susceptible class susceptible population, in the absence of any control measure
Ip,i(t): infectious class [7]. Next generation approach was used to defRg (see
Rp,:(t): semi-immune class [9]). When Ry < 1 the infection will die out in the long
H;(t): total size of the human population run. But if Ry > 1 the infection will be able to spread in a
@, force of infection from mosquitoes to humans population. It was shown that when disease induce mortality
State variables for mosquitoes is large, a backward bifurcation may occurag = 1, that to
Sv,i(t): susceptible class say, reducéR, below1 is not always sufficient to eliminate
Iy, (t): infectious class malaria.

Vi (t): total mosquito population
®y;: force of infection from humans to mosquitoes

B. Reservoir of infection

In this paper, a subgroup of patches is said to be a reservoir
Humans were assumed move from patch to patch but theinfection when only targeting a control strategy which
movement of mosquitoes was neglected, so humans wéirearly reduce the number of susceptible is sufficient to
assumed do not change their epidemiological status durielgnminate the malaria in the whole of the patches. Define

travel. The model was read as follows: foreach 1,...,n, by J, = {H1,Hs...,H,} the set of humans population, it
was shown that a control only targeted on human population
dSy was possible to eliminate malaria. In this paper we focus on
o = At BriBua+ puilng — paiSn a control type targeted only to the human population. A new
next generation operatd/;, was defined by

n n
S S
- q)H,iSH,i + ZmijSH,j - ijiSH.,i;
Jj=1

= Mj, = [Ru,u;li<ij<n, 3)

dlp ~ whereR g, g, can be interpreted as the expected number of
dt i = el + Zlm” B3 secondary infected humans in patcthat would arise from
" = a single infected human case in paiclin a situation where
_ ijl'iIH.,iv all the patches contain a completely susceptible population.
= 1) Moreover we have
dRp ; =
% = OéHJ'IHJ' — (SH71'RH7i + ZmZRHJ p(MJh) <l& RO <1 (4)
j=1
n ! wherep(A) is the spectral radius of a matrig (see [3]
— ZmﬁRH,iv for details).
j=1
dSv.; i i i
Y9 — Ay — viSvi — DSy, C. Sufficient condition for a patch to be a reservoir of
d?t infection
d‘;’z = ®y;Sv,; — pv,ilv, In [3], it was shown that if there exists some patéh

. L . in the subset{1,2,...,n} such thatRyg,n, > 1, then
with initial  conditions S, (0), Sv.i(0) > 0, patch /¢ is an infection reservoir. In this case, we need to
I,i(0), Reri(0), Iv,i(0) 2 0, emi = ami + ymi + target simultaneously a control to the whole of susceptible
PH,i + Wi, Om,i = B + pm. In the above formulation, Population of the reservoir to eliminate malaria over time.
m7;, = = S,I,R, denote the constant rate of travel o
humans from patcly to patchi, for all 7,5 = 1,...,n,
i#j. M™ =[mf], = 5,1, R, is the travel rate matrices.
The matricesM™, = = S, R, was assumed to be irreducible From results obtained in [3], arise the followingestion
andm? =0, form = S,I, Randi = 1,...,n. In this paper, What minimal fraction of each group of the reservoir should
we use the force of infection derived in [6] as follows:  be protected to eliminate malaria?
Let J,.. be the set of reservoirs of infection. From

av,iaH,iVi IV,i section II-C, we have

I1l. M INIMAL AND EFFICIENT CONTROL

Py =—F—"—0Vil, < (2a)
aviVi+ am,iHi Vi Jres = {0€{1,2,...,n} : Ry, > 1} (5)
aviam i H; Iy; . Ry
Py, = aviVi +anH; UHH@:E + oV, H, ) In the sequel, denotes hythe number of patches reservoirs,

(2b) itis clear thatp = cardinalJ,.s) so that(n — p) represents
the number of un-reservoirs patches whilés the number
of patches.

S ) . . From [14], one can define a new next generation matrix
An equilibrium solution of system (1) at which there is,q toi10ws:

no disease in any of the patches is called a disease-free
equilibrium. The local stability of this point is governed by M

res

A. Disease free state

= E§hM-7h [Iﬂ - (In - PJh)MJh]il E;,, (6)

(Advance online publication: 10 February 2018)
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where E;, ard P;, are, respectivelyn x p andn x n C. Analysis of Optimal control

projection matrices satisfyingE;, );; = (P,)j; = 1 for — \e point out that the minimal control derived in the
J € Jres @nd (Ey,);j; = (Py,);; = 0 otherwise.My,.. IS previous section is not an optimal control. The minimal
ap x p matrix satisfyingp(My,.,) <1 Ro <1.Inthe  cqnirol does not depend on the time, it is constant over time.
sequel, we set An optimal control can be considered when we would like to
Mj,.. = [Mili<ij<p- (7) apply a prevention depending of the time with a given final
) o ) time T for disease eradication as well as budget constraint,
The entries of}/,;,, are similar in concept to the entries Ofiis type of control was already investigated in [35]. In that

My, case an optimal control problem can be formulated in the set
. o ) of the identified reservoir§l,...,p} C {1,...,n} with the

Let S7;, be the number of susceptible individuals within P
each patcty at the disease free equilibriumi,= 1,...,p. J(f) = Z/ (IH,i(t) + Ryra(t) + %ff(t)) dt
this number is obtained from Theorem (10) in [3]. = Jo 2
Let f, denotes the fraction of these susceptible that should P
be protected in patcti. Then, S3; fo (resp. Sy, (1 — f)) — ZCiSHJ(T)
represents the number of protected (resp. not protected) in- i=1
dividuals at the disease-free state in the pdtdh=1,...,p. \yhere f = (fi.for.-» o). Ini and Ry; represent the
The fraction of susceptible in the whole population ISumber of infectious and semi-immune in patchespec-
denoted byt” = (1, f2, ..., f») and those who will not need gyely, 4, is the number of reservoirs patchés, — p) rep-
to be protected is denoted By = (1—f1,1—f2,...,1=f;,). resents the number of unreservoirs patches whilis the
From now, one can define a new next generation matfiymper of patches. The terf f2(t) is the cost of prevention

(11)

with variable F* denoted byM . (F) : with a; > 0 are the weight factor in the cost of control.
M. (F)= C;Smu,i(T) is the fitness of the susceptible at the end of the
process as a result of the prevention efforts implements for
(I=f)Mu (1= f2)Miz - (1= fp)Miy the patchi = 1,...,p. Using a similar argument as in [35]
(1= fuMar (1= f2)Moz - (1= fp)Map and under suitable condition one can prove the existence of
: : : : an optimal control.
(= f)Mp (1= fo)Mpo -+ (1= fp) My
Note that whenF" = 0 thenM; __(F) = Mj.... D. Methodology for numerical implementation
To determine the minimal fractions of susceptible individ- Here, we present the steps for numerical implementation.
uals, we set Step 1: Compute principal next generator mat#ik from [3,

)=1eRo=1. (8) Theorem 3]. _ 3

o ) ~ Step 2:Compute next generator matrix extract&drom [3,

Now, one can formulate the objective function to minicorollary 1].
mized as follows: Step 3: ComputelM;, from in [3, Eq. (17)].

Step 4: Compute)M ;.. from Eq. (6).
] "L Step 5: Solving Eqg. (9) to find minimal control.
Og}lglj(ﬂ = Z S, Te; (9a) Step 6: Solving Egs. (1) using the minimal control obtained
=1 in step 5 to represent the dynamic of malaria model.

p(My,..(F)) =1 p(M;

res Jres

subject to the constraipt(M . (F)) =1 (9b)

Existence of an unique solution of Eqs (9 can be easily IV. COSTS AND COSTEFFECTIVENESS OF MALARIA
derived by a similar argument as in [15]. CONTROL FOR TWO STRATEGIES
m Qh%%\'\(l)efrggtr‘;?llgfg:nzlﬁirgﬁgéa[l 1??":;”%?;5?56836'3;2@ Cost-effecti\{eness apalysis compares the costs and_heqlth
by F* = (f? 97 the solution 6f Eq (9) Stects of an mtervennop _to assess the extent to whlch_lt
LoweesJp ' can be regarded as providing value for money [1], [25]. This
) ) ) informs decision-makers who have to determine where to
B. Dynamics of systeifi) with control over time allocate limited healthcare resources. It is performed in this
We recall that the minimal control is obtained by solvingection to assess the effectiveness of a control targeted on
Egs. (9). To test its effect on the dynamic of the system (Xhe minimal fraction obtained in previous section considering
we define a new force of infectio® ;(¢), with the value two strategies of control over a reference peribd- T7,
of the minimal control as follows: where T} is the initial time for which the control is intro-
. . duced andI’ the final time.
qfl;(t) — { (1 _ fi )q)Hvi(t)_'f 0 € Jres (10) Strategy 1: Protecting the minimal fraction of susceptible
®m,it) otherwise. individuals to eliminate malaria in the reservoir of infection
foralli =1,...,n.Inthe above equatio® ;(t) represents over the periodl’ — T7;.
the initial force of infection defined in Eq. (2)},.s repre- Strategy 2 : Protection of any fraction of susceptible
sents the set of reservoirs of infection defined by Eq (5), tlredividuals greater than the minimal fraction for eradicate
control is only introduced within the reservoir of infection.malaria at the same over the peridd- 77;.

(Advance online publication: 10 February 2018)
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. . . TABLE I
To achieve this purpose for our above strategies, we need Ty yinimaL FRACTION F* AND THE MAXIMAL FRACTION F

to compare the differences between the cost and health DEPENDING OF THE PARAMETERS VALUES Oy AND ay .
outcome. This is done by calculating the incremental cost

effectiveness ratio (ICER) defined as follows: Ciy || 1 2 3 4 5 6 7
ap || 1.6 2 25 || 15| 21 23 || 1.2
c*-C
ICER — (12) ay || 0.6 065 035] 04| 03 05 || 0.2
HE* - HE F* 0 06 || 080 0 || 063|070 0O
where H E* (resp.H E) denotes the health effect of strategy F 0 1 1 0 1 1 0
1 (resp. strategy 2) and* (resp.C) denotes the present City ) 9 10 11 12 13 14
value (at time = 1) of costs for the whole project of strategy an 19 || 1.7 24 || 16 2 25 || 15
1 (resp. strategy 2). A similar method is used in [21]. av || 0551 0.8 0.45 || 0.6 | 065 0.35] 0.4
F* || 048|| 0 || 070 O || 051 072|| ©
A. Method to calculate cost§' (resp. C*) for strategy 2 F 1 0 1 0 1 1 0
(resp. strategy 1) city || 15 16 || 17 || 18 || 19 || 20
Let ¢} denotes financial cost of protecting one individual am 21 || 23 || 12| 19 || 17| 24
for one unit of timet (here one month) in patch Because ay 03 || 05 || 0.2 055 | 08| 045
JiSy;, is the number of individuals to be protect in patch F* || 056 || 065 O 0 0 || 071
then c@fgS}*ﬂ is the total required financial cost to protect F 1 1 0 0 0 1
all individuals in patcl =1, ..., p. It follows that the total
cost allowed to strategy 2 (resp. strategy 1) is given by TABLE Il
D P BASELINE VALUES FOUND IN THE LITERATURE[3], [10], [6], [34]. WE
t __ t * *t T ok Qk _ HAVE ASSUMED THAT THE PARAMETERS ARE IDENTICAL IN ALL THE
¢ = Z afiSm,, and C7 = Z aftSm t=1....T PATCHES EXCEPTEDn 7 ; THAT VARIES FROM A PATCH TO ANOTHER
=1 =1 AND THE RATE OF TRAVELm?,. THAT DEPENDS ON THE DISTANCE
When cost effectiveness ratios are reported with discounting BETWEEN PATCHES
of future costs and benefits due to the longer-term impl —
. . . . . Symbol Description Values
mentation time, if we denote by s the social discount rate, _ , _
we have Am i recruitment into the susceptible class 0.4
Qi rate of progression from the
T O+t infectious to the semi-immune class 0.0035
c* = Z ﬁ PH, i rate of recovery from being infectious 0.035
t=1 ( + 7’) BH,i: rate of recovery from being semi-immung 5.5 x 10~%
and YH i disease induced death rate 9 x 105
T ot WH . natural death rate 5x 1074
C .= Z W, Ay ;e recruitment into the susceptible class 500
t=1 Byt natural death rate 0.04
OH.V,: robability of transmission from an infect
B. Method to calculate health effect of strategy71& (resp. v pre v . .
f strat oI B ious human to a susceptible mosquito 0.48. ||
of strategy ) Z;Hivi: probability of transmission from a semi-
T D immune human to a susceptible mosquifp  0.048 ||
1 . . . .
HE — —~ Z SIJ;Z (t)dt oV, H,;- prgbablllty of t‘ransmlssmn fro.m an infec
T-1T; T =1 tious mosquito to a susceptible human 0.022 ||
and ag,;: maximum number of mosquito bites
1 T P . a human can receive per unit time Table I ||
HE* = T / Z Sl{lz (t)dt, ay,;: number of times one mosquito would
TAIT o bite humans per unit time Table Il ||
where 57, () denote the number of susceptible at time | " m=S5,1, R rate of ravel
= = of humans from patch to patchs Eqg. (13) ||
when @y ;(t) = ®py,; and Sy (t) denote the number of
susceptible at time t whedy ;(t) = (1 — f)®p;.
V. SIMULATION EXPERIMENTS B. Results and Discussion

A. Parameters values The computation provides the basic reproductive number
To test the method, we have assumed that the travel raj@fue: R, = 1.3239. That to say, without control, one has
of humans depend on the distance between cities. We seinalaria that persists in the human population.

S — gl = AR — 103 il 9<ii<n (13 1) Reservoir of infection:Numerical implementation of
M= T a1 i =Jll, 2<4,7<m (13) 1o method shown in Appendix allowed to identify the set
the maximum number of mosgquito bites a human can recefigr€servoirs shown on Table Il and Figure 1. Cities num-
per unit time, a;; and the number of time one mosquit&’er 2,3,5,6,8,10,12,13,15,16 and 20 represent the reservoirs
would bite humans per unit timey are shown in Table II. of infection based on the value of the minimal fraction

The rest of parameters values of model are shown in Th- = (f{:---, f3). Indeed, one considers that a citys a
ble II1. reservoir whenf; # 0.

(Advance online publication: 10 February 2018)
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Fig. 1. This figure shows the cities which represent reserwdiiafection 0
when we use the data in Table Il and the algorithm presented in this paper. [@)]

Cities number 2,3,5,6,8,10,12,13,15,16 and 20 represent the reservoirs of

infection while cities 1,4,7,9,11,14,17,18,19 are not. Moreover this figure

provides the minimal percentage (iI0F™*, where F* := (f{,..., f3,) 120
is shown on Table (Il)) of human within each reservoir that should be
protected to eliminate malaria in the whole of the population (human and
mosquitoes).

Month 200 city

[(b)]

[(a)] 1000
800
180 600
160 400
140 Month 200 City 200
120 o
[(©)]
- Fig. 3. Simulation of the evolution over month of the densityhoiman
60! in infectious clasgIx ;) and semi-immune clas&Ry ;), as well as the
0 density of infectious mosquitoely ;) for 20 cities when the minimal
Month 200 city » percentage of susceptible human shown in Table Il are protected 100 months
post-infection. Initial conditionSg ;(0) = 500,¢ = 1,...,20, Ix 1(0) =
0 10, and Iy ;(0) = 0,i=2,..., 20;Rp ;(0) = 0,i = 1,...,20; Sy,;(0) =
[(b)] 100,i = 1,...,20; Iy;(0) = 0,i = 1,...,20.
2000 3 . . . .
1800 infection, they are supported by the mobility of infectious and
1600 semi-immune human coming from the reservoirs patches.
1400 This process gives rise an endemic disease in the 20 cities.
= When we introduce the minimal percentage to control

malaria after 100 months post-infection, one can see on
Figure 3 the reduction overtime of the disease.

400 3) Cost-infectiveness results: Numerical cost-
200 effectiveness analysis was performed by settifig= 100
0 months andl’ = 200 months.
()l Strategy ~ number of susceptibles Total cost

Fig. 2. Simulation of the evolution over month of the densityhoiman Strategy 1 7801,2 56422

in infectious class(/g,;) and semi-immune claséRy ;), as well as Strategy 2 7812,3 88000

the density of infectious mosquitogdy,;) for 20 cities when we have

no control measures. Initial conditior§zr ;(0) = 500,i = 1,...,20, ICER(1) — 56422 7 9395

Iy 1(0) =10, andIg ;(0) =0,i=2,...,20;Rg ;(0) =0,i=1,...,20; ( ) T 7801.2

Sv:(0) = 100,i = 1,...,20; Iy 4(0) = 0,5 = 1,...,20.
and

88000 — 56422
ICER(2) = — =2 — 9844, 8649

2) Dynamics of system (1) with/ or without minimal ~ 7812,3—7801,2
control: Figure 2 show the endemicity of malaria without The comparison between ICER(1) and ICER(2) shows a
control. Indeed, Although others cities are not reservoirs obst saving of 7,2325 for strategy 1 over strategy 2. The

(Advance online publication: 10 February 2018)
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ICER for strategy 1 indicates the strategy 2 is "strongly
dominated”. Strategy 2 is then more costly and less effective
than strategy 1. With this result, we therefore conclude thdt!
strategy 1 is the less cost and most effective.

(2]

VI. CONCLUSION 3]

In this article, we have extended the model derived in
[3] to give a numerical method to explain the steps foi4]
identifying reservoirs of malaria infection withinconnected 5]
regions with the explicit movement of human population.
This method is intended to design an efficient computationgs]
tool.

In the one hand, we have shown how to determine the mify;
imal percentage of susceptible individuals in the reservoirs
that should be protected to eliminate malaria over time in
the whole population. The minimal percentage quantifies th
degree of malaria risk in the reservoirs areas. It is regulated
by the mobility flux of human population between patches.
Thus for the public health decision makers, when datasets o
human migration flux, demographic and epidemic are known,
this method can aid to estimate the minimal percentage (&
susceptible individuals to be protected. We have explained
that the minimal percentage is not necessarily an optima{;
control but allows to reduce the cost of intervention. It is
constant over time. An optimal control can be considerdt!
when we would like to apply a preventative depending of
the time with a given final tim&" for disease eradication as[13]
well as a budget constraint. In that case we have shown how
to formulate such a problem. [14]

In the second hand, the costs and cost-effectiveness of
malaria control interventions is performed considering two
strategies of control: (i) protecting the minimal fraction of
susceptible individual; (ii) protecting any fraction greater
than the minimal fraction. Cost-effectiveness analysis shol#6]
that the less cost and more effective strategy is to pro-
tect the minimal fraction of susceptible individual in thgi7]
reservoir of infection. Biologically relevant parameters have
been estimated and used to fulfill numerical simulations f;lfs]
the model. These simulations was implemented through an
example using Matlab (www.matlab.org). Simulation of the
evolution over month of the density of human in infectiou8-°]
class(Iy,;) and semi-immune clas&zy;), as well as the
density of infectious mosquitoedy;) for 20 cities was [20]
shown on Figure 2-3. Together with the both Figures and
the Cost-infectiveness results, we argue that Strategy (ii)[?é]
then more costly and less effective than strategy (i). With
this result, we therefore conclude that strategy (i) is the2]
less cost and most effective, namely the minimal fraction
of population to vaccinate (or protect) to halt outbreak igs;
efficient.

Our study will be useful for spatial vaccination programs,
in which optimization methods are needed to minimize the
costs. Moreover thanks to this study, when the datasets on
human migration flux, demographic and epidemic are knowt[)r%5
one can estimate the minimal percentage of suscepti e]
individuals to be protected. The method developed in this
paper may be allow to the implementation of a software for
monitoring spatio-temporal variations in malaria epidem
risk.
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