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Abstract In most of the social choice literature dealing with the computation of the exact proba-
bility of voting events under the impartial culture assumption, authors deal with no more than four
constraints to describe voting events. With more than four constraints, most of the authors rely on
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by five constraints. Gehrlein and Fishburn (1980) have tried, but their conclusions are based on
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gested by Saari and Tataru (1999) in order to compute the limit probability of the consistency
of collective rankings when there are four competing alternatives given that the decision rule is
a scoring rule. We provide a general formula for the limit probability of the consistency and we
determine the optimal decision rules among the scoring rules that provide the best guarantee of
consistency. Given the collective ranking on a set A, we have consistency if the collective ranking
on B a proper subset of A is not altered after some alternatives are removed from A.
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1 Introduction

One of the main objectives of social choice theory is the aggregation of individual preferences into
a collective ranking that is the determination of a complete order over the set of the alternatives.
Each agent (also called a “voter”) is asked to provide a (complete) ranking of alternatives and
a given voting or decision rule is used to determine the collective ranking (social outcome). The
aggregation of preferences has wide applications in group decision making. In the framework of
statistics, it is called the “consensus ranking problem” (see the seminal papers of Kendall (1938),
Mallows (1957)). Scoring rules are among the most widely used decision rules; with a scoring
rule, voters give points to candidates according to their rankings and the total number of points
received by a candidate defines his scores for this rule. So, the alternative with the greatest (resp.
with the lowest) score will appear at the top (resp. at the bottom) of the collective ranking and
so on.

Sometimes, the aggregation of individual preferences can lead to counterintuitive outcomes
called “voting paradoxes”. For a non-exhaustive review of voting paradoxes, the reader can refer to
Felsenthal (2012), Gehrlein (2006), Gehrlein and Lepelley (2010, 2017), Nurmi (1999). Researchers
in the field of social choice theory not only describe or analyze voting paradoxes but also focus on
their likelihood. They sometimes use probabilities as a criterion for comparing the decision rules;
given a paradox, one voting rule is a better than another one if the likelihood of this paradox is
less than that with the other rule. The Impartial Culture (IC) assumption is one amongst others,
of the well-known hypotheses under which the computations are carried out.1 First introduced
in the social choice literature by Gehrlein and Fishburn (1976), it is assumed that each agent
(voter) chooses his preference (ranking) according to a uniform probability distribution. With m
alternatives (m ≥ 3), the probability of each of the m! possible strict rankings to being chosen inde-
pendently is equal to 1

m! and the likelihood of a given voting situation2 ñ = (n1, n2, ..., nt, ..., nm!)
is

Prob(ñ = (n1, n2, ..., nt, ..., nm!)) =
n!∏m!
i=1 ni!

× (m!)−n (1)

with n the size of the electorate and nt the number of agents with ranking of type t among the m!
possible rankings. For more details about the IC assumption, see among others Berg and Lepelley
(1994), Gehrlein and Fishburn (1976), Gehrlein and Lepelley (2010, 2017).

According to Gehrlein (1979), one can derive the likelihood of most voting events under the IC
assumption by using existing results on the representations of quadrivariate normal rules as sug-
gested by Plackett (1954).3 Gehrlein-Fishburn’s technique usually needs a good knowledge of the
existing formulas in statistics for the representation of quadrivariate positive orthants (Abraham-
son, 1964, Gehrlein, 1979). One advantage with this method is that it leads to compact formulas
that help to determine which are the optimal decision rules given a voting event. In most of the
social choice literature, when computing the exact probability of voting events under IC, authors
tend to deal with events described by no more than four constraints (see Gehrlein and Lepel-
ley (2010, 2017)). With more than four constraints, most of the authors rely on Monte-Carlo
simulations.

It is usually more tricky to estimate the probability of events described by five constraints
and to determine the optimal decision rules. Gehrlein and Fishburn (1980) have tried, but their
conclusions are based on conjectures. To be more precise, Gehrlein and Fishburn (1980) have
analyzed what we call the “the consistency of collective ranking”: going from a set A with four
alternatives and B a proper subset of A with three alternatives, they tried to evaluate for all
the scoring rules, the mean limiting probability4 that a collective ranking on A will be consistent
with the collective ranking on B when one element is removed from A. Gehrlein and Fishburn

1 For more on the other assumptions, please refer to Berg and Lepelley (1994), Gehrlein and Lepelley (2010).
2 We give a formal definition of a voting situation in Section 2.
3 Assume (X1, X2, · · · , Xn) a vector of n random variables with a nonsingular multivariate normal distribution.

Plackett (1954) evaluated the probability P (X1 > x1, X2 > x2, · · · , Xn > xn); he ended with a reduction formula
of this probability based on the numerical quadrature for n = 3, 4.

4 A limiting probability is computed when the size of the electorate tends to infinity.
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(1980) were not able to say which scoring rules maximize or minimize this limiting probability:
they simply concluded with a conjecture. In this paper, we follow a technique suggested by Saari
and Tataru (1999) and we show how computations with five constraints can be applied to the
framework of Gehrlein and Fishburn (1980), and we use some algorithms to find out which scoring
rules maximize/minimize the limiting probability of consistency.

Independently from the works of Gehrlein (1979), Gehrlein and Fishburn (1976, 1980, 1981),
Saari and Tataru (1999) suggested a geometric technique to derive the likelihood (under IC)
of voting events described by four constraints. The Saari-Tataru’s technique can be used without
having recourse to the Plackett formulas and just needs good software to implement the procedure.
The drawback is that formulas are not compact in general. However, as the Saari and Tataru
(1999)’s technique is based upon the integration of a differential volume, a wise choice of the
integration parameter can sometimes lead to compact formulas (Merlin et al., 2002, 2000, Tataru
and Merlin, 1997). Fortunately, though the Gehrlein-Fishburn’s technique and the Saari-Tataru’s
technique may lead to different formulas, their derivation lead to the same figures. Using the Saari-
Tataru’s technique, we obtain a general formula for the limiting probability of the consistency for
all the scoring rules. Our approach can also be used in order to extend Gehrlein and Fishburn
(1980)’s results to the following problem: given a set A with four alternatives and B a proper
subset of A with three alternatives, what is the probability to getting any of the rankings on the
three-alternative subset? Given the general formula we obtain, we suggest a simple algorithm to
determine the scoring rules that maximize/minimize the corresponding probability. So, using our
algorithm based on optimization tools, one can then remove the Gehrlein-Fishburn’s conjectures.
Due to the fact that Saari-Tataru’s technique leads to formulas that are not compact, we are not
going to report all the general formulas here5. In four-alternative situations, we also highlight
some important relations that one can use in order to derive the likelihood of other voting events
ranging from that of a particular event. We also provide a generic MAPLE-sheet for our approach
which can be used for computations of the likelihood of any four-alternative voting event described
by five constraints when scoring rules are used6. First of all, let us present the basic definitions of
the social choice literature.

2 Basic framework of social choice theory

2.1 Preferences

Let N be the set of n voters (n ≥ 2) and A the set of m alternatives, m ≥ 3. The binary relation
R over A is a subset of the Cartesian product A× A. For a, b ∈ A, if (a, b) ∈ R, we write aRb to
say that “a is at least good as b”. ¬aRb is the negation of aRb. If we have aRb and ¬bRa, we will
say that “a is better or strictly preferred to b”. In this case, we write aPb with P the asymmetric
component of R. The preference profile π = (P1, P2, ..., Pi, ..., Pn) gives all the linear orders7 of all
the n voters on A where Pi is the strict ranking of a given voter i over A. When we consider the
preference of voter i on B ⊂ A, we will simply use the restriction of Pi to B. The set of all the
preference profiles of size n on A is denoted by P(A)n. A voting situation ñ = (n1, n2, ..., nt, ..., nm!)

indicates the number of voters for each linear order such that
∑m!
t=1 nt = n. In the sequel, we simply

write

 a
b
c
d

 or abcd to say that a is strictly preferred to b, b strictly preferred to c and c strictly

preferred to d. Table 1 gives the labels of all the 24 types of linear orders with four alternatives.

5 We provide a supplement document in which the reader can see how our formulas look .
6 The methodology developed in this paper was recently used and applied by Kamwa and Merlin (2015) to

perform probability computations for some voting events under some popular voting rules.
7 A linear order is a binary relation that is transitive, complete and antisymmetric. The binary relation R on A

is transitive if for a, b, c ∈ A, if aRb and bRc then aRc. R is antisymmetric if for all for a 6= b, aRb⇒ ¬bRa; if we
have aRb and bRa, then a = b. R is complete if and only if for all a, b ∈ A, we have aRb or bRa.
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Table 1 Labels of preferences on A = {a, b, c, d}

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

a a a a a a b b b b b b
b b c c d d a a c c d d
c d b d b c c d a d a c
d c d b c b d c d a c a

n13 n14 n15 n16 n17 n18 n19 n20 n21 n22 n23 n24

c c c c c c d d d d d d
a a b b d d a a b b c c
b d a d a b b c a c a b
d b d a b a c b c a b a

2.2 Scoring rules and consistency of collective rankings

A scoring rule is a decision rule that gives points to alternatives according to the position they
have in voters’ rankings. We denote by w = (w1, w2, w3, ..., wj , ..., wm) the normalized scoring
vector associated to the voting system such that w1 = 1 ≥ w2 ≥ ... ≥ wj ≥ ... ≥ wm = 0. The
most famous scoring rules are: the simple Plurality rule (w2 = ... = wm = 0), the Antiplurality
rule (w2 = ... = wm−1 = 1) and the Borda rule (wj = m−j

m−1 ).

The total number of points received by an alternative defines its score for the considered rule.
Let r(i, a, A) be the rank of alternative a ∈ A in voter i’s ranking, r(i, a, A) = ]{x ∈ A : xPia}+1.
Given the voting system w, the total score of alternative a ∈ A is given by S(A,w, π, a) =∑n
i=1 wr(i,a,A).

We denote by R(A,w, π) (or simply R(A, π)) the collective ranking on A given the profile π
for the scoring vector w. In R(A, π), the alternative with the greatest total score appears at the
top and the one with lowest total score is ranked last. For all B ⊆ A with |B| ≥ 2, we define wB

the scoring vector of dimension |B| used to rank alternatives in the subset B. As with w, we have
wB = (wB1 , w

B
2 , ..., w

B
]B) such that wB1 = 1 ≥ wB2 ≥ ... ≥ wB]B = 0. So, for a given subset B, the

preference Pi of voter i is now defined by its restriction to B. Hence, given wB , for an alternative
a ∈ B, his score is given by S(B,w, π, a) =

∑n
i=1 w

B
r(i,a,B). We denote by R(π,B) the collective

ranking on B when the profile π is restricted to B.

We denote by R(π,A/B) the restriction of the collective ranking over A on alternatives in
B. When restricting the profile π from A to B, if R(π,B) = R(π,A/B), the alternatives in the
collective ranking on B appear in the same order as in the collective ranking on A. In such a
case, we will say that the scoring rule wB agrees or is consistent with the scoring rule w. If
R(π,B) 6= R(π,A/B), the alternatives in the collective ranking on B do not appear in the same
order as in the collective ranking on A. In a such case, we will say that the scoring rule wB is
not consistent with the scoring rule w. Even worse, the alternatives in the collective ranking on B
may appear in the reverse order of that of the collective ranking on A.

In this paper we will focus on |A| = 4 and |B| = 3. The case |A| = 4 and |B| = 2 has
been deeply analyzed by Gehrlein and Fishburn (1980, 1981). So, if A = {a, b, c, d} then B ∈{
{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}

}
. Assuming that the same scoring rule is used on both the

whole set and on the three alternative subsets, our analysis will focus on the whole family of
scoring rules and we will use w = (1, w, s, 0) on A and wB = (1, z, 0) on B with 0 ≤ w ≤ 1,
0 ≤ s ≤ 1 and 0 ≤ z ≤ 1.

3 Generalization of probability computations of consistency

3.1 Methodology

Our objective here is to generalize the evaluation of consistency probabilities under the IC assump-
tion for n large and for all the scoring vectors w = (1, w, s, 0) on A = {a, b, c, d} and wB = (1, z, 0)
on B = {a, b, c}.
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With A = {a, b, c, d}, we denote by P IC∞ ((w,wB), abc/abcd) the limiting probability under IC
such that the ranking abc occurs when d the last ranked alternative of the collective ranking on
A is removed given the couple of tallies (w,wB). In the same way we define P IC∞ ((w,wB), abc/abdc),
P IC∞ ((w,wB), abc/adbc), P IC∞ ((w,wB), abc/dabc), and so on. One can notice that P IC∞ ((w,wB), abc/abcd)
is the probability that the three-alternative collective ranking is consistent with the four-alternative
collective ranking when d is removed; while P IC∞ ((w,wB), cba/abcd) is the probability that the
three-alternative collective ranking is totally the reverse of that with four alternatives after d is
removed.

In this section we will only focus on the probability computation of the event “abcd is the
collective ranking with the scoring vector (1, w, s, 0) and abc is the collective ranking with the
scoring vector (1, z, 0) when d is removed”. The calculations for all the other events and for all the
other scoring rules follow the same scheme. So, with A = {a, b, c, d} and B = {a, b, c}, our objective
is to evaluate the probability of the event described by Equation (2) under the IC assumption, for
n large.



S(A,wP , π, a) > S(A,wP , π, b)

S(A,wP , π, b) > S(A,wP , π, c)

S(A,wP , π, c) > S(A,wP , π, d)

S(B,wP , π, a) > S(B,wP , π, b)

S(B,wP , π, b) > S(B,wP , π, c)

(2)

We denote by ~Ω a 24× 1 matrix, ~Ω =


n1
n2
...
n24

. Given the labels of the 24 preference types for

m = 4 presented in Table 1, we rewrite each of the equations as a product ~v × ~Ω with ~v a 1× 24
matrix.

S(A,wP , π, a) > S(A,wP , π, b) is described by Equation 3:

(−w+1,−w+1,−s+1, 1,−s+1, 1,−1+w,−1+w,−1+s,−1,−1+s,−1,−s+w,w,−w+s,−w, s,−s,−s+w,w,−w+s,−w, s,−s) ~Ω > 0
(3)

S(A,wP , π, b) > S(A,wP , π, c) is described by Equation 4:

(−s+w,w,−w+s,−w, s,−s,−s+1, 1,−w+1,−w+1, 1,−s+1,−1+s,−1,−1+w,−1+w,−1,−1+s, s,−s, w,−s+w,−w,−w+s) ~Ω > 0
(4)

S(A,wP , π, c) > S(A,wP , π, d) is described by Equation 5:

(s,−s, w,−s+w,−w,−w+s, s,−s, w,−s+w,−w,−w+s, 1,−s+1, 1,−s+1,−w+1,−w+1,−1,−1+s,−1,−1+s,−1+w,−1+w) ~Ω > 0
(5)

S(B,wP , π, a) > S(B,wP , π, b) is described by Equation 6:

(−z+1,−z+1, 1, 1,−z+1, 1,−1+z,−1+z,−1,−1,−1+z,−1, z, z,−z,−z, z,−z,−z+1, 1,−1+z,−1, z,−z) ~Ω > 0 (6)

S(B,wP , π, b) > S(B,wP , π, c) is described by Equation 7:

(z, z,−z,−z, z,−z, 1, 1,−z+1,−z+1, 1,−z+1,−1,−1,−1+z,−1+z,−1,−1+z, z,−z, 1,−z+1,−1,−1+z) ~Ω > 0 (7)

To make our calculations, we proceed in two steps.
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3.1.1 First step: Computation of the limit conditional probability of the event “abcd is the
collective ranking and S(B,wP , π, a) > S(B,wP , π, b) when d is removed”

This event is described by Equations 3 to 6. We rewrite Equation 6 by using a parameter t.

(
s+ t(−z + 1− s),−s+ t(−z + 1 + s), w + t(1− w),−s+ w + t(1 + s− w),−w + t(−z + 1 + w), (8)

−w + s+ t(1 + w − s), s+ t(−1 + z − s),−s+ t(−1 + z + s), w + t(−1− w),−s+ w + t(−1− w + s),

− w + t(−1 + z + w),−w + s+ t(−1− s+ w), 1 + t(z − 1),−s+ 1 + t(z − 1 + s), 1 + t(−z − 1),

− s+ 1 + t(−z − 1 + s),−w + 1 + t(z − 1 + w),−w + 1 + t(−z − 1 + w),−1 + t(−z + 2),−1 + s+ t(2− s),

− 1 + t(z),−1 + s+ t(−s),−1 + w + t(z + 1− w),−1 + w + t(−z + 1− w)

)
~Ω > 0

When t = 0, Equation 8 is equivalent to Equation 3. In t = 1, it is fully equivalent to Equation
6. Our proof technique will in fact evaluate the probability that Equations (3),(4),(5) and (8) are
satisfied under IC for n large. In t = 0, we recover the value 1

24 which is the probability of abcd
to being the collective ranking while in t = 1 we will derive the limiting probability of the event
described by Equations (3),(4),(5) and (8).

Given four alternatives, it is assumed under the Impartial Culture assumption that each voter is
equally likely to have one of the 24 preference types. Let xi be the random variable that associates
to each voter i a 24-component vector with probability 1

24 of having 1 in each position. The
expectation of xi is

E(xi) =

(
1

24
,

1

24
, . . . ,

1

24

)
and the covariance matrix is a diagonal 24× 24 matrix with the common entry σ given by

σ2 = E(x2i )− E(xi)
2

Let

mT = (m1,m2, . . .m24)T =
1

σ
√
n


 n1

...
n24

−


n
24
...
n
24




The Central Limit Theorem in R23 implies

µ
[
mT
]
7→ 1

(
√

2π)23
e
−|t|2

2 λ

as n→∞ where t = (t1, t2, . . . , t24) ∈ R24, |t|2 = t21 + · · ·+ t224 and λ is the Lebesgue measure on
the 23-dimensional hyperplane t1 + · · ·+ t24 = 0. Note that since mT has the measure supported
on the hyperplane m1 + · · ·+m24 = 0, the limit of mT as n→∞ is also a measure supported on
t1+· · ·+t24 = 0. To compute the probability that abcd is the collective ranking and S(B,wP , π, a) >
S(B,wP , π, b) when d is removed, we need to evaluate the probability that a voting situation is
characterized by the inequalities (3),(4),(5) and (8); m satisfies inequalities (3),(4),(5) and (8) if
and only if ñ = (n1, n2, . . . , n24) also satisfies them. Then, by the Central Limit Theorem, we write

Pr
(
mT satisfies (3), (4), (5) and (8)

)
7→ 1

(
√

2π)23

∫
C1

e
−|t|2

2 dλ

where C1 = {t ∈ R24, t satisfies ((3), (4), (5) and (8)and
∑24
i=1(ti) = 0}.

As the measure µ̄ ≡ 1
(
√
2π)23

e
−|t|2

2 λ is absolutely continuous and radially symmetric, computing

1
(
√
2π)23

∫
C1
e
−|t|2

2 dλ reduces to finding the measure µ̄ of the cone C1, when the measure is invariant
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to rotations. The measure µ̄ of such a cone is proportional to the Euclidean measure of the cone,
that is, the measure on the sphere.

Saari and Tataru (1999) have developed a method of computing the probabilities of voting
events under the Impartial culture. Some refinements of this method are done in Merlin et al.
(2002, 2000), Merlin and Valognes (2004). This method is mainly based on linear algebra and the
calculation of a differential volume in a spherical simplex of dimension ν using the Schläfli formula
(see Coxeter (1935), Kellerhals (1989), Milnor (1982), Schläfli (1950)). This formula is given by:

dvolν(C1) =
1

(ν − 1)

∑
0≤j<k≤ν

volν−2(Sj ∩ Sk)dαjk; vol0 = 1

with αjk the dihedral angle formed by the facets Sj and Sk of the cone C1. Following the arguments
given by Saari and Tataru (1999), the probability that the inequalities are met simultaneously for
a voting situation when pi = 1

24 , i = 1, . . . , 24 for n large is equal to the surface of the spherical
simplex T described by Equations (3),(4),(5), (8) on the surface of the unit sphere in R4, divided
by the surface of this sphere.

More precisely, if we denote by P IC∞ ((w,wB), abcd− ab) the limit probability that abcd is the
collective ranking and S(B,wP , π, a) > S(B,wP , π, b) when d is removed, we will derive

P IC∞ ((w,wB), abcd− ab) = 1 +
24

ω4

∫ t

0

dvolν(C1)dt

where ω4 = 2π2 is the volume of the unit sphere in R4.

Given the cone C1, let S1 be the facet defined by the Equation (3), S2 the facet defined by the
Equation (4), S3 the facet defined by the Equation (5) and S4 the facet defined by the Equation
(8). Let ~v1, ~v2, ~v3 and ~v4 be the normal vectors to the hyperplanes S1, S2, S3 and S4 respectively.

~v1 =

(
− w + 1,−w + 1,−s+ 1, 1,−s+ 1, 1,−1 + w,−1 + w,−1 + s,−1,−1 + s,−1,−s,−s+ w,w,−w + s,−w, s,−s

)

~v2 =

(
− s+ w,w,−w + s,−w, s,−s,−s+ 1, 1,−w + 1,−w + 1, 1,−s+ 1,−1 + s,−1,−1 + w,−1 + w,−1,−1 + s, s,

−s, w,−s+ w,−w,−w + s

)

~v3 =

(
s,−s, w,−s+ w,−w,−w + s, s,−s, w,−s+ w,−w,−w + s, 1,−s+ 1, 1,−s+ 1,−w + 1,−w + 1,−1,−1 + s,−1,

−1 + s,−1 + w,−1 + w

)

~v4 =

(
s+ t(−z + 1− s),−s+ t(−z + 1 + s), w + t(1− w),−s+ w + t(1 + s− w),−w + t(−z + 1 + w),−w + s+ t(1 + w − s),

s+ t(−1 + z − s),−s+ t(−1 + z + s), w + t(−1− w),−s+ w + t(−1− w + s),−w + t(−1 + z + w),−w + s+ t(−1− s+ w),
1 + t(z − 1),−s+ 1 + t(z − 1 + s), 1 + t(−z − 1),−s+ 1 + t(−z − 1 + s),−w + 1 + t(z − 1 + w),−w + 1 + t(−z − 1 + w),

−1 + t(−z + 2),−1 + s+ t(2− s),−1 + t(z),−1 + s+ t(−s),−1 + w + t(z + 1− w),−1 + w + t(−z + 1− w)

)
Since ~vj and ~vk are respectively normal to Sj and Sk, we can use the relationship

cos(αjk) =
−~vj . ~vk
||~vj ||.|| ~vk||

to derive the value of the dihedral angle αjk between vectors ~vj and ~vk. So, we compute α12,
α13, α14, α23, α24 and α34. Therefore, we compute the differential angles dαjk. The vectors ~v1,
~v2, ~v3 and ~v4 lie in a 4-dimensional space. We find 19 other vectors (~v5 to ~v24) such that we get
a basis for the orthogonal subspace. Then, we can calculate the vertexes P123 = S1 ∩ S2 ∩ S3,
P124 = S1 ∩ S2 ∩ S4, P134 = S1 ∩ S3 ∩ S4 and P2345 = S2 ∩ S3 ∩ S4 by solving each of the systems
described in Equation 9.
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P123 :



S1 = 0

S2 = 0

S3 = 0

S4 > 0

S5 = 0

S6 = 0

S7 = 0

.

.

.

.

.

.

S23 = 0

S24 = 0

P124 :



S1 = 0

S2 = 0

S3 > 0

S4 = 0

S5 = 0

S6 = 0

S7 = 0

.

.

.

.

.

.

S23 = 0

S24 = 0

P134 :



S1 = 0

S2 > 0

S3 = 0

S4 = 0

S5 = 0

S6 = 0

S7 = 0

.

.

.

.

.

.

S23 = 0

S24 = 0

P234 :



S1 > 0

S2 > 0

S3 = 0

S4 = 0

S5 = 0

S6 = 0

S7 = 0

.

.

.

.

.

.

S23 = 0

S24 = 0

(9)

The solutions of these systems are four vertices: P123, P124, P134 and P234. Knowing these
vertices, we are able to compute the following volumes

vol(S1 ∩ S2) = ](P123, P124)
vol(S1 ∩ S3) = ](P123, P134)
vol(S1 ∩ S4) = ](P124, P134)
vol(S2 ∩ S3) = ](P123, P234)
vol(S2 ∩ S4) = ](P124, P234)
vol(S3 ∩ S4) = ](P134, P234)

It follows from the Schläfli’s formula that,

dvol(C1) = vol(S1 ∩ S2)dα12 + vol(S1 ∩ S3)dα13 + vol(S1 ∩ S4)dα14

+ vol(S2 ∩ S3)dα23 + vol(S2 ∩ S4)dα24 + vol(S3 ∩ S4)dα34

We have to multiply dvol(C1) by 24 then divide it by 2 (since ν = 3) and then by 2π2 (the

volume of the unit sphere in R4) in order to obtain the final differential volume 24
4π2

∫ t
0
dvol(C1)dt.

We then derive at t = 1 the value of the probability that abcd is the collective ranking and
S(B,wP , π, a) > S(B,wP , π, b) when d is removed

P IC∞ ((w,wB), abcd− ab) = 1 +
6

π2

∫ 1

0

dvol(C1)dt

We can now move to the second step where we will derive our consistency probability between
abcd and abc when d is removed.

3.1.2 Second step: the generalized consistency probability

Using the Schläfli formula again, the consistency probability we are looking for will be obtained
by adding to P IC((w,wB), abcd − ab), the integral of the differential volume characterized by
the inequalities (3),(4),(5), (6) and (7). To determine this differential volume, we need to rewrite
inequality (7) using the parameter t.

(
− z + 1 + t(z + z − 1),−z + 1 + t(z + z − 1), 1 + t(−z − 1), 1 + t(−z − 1),−z + 1 + t(z − 1 + z), 1 + t(−z − 1), (10)

−1 + z + t(−z + 2),−1 + z + t(−z + 2),−1 + t(−z + 2),−1 + t(−z + 2),−1 + z + t(−z + 2),−1 + t(−z + 2),

z + t(−z − 1), z + t(−z − 1),−z + t(2z − 1),−z + t(2z − 1), z + t(−z − 1),−z + t(2z − 1),

−z + 1 + t(2z − 1), 1 + t(−z − 1),−1 + z + t(−z + 2),−1 + t(−z + 2), z + t(−z − 1),−z + t(2z − 1)

)
~Ω > 0

When t = 0, Equation (10) is equivalent to Equation (4). In t = 1, it fully describes the
situation of Equation (2). As in the first step, our proof technique will be based on the same
arguments and will evaluate the probability that Equations (3),(4),(5),(6) and (10) are satisfied
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under IC for n large. In t = 0, we recover the value P IC∞ ((w,wB), abcd− ab) while in t = 1 we will
derive the probability of the event described by Equations (3),(4),(5),(6) and (10).

By the Central Limit Theorem, we can write

Pr
(
mT satisfies (3), (4), (5), (6) and (10)

)
7→ 1

(
√

2π)23

∫
C2

e
−|t|2

2 dλ

where C2 = {t ∈ R24, t satisfies ((3), (4), (5), (6) and (10); and
∑24
i=1(ti) = 0}. Using the Schläfli

formula

dvolρ(C2) =
1

(ρ− 1)

∑
0≤j<k≤ρ

volρ−2(Tj ∩ Tk)dθjk; vol0 = 1

Following the arguments stated by Saari and Tataru (1999), the probability that inequalities
(3),(4),(5), (6) and (10) are met simultaneously for a voting situation when pi = 1

24 , i = 1, . . . , 24
for n large is equal to the surface of the spherical simplex T described by Equations (3),(4),(5),
(8) on the surface of the unit sphere in R5, divided by the surface of this sphere. More precisely,
we will derive

P IC∞ ((wP , w
B
P ), abc/abcd) = P IC∞ ((w,wB), abcd− ab) +

24

ω5

∫ t

0

dvolρ(C2)dt

where ω5 = 8π2

3 is the volume of the surface of the unit sphere in R5.
Given the cone C2, let T1 be the facet defined by the Equation (3), T2 the facet defined by the

Equation (4), T3 the facet defined by the Equation (5), T4 the facet defined by the Equation (6)
and T5 the facet defined by the Equation (10). Let ~s1, ~s2, ~s3, ~s4, ~s5 be the normal vectors to the
hyperplanes T1, T2, T3, T4, T5.

~s1 = ~v1
~s2 = ~v2
~s3 = ~v3
~s4 = (−z + 1,−z + 1, 1, 1,−z + 1, 1,−1 + z,−1 + z,−1,−1,−1 + z,−1, z, z,−z,−z, z,−z,−z + 1, 1,−1 + z,−1, z,−z)

~s5 =

(
− z + 1 + t(z + z − 1),−z + 1 + t(z + z − 1), 1 + t(−z − 1), 1 + t(−z − 1),−z + 1 + t(z − 1 + z), 1 + t(−z − 1),

−1 + z + t(−z + 2),−1 + z + t(−z + 2),−1 + t(−z + 2),−1 + t(−z + 2),−1 + z + t(−z + 2),−1 + t(−z + 2),
z + t(−z − 1), z + t(−z − 1),−z + t(2z − 1),−z + t(2z − 1), z + t(−z − 1),−z + t(2z − 1),

−z + 1 + t(2z − 1), 1 + t(−z − 1),−1 + z + t(−z + 2),−1 + t(−z + 2), z + t(−z − 1),−z + t(2z − 1)

)

We then have the dihedral angles θjk between vectors ~sj and ~sk : θ14, θ34, θ15, θ35, θ24, θ25 and θ45.
Then, we compute the differential angles dθ14, dθ24, dθ34, dθ15, dθ35, dα24, dθ25, dα14 and dθ45.
The vectors ~s1, ~s2, ~s3, ~s4 and ~s5 lie in a 4-dimensional space. We find 19 other vectors (~s6 to ~s24) to
form a basis for the orthogonal subspace. Then, we calculate the vertexes P1234 = T1∩T2∩T3∩T4,
P1235 = T1∩T2∩T3∩T5, P1245 = T1∩T2∩T4∩T5, P1345 = T1∩T3∩T4∩T5 and P2345 = T2∩T3∩T4∩T5
by solving the following systems

P1234 :



T1 = 0

T2 = 0

T3 = 0

T4 = 0

T5 > 0

T6 = 0

T7 = 0

.

.

.

.

.

.

T23 = 0

T24 = 0

P1235 :



T1 = 0

T2 = 0

T3 = 0

T4 > 0

T5 = 0

T6 = 0

T7 = 0

.

.

.

.

.

.

T23 = 0

T24 = 0

P1245 :



T1 = 0

T2 = 0

T3 > 0

T4 = 0

T5 = 0

T6 = 0

T7 = 0

.

.

.

.

.

.

T23 = 0

T24 = 0

P1345 :



T1 = 0

T2 > 0

T3 = 0

T4 = 0

T5 = 0

T6 = 0

T7 = 0

.

.

.

.

.

.

T23 = 0

T24 = 0

P2345 :



T1 > 0

T2 = 0

T3 = 0

T4 = 0

T5 = 0

T6 = 0

T7 = 0

.

.

.

.

.

.

T23 = 0

T24 = 0

(11)
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Table 2 volumes and directions

volumes Directions
(T1 ∩ T2) P1235, P1235, P1245

(T1 ∩ T3) P1234, P1235, P1345

(T1 ∩ T4) P1234, P1245, P1345

(T1 ∩ T5) P1235, P1245, P1345

(T2 ∩ T3) P1234, P1235, P2345

(T2 ∩ T4) P1234, P1245, P2345

(T2 ∩ T5) P1235, P1245, P2345

(T3 ∩ T4) P1234, P1345, P2345

(T3 ∩ T5) P1235, P1345, P2345

(T4 ∩ T5) P1245, P1345, P2345

The solutions of these systems are the five vertices: P1234, P1235, P1245, P1345 and P2345. Knowing
these vertices, we are able to compute the volumes (Tj ∩ Tk). Each of these volumes is the area of
a triangle on the sphere in R3 defined by some directions. Table 2 gives the directions for each of
these volumes.

Let us consider the volume (T1∩T5). By the Gauss-Bonnet theorem, the area of the triangle on
the sphere in R3 defined by directions P1235, P1245 and P1345 is equal to the sum of the angles on
the surface of the triangle minus π. We denote by γ1235, γ1245 and γ1345 the angles on the surface of
the triangle respectively defined at the vertexes P1235, P1245 and P1345. Also, we define the angles

δ1 = ̂P1235, P1245, δ2 = ̂P1235, P1345 and δ3 = ̂P1245, P1345. By applying the the Gauss-Bonnet
formula, we have

cos(γ1345) =
cos(δ1)− cos(δ2) cos(δ3)

sin(δ2) sin(δ3)

cos(γ1245) =
cos(δ2)− cos(δ1) cos(δ3)

sin(δ1) sin(δ3)

cos(γ1235) =
cos(δ3)− cos(δ1) cos(δ2)

sin(δ1) sin(δ2)

and,

vol(T1 ∩ T2) = γ1234 + γ1235 + γ1245 − π
vol(T1 ∩ T3) = γ1234 + γ1235 + γ1345 − π
vol(T1 ∩ T4) = γ1234 + γ1245 + γ1345 − π
vol(T1 ∩ T5) = γ1235 + γ1245 + γ1345 − π
vol(T2 ∩ T3) = γ1234 + γ1235 + γ2345 − π
vol(T2 ∩ T4) = γ1234 + γ1245 + γ2345 − π
vol(T2 ∩ T5) = γ1235 + γ1245 + γ2345 − π
vol(T3 ∩ T4) = γ1234 + γ1345 + γ2345 − π
vol(T3 ∩ T5) = γ1235 + γ1345 + γ2345 − π
vol(T4 ∩ T5) = γ1245 + γ1345 + γ2345 − π

Applying the Schläfli formula we get,

dvol(C2) = vol(T1 ∩ T2)dθ12 + vol(T1 ∩ T3)dθ13 + vol(T1 ∩ T4)dθ14 + vol(T1 ∩ T5)dθ15

+ vol(T2 ∩ T3)dθ23 + vol(T2 ∩ T4)dθ24 + vol(T2 ∩ T5)dθ25 + vol(T3 ∩ T4)dθ34

+ vol(T3 ∩ T5)dθ35 + vol(T4 ∩ T5)dθ45
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We then multiply dvol(C2) by 24 and then divide it by 8π2

3 (the volume of the hypersphere in

R5) and then by 3 (since ρ = 4) to obtain the final differential volume 3
π2

∫ t
0
dvol(C2)dt. At t = 1

we then derive,

P IC∞ ((w,wB), abc/abcd) = P IC∞ ((w,wB), abcd− ab) +
3

π2

∫ 1

0

dvol(C2)dt

= 1 +
6

π2

∫ 1

0

dvol(C1)dt+
3

π2

∫ 1

0

dvol(C2)dt

= 1 +
3

π2

∫ 1

0

(
2dvol(C1) + dvol(C2)

)
dt

Following the same scheme, we can obtain one general formula for each four-alternative event
described by five constraints. The formulas we obtain are quite huge; as said before, this is due to
the fact that the Saari-Tataru’s technique does not always lead to compact formulas.8 So we are
not going to report the formulas here; instead we provide a link (in the Appendix) where the reader
can see how they look. Also in the Appendix, we provide a link to the generic MAPLE-sheet we
used in order to perform our computations on consistency. Recall that this MAPLE-sheet can be
used to compute the likelihood of any four-alternative voting events described by five constraints
when scoring rules are used.

3.2 Some numerical results

We can now use our Maple-sheet in order to get some numerical results of consistency probabilities.
In Table 3, we report the values of P IC∞ ((w,wB), abc/•), the limit probability that given the
collective ranking on A = {a, b, c, d} we will get the same collective ranking on B = {a, b, c} when
d is removed. So, we consider the cases where d is ranked first, second, third and last. We restrict
our computations to some values of w, s and z in order to focus on the well-known scoring rules
in social choice theory. The key considerations derive from Table 3 and this is also what we get

Table 3 Consistency probabilities P IC
∞ ((w,wB), abc/•) for some values of (w, s, z)

(w, s, z) ( 2
3
, 1
3
, 1
2

) (1, 0, 0) (1, 1
3
, 0) (1, 1, 1) (1, 2

3
, 1) (1, 0, 1)

P IC
∞ ((w,wB), abc/abcd) 0.719518 0.516969 0.594543 0.516969 0.594543 0.412089

P IC
∞ ((w,wB), abc/abdc) 0.840425 0.661087 0.737973 0.661087 0.737973 0.537710

P IC
∞ ((w,wB), abc/adbc) 0.840425 0.661087 0.737973 0.661087 0.737973 0.537710

P IC
∞ ((w,wB), abc/dabc) 0.719518 0.516969 0.594543 0.516969 0.594543 0.412089

by performing the computations for all the other values of w, s and z. For A = {a, b, c, d} and for
all pairs (w,wB) of scoring rules, when d is removed,

P IC∞ ((w,wB), abc/abcd) = P IC∞ ((w,wB), abc/dabc) (12)

P IC∞ ((w,wB), abc/abdc) = P IC∞ ((w,wB), abc/adbc) (13)

We push the analysis further by addressing the following question: what is the probability for
each of the collective rankings on B = {a, b, c} to appear given that on A = {a, b, c, d}. We find
the following relations for all pairs (w,wB) of scoring rules when d is removed.

P IC∞ ((w,wB), cba/abcd) = P IC∞ ((w,wB), cba/dabc) (14)

P IC∞ ((w,wB), cba/abdc) = P IC∞ ((w,wB), cba/adbc) (15)

8 We were not able to find a reduced form of this formula. This was also the case for all the other general formulas.
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and for (φ, τ) = (acb, bac) or (cab, bca),

P IC∞ ((w,wB), φ/abcd) = P IC∞ ((w,wB), τ/dabc) (16)

P IC∞ ((w,wB), φ/abdc) = P IC∞ ((w,wB), τ/adbc) (17)

P IC∞ ((w,wB), φ/adbc) = P IC∞ ((w,wB), τ/abdc) (18)

P IC∞ ((w,wB), φ/dabc) = P IC∞ ((w,wB), τ/abcd) (19)

In Table 4 we report the limiting probabilities for one of the possible collective rankings on
B = {a, b, c} to appear given that on A = {a, b, c, d} for w = 2

3 , s = 1
3 and z = 1

2 . More results
are provided in Kamwa and Merlin (2015) who used our Maple-Sheet and the above relationships
between probabilities in their framework to compute the likelihood of certain voting paradoxes.

Table 4 Probabilities of one of the possible collective rankings on B = {a, b, c} appearing given the collective
ranking on A = {a, b, c, d} for w = 2

3
, s = 1

3
and z = 1

2

collective rankings abc acb bac bca cab cba

abcd 0.719518 0.138512 0.111617 0.011626 0.011888 0.006836
abdc 0.840425 0.028084 0.127008 0.002214 0.001408 0.000858
adbc 0.840425 0.127008 0.028084 0.001408 0.002214 0.000858
dabc 0.719518 0.111617 0.138512 0.011888 0.011626 0.006836

3.3 Optimality: the optimal decision rules

We have already noted that Gehrlein and Fishburn (1980) were not able to say for which scoring
rule the formula they obtained is minimized/maximized; they end with conjectures. Given our
approach and general formulas, we can now determine the pair of scoring vectors for which our
general formula of consistency is maximized or minimized.

Notice that our general formula is a 3-variable function; so, the optimization package of MAPLE
can be used for this task. We use Algorithm 1 for the maximization and Algorithm 2 for the
minimization.

Algorithm 1 The maximum of P = P (w, s, z)

> with(linalg);
> Pw := D[1](P );
> Ps := D[2](P );
> Pz := D[2](P );
> Sol := fsolve(Pw(w, s, z), P s(w, s, z), P z(w, s, z), w, s, z, w = 0..1, s = 0..1, z = 0..1);

Running Algorithm 1 can be time consuming for some computers. In the end, we get w =
0.6666666, s = 0.3333333 and z = 0.5 as the solutions of our maximization. These solutions
characterize the pair of vectors w = (1, 23 ,

1
3 , 0) and wB = (1, 12 , 0). So, we conclude that the

consistency probability is maximized by the Borda rule.

Algorithm 2 The minimum of P = P (w, s, z)

> with(linalg);
> with(Optimization);
> minimize(P (w, s, z), w = 0..1, s = 0..1, z = 0..1, location);
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Running Algorithm 2 is time consuming and needs a lot of memory; So the reader will need
a robust computer for this. With the help of two members of the MAPLE-group, we found the
following solutions: (w = s = 0 and z = 1) and ( w = s = 1 and z = 0). So, consistency is
minimized with the following pairs of scoring rules :

(Plurality,Antiplurality) =
(
w = (1, 0, 0, 0), wB = (1, 1, 0)

)
(Antiplurality,Plurality) =

(
w = (1, 1, 1, 0), wB = (1, 0, 0)

)
Based on all these results, Kamwa and Merlin (2015) were able to derive all their results.

They run algorithms similar to Algorithms 1 and 2 and they find that the probabilities of each
of the events are minimized by the Borda rule and maximized by the pairs of scoring vectors(
w = (1, 0, 0, 0), wB = (1, 1, 0)

)
and

(
w = (1, 1, 1, 0), wB = (1, 0, 0)

)
.

4 Conclusion

In this paper, we have applied the Saari-Tataru’s technique to a problem already analyzed by
Gehrlein and Fishburn (1980): Given a set of four alternatives, how often is a collective ranking
on this set consistent with a collective ranking on one of its three-alternative proper subsets. They
based their approach on the representation of quadrivariate positive orthants but they were not
able to say with certitude what is the optimality of their search. In this paper, we revisit their
problem and provide a way to find the optimal decision rule. Further, we provided a Maple-Sheet
for the computation of any four-alternative event described by five constraints when scoring rules
are used. It could be interesting to see how our proposal can be applied to real-world data as in
the papers of Gormley and Murphy (2008) or D’Ambrosio and Heiser (2016) who applied their
proposal on a real data set coming from an opinion poll (conducted by the Irish Marketing Surveys
in 1997) in which each respondent had to place in order of preference five candidates to be elected
President of the Irish Republic.9
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Appendix

For space constraints, here are the links to:

– An external sheet where the reader can see how our formulas look.

https://www.dropbox.com/s/mkdbxuwfrsevmk3/general%20formula.pdf?dl=0

– The MAPLE-sheet we used for all our computations.

https://www.dropbox.com/s/byyvtoex90h4je5/MapleSheet_generic.pdf?dl=0

9 Thanks to the referee for bringing to our attention the works of D’Ambrosio and Heiser (2016), Gormley and
Murphy (2008).

https://www.dropbox.com/s/mkdbxuwfrsevmk3/general%20formula.pdf?dl=0
https://www.dropbox.com/s/byyvtoex90h4je5/MapleSheet_generic.pdf?dl=0
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